{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE CPP #-}
module Data.Profunctor.Rep
(
Representable(..)
, tabulated
, firstRep, secondRep
, Corepresentable(..)
, cotabulated
, unfirstCorep, unsecondCorep
, closedCorep
, Prep(..)
, prepAdj
, unprepAdj
, prepUnit
, prepCounit
, Coprep(..)
, coprepAdj
, uncoprepAdj
, coprepUnit
, coprepCounit
) where
import Control.Applicative
import Control.Arrow
import Control.Comonad
import Control.Monad ((>=>))
import Data.Functor.Identity
import Data.Profunctor
import Data.Profunctor.Sieve
import Data.Proxy
import Data.Tagged
class (Sieve p (Rep p), Strong p) => Representable p where
type Rep p :: * -> *
tabulate :: (d -> Rep p c) -> p d c
firstRep :: Representable p => p a b -> p (a, c) (b, c)
firstRep p = tabulate $ \(a,c) -> (\b -> (b, c)) <$> sieve p a
secondRep :: Representable p => p a b -> p (c, a) (c, b)
secondRep p = tabulate $ \(c,a) -> (,) c <$> sieve p a
instance Representable (->) where
type Rep (->) = Identity
tabulate f = runIdentity . f
{-# INLINE tabulate #-}
instance (Monad m, Functor m) => Representable (Kleisli m) where
type Rep (Kleisli m) = m
tabulate = Kleisli
{-# INLINE tabulate #-}
instance Functor f => Representable (Star f) where
type Rep (Star f) = f
tabulate = Star
{-# INLINE tabulate #-}
instance Representable (Forget r) where
type Rep (Forget r) = Const r
tabulate = Forget . (getConst .)
{-# INLINE tabulate #-}
type Iso s t a b = forall p f. (Profunctor p, Functor f) => p a (f b) -> p s (f t)
tabulated :: (Representable p, Representable q) => Iso (d -> Rep p c) (d' -> Rep q c') (p d c) (q d' c')
tabulated = dimap tabulate (fmap sieve)
{-# INLINE tabulated #-}
class (Cosieve p (Corep p), Costrong p) => Corepresentable p where
type Corep p :: * -> *
cotabulate :: (Corep p d -> c) -> p d c
unfirstCorep :: Corepresentable p => p (a, d) (b, d) -> p a b
unfirstCorep p = cotabulate f
where f fa = b where (b, d) = cosieve p ((\a -> (a, d)) <$> fa)
unsecondCorep :: Corepresentable p => p (d, a) (d, b) -> p a b
unsecondCorep p = cotabulate f
where f fa = b where (d, b) = cosieve p ((,) d <$> fa)
closedCorep :: Corepresentable p => p a b -> p (x -> a) (x -> b)
closedCorep p = cotabulate $ \fs x -> cosieve p (fmap ($ x) fs)
instance Corepresentable (->) where
type Corep (->) = Identity
cotabulate f = f . Identity
{-# INLINE cotabulate #-}
instance Functor w => Corepresentable (Cokleisli w) where
type Corep (Cokleisli w) = w
cotabulate = Cokleisli
{-# INLINE cotabulate #-}
instance Corepresentable Tagged where
type Corep Tagged = Proxy
cotabulate f = Tagged (f Proxy)
{-# INLINE cotabulate #-}
instance Functor f => Corepresentable (Costar f) where
type Corep (Costar f) = f
cotabulate = Costar
{-# INLINE cotabulate #-}
cotabulated :: (Corepresentable p, Corepresentable q) => Iso (Corep p d -> c) (Corep q d' -> c') (p d c) (q d' c')
cotabulated = dimap cotabulate (fmap cosieve)
{-# INLINE cotabulated #-}
data Prep p a where
Prep :: x -> p x a -> Prep p a
instance Profunctor p => Functor (Prep p) where
fmap f (Prep x p) = Prep x (rmap f p)
instance (Applicative (Rep p), Representable p) => Applicative (Prep p) where
pure a = Prep () $ tabulate $ const $ pure a
Prep xf pf <*> Prep xa pa = Prep (xf,xa) (tabulate go) where
go (xf',xa') = sieve pf xf' <*> sieve pa xa'
instance (Monad (Rep p), Representable p) => Monad (Prep p) where
return a = Prep () $ tabulate $ const $ return a
Prep xa pa >>= f = Prep xa $ tabulate $ sieve pa >=> \a -> case f a of
Prep xb pb -> sieve pb xb
prepAdj :: (forall a. Prep p a -> g a) -> p :-> Star g
prepAdj k p = Star $ \x -> k (Prep x p)
unprepAdj :: (p :-> Star g) -> Prep p a -> g a
unprepAdj k (Prep x p) = runStar (k p) x
prepUnit :: p :-> Star (Prep p)
prepUnit p = Star $ \x -> Prep x p
prepCounit :: Prep (Star f) a -> f a
prepCounit (Prep x p) = runStar p x
newtype Coprep p a = Coprep { runCoprep :: forall r. p a r -> r }
instance Profunctor p => Functor (Coprep p) where
fmap f (Coprep g) = Coprep (g . lmap f)
coprepAdj :: (forall a. f a -> Coprep p a) -> p :-> Costar f
coprepAdj k p = Costar $ \f -> runCoprep (k f) p
uncoprepAdj :: (p :-> Costar f) -> f a -> Coprep p a
uncoprepAdj k f = Coprep $ \p -> runCostar (k p) f
coprepUnit :: p :-> Costar (Coprep p)
coprepUnit p = Costar $ \f -> runCoprep f p
coprepCounit :: f a -> Coprep (Costar f) a
coprepCounit f = Coprep $ \p -> runCostar p f