{-# LANGUAGE CPP #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE DeriveFunctor #-}
module Data.Profunctor.Traversing
( Traversing(..)
, CofreeTraversing(..)
, FreeTraversing(..)
, dimapWandering
, lmapWandering
, rmapWandering
, firstTraversing
, secondTraversing
, leftTraversing
, rightTraversing
) where
import Control.Applicative
import Control.Arrow (Kleisli(..))
import Data.Functor.Compose
import Data.Functor.Identity
import Data.Orphans ()
import Data.Profunctor.Choice
import Data.Profunctor.Monad
import Data.Profunctor.Strong
import Data.Profunctor.Types
import Data.Profunctor.Unsafe
import Data.Traversable
import Data.Tuple (swap)
#if __GLASGOW_HASKELL__ < 710
import Data.Monoid (Monoid)
import Data.Foldable
import Prelude hiding (mapM)
#endif
firstTraversing :: Traversing p => p a b -> p (a, c) (b, c)
firstTraversing = dimap swap swap . traverse'
secondTraversing :: Traversing p => p a b -> p (c, a) (c, b)
secondTraversing = traverse'
swapE :: Either a b -> Either b a
swapE = either Right Left
dimapWandering :: Traversing p => (a' -> a) -> (b -> b') -> p a b -> p a' b'
dimapWandering f g = wander (\afb a' -> g <$> afb (f a'))
lmapWandering :: Traversing p => (a -> b) -> p b c -> p a c
lmapWandering f = wander (\afb a' -> afb (f a'))
rmapWandering :: Traversing p => (b -> c) -> p a b -> p a c
rmapWandering g = wander (\afb a' -> g <$> afb a')
leftTraversing :: Traversing p => p a b -> p (Either a c) (Either b c)
leftTraversing = dimap swapE swapE . traverse'
rightTraversing :: Traversing p => p a b -> p (Either c a) (Either c b)
rightTraversing = traverse'
newtype Bazaar a b t = Bazaar { runBazaar :: forall f. Applicative f => (a -> f b) -> f t }
deriving Functor
instance Applicative (Bazaar a b) where
pure a = Bazaar $ \_ -> pure a
mf <*> ma = Bazaar $ \k -> runBazaar mf k <*> runBazaar ma k
instance Profunctor (Bazaar a) where
dimap f g m = Bazaar $ \k -> g <$> runBazaar m (fmap f . k)
sell :: a -> Bazaar a b b
sell a = Bazaar $ \k -> k a
newtype Baz t b a = Baz { runBaz :: forall f. Applicative f => (a -> f b) -> f t }
deriving Functor
sold :: Baz t a a -> t
sold m = runIdentity (runBaz m Identity)
instance Foldable (Baz t b) where
foldMap = foldMapDefault
instance Traversable (Baz t b) where
traverse f bz = fmap (\m -> Baz (runBazaar m)) . getCompose . runBaz bz $ \x -> Compose $ sell <$> f x
instance Profunctor (Baz t) where
dimap f g m = Baz $ \k -> runBaz m (fmap f . k . g)
class (Choice p, Strong p) => Traversing p where
traverse' :: Traversable f => p a b -> p (f a) (f b)
traverse' = wander traverse
wander :: (forall f. Applicative f => (a -> f b) -> s -> f t) -> p a b -> p s t
wander f pab = dimap (\s -> Baz $ \afb -> f afb s) sold (traverse' pab)
{-# MINIMAL wander | traverse' #-}
instance Traversing (->) where
traverse' = fmap
wander f ab = runIdentity #. f (Identity #. ab)
instance Monoid m => Traversing (Forget m) where
traverse' (Forget h) = Forget (foldMap h)
wander f (Forget h) = Forget (getConst . f (Const . h))
instance Monad m => Traversing (Kleisli m) where
traverse' (Kleisli m) = Kleisli (mapM m)
wander f (Kleisli amb) = Kleisli $ unwrapMonad #. f (WrapMonad #. amb)
instance Applicative m => Traversing (Star m) where
traverse' (Star m) = Star (traverse m)
wander f (Star amb) = Star (f amb)
newtype CofreeTraversing p a b = CofreeTraversing { runCofreeTraversing :: forall f. Traversable f => p (f a) (f b) }
instance Profunctor p => Profunctor (CofreeTraversing p) where
lmap f (CofreeTraversing p) = CofreeTraversing (lmap (fmap f) p)
rmap g (CofreeTraversing p) = CofreeTraversing (rmap (fmap g) p)
dimap f g (CofreeTraversing p) = CofreeTraversing (dimap (fmap f) (fmap g) p)
instance Profunctor p => Strong (CofreeTraversing p) where
second' = traverse'
instance Profunctor p => Choice (CofreeTraversing p) where
right' = traverse'
instance Profunctor p => Traversing (CofreeTraversing p) where
traverse' (CofreeTraversing p) = CofreeTraversing (dimap Compose getCompose p)
instance ProfunctorFunctor CofreeTraversing where
promap f (CofreeTraversing p) = CofreeTraversing (f p)
instance ProfunctorComonad CofreeTraversing where
proextract (CofreeTraversing p) = runIdentity #. p .# Identity
produplicate (CofreeTraversing p) = CofreeTraversing (CofreeTraversing (dimap Compose getCompose p))
data FreeTraversing p a b where
FreeTraversing :: Traversable f => (f y -> b) -> p x y -> (a -> f x) -> FreeTraversing p a b
instance Profunctor (FreeTraversing p) where
lmap f (FreeTraversing l m r) = FreeTraversing l m (r . f)
rmap g (FreeTraversing l m r) = FreeTraversing (g . l) m r
dimap f g (FreeTraversing l m r) = FreeTraversing (g . l) m (r . f)
g #. FreeTraversing l m r = FreeTraversing (g #. l) m r
FreeTraversing l m r .# f = FreeTraversing l m (r .# f)
instance Strong (FreeTraversing p) where
second' = traverse'
instance Choice (FreeTraversing p) where
right' = traverse'
instance Traversing (FreeTraversing p) where
traverse' (FreeTraversing l m r) = FreeTraversing (fmap l .# getCompose) m (Compose #. fmap r)
instance ProfunctorFunctor FreeTraversing where
promap f (FreeTraversing l m r) = FreeTraversing l (f m) r
instance ProfunctorMonad FreeTraversing where
proreturn p = FreeTraversing runIdentity p Identity
projoin (FreeTraversing l (FreeTraversing l' m r') r) = FreeTraversing ((l . fmap l') .# getCompose) m (Compose #. (fmap r' . r))