{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeFamilies #-}

module Data.Set.Lifted
  ( Set
  , empty
  , singleton
  , null
  , member
  , lookupIndex
  , size
  , difference
  , (\\)
  , intersection
  , subset
  , intersects
    -- * Conversion
  , toArray
  , LI.toList
  , LI.fromList
    -- * Folds
  , LI.foldr
  , LI.foldl'
  , LI.foldr'
  , foldMap'
  , foldMap
    -- * Traversals
  , traverse_
  , itraverse_
  ) where

import Prelude hiding (foldr,foldMap,null)
import Data.Semigroup (Semigroup)
import Data.Set.Lifted.Internal (Set(..))
import Data.Primitive (Array)
import qualified Data.Set.Internal as I
import qualified Data.Set.Lifted.Internal as LI

-- | The difference of two sets.
difference :: Ord a => Set a -> Set a -> Set a
difference :: forall a. Ord a => Set a -> Set a -> Set a
difference (Set Set Array a
x) (Set Set Array a
y) = forall a. Set Array a -> Set a
Set (forall a (arr :: * -> *).
(ContiguousU arr, Element arr a, Ord a) =>
Set arr a -> Set arr a -> Set arr a
I.difference Set Array a
x Set Array a
y)

-- | The intersection of two sets.
intersection :: Ord a => Set a -> Set a -> Set a
intersection :: forall a. Ord a => Set a -> Set a -> Set a
intersection (Set Set Array a
x) (Set Set Array a
y) = forall a. Set Array a -> Set a
Set (forall a (arr :: * -> *).
(ContiguousU arr, Element arr a, Ord a) =>
Set arr a -> Set arr a -> Set arr a
I.intersection Set Array a
x Set Array a
y)

-- | Do the two sets contain any of the same elements?
intersects :: Ord a => Set a -> Set a -> Bool
intersects :: forall a. Ord a => Set a -> Set a -> Bool
intersects (Set Set Array a
x) (Set Set Array a
y) = forall a (arr :: * -> *).
(Contiguous arr, Element arr a, Ord a) =>
Set arr a -> Set arr a -> Bool
I.intersects Set Array a
x Set Array a
y

-- | Is the first argument a subset of the second argument?
subset :: Ord a => Set a -> Set a -> Bool
subset :: forall a. Ord a => Set a -> Set a -> Bool
subset (Set Set Array a
x) (Set Set Array a
y) = forall (arr :: * -> *) a.
(Contiguous arr, Element arr a, Ord a) =>
Set arr a -> Set arr a -> Bool
I.subset Set Array a
x Set Array a
y

-- | The empty set.
empty :: Set a
empty :: forall a. Set a
empty = forall a. Set Array a -> Set a
Set forall (arr :: * -> *) a. Contiguous arr => Set arr a
I.empty

-- | Infix operator for 'difference'.
(\\) :: Ord a => Set a -> Set a -> Set a
\\ :: forall a. Ord a => Set a -> Set a -> Set a
(\\) (Set Set Array a
x) (Set Set Array a
y) = forall a. Set Array a -> Set a
Set (forall a (arr :: * -> *).
(ContiguousU arr, Element arr a, Ord a) =>
Set arr a -> Set arr a -> Set arr a
I.difference Set Array a
x Set Array a
y)

-- | True if the set is empty
null :: Set a -> Bool
null :: forall a. Set a -> Bool
null (Set Set Array a
s) = forall (arr :: * -> *) a. Contiguous arr => Set arr a -> Bool
I.null Set Array a
s

-- | Test whether or not an element is present in a set.
member :: Ord a => a -> Set a -> Bool
member :: forall a. Ord a => a -> Set a -> Bool
member a
a (Set Set Array a
s) = forall (arr :: * -> *) a.
(Contiguous arr, Element arr a, Ord a) =>
a -> Set arr a -> Bool
I.member a
a Set Array a
s

-- | /O(log n)/. Lookup the /index/ of an element, which is
-- its zero-based index in the sorted sequence of elements. 
lookupIndex :: Ord a => a -> Set a -> Maybe Int
lookupIndex :: forall a. Ord a => a -> Set a -> Maybe Int
lookupIndex a
a (Set Set Array a
s) = forall (arr :: * -> *) a.
(Contiguous arr, Element arr a, Ord a) =>
a -> Set arr a -> Maybe Int
I.lookupIndex a
a Set Array a
s

-- | Construct a set with a single element.
singleton :: a -> Set a
singleton :: forall a. a -> Set a
singleton = forall a. Set Array a -> Set a
Set forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (arr :: * -> *) a.
(Contiguous arr, Element arr a) =>
a -> Set arr a
I.singleton

-- | The number of elements in the set.
size :: Set a -> Int
size :: forall a. Set a -> Int
size (Set Set Array a
s) = forall (arr :: * -> *) a.
(Contiguous arr, Element arr a) =>
Set arr a -> Int
I.size Set Array a
s

-- | Strict monoidal fold over the elements in the set.
foldMap' :: Monoid m
  => (a -> m)
  -> Set a
  -> m
foldMap' :: forall m a. Monoid m => (a -> m) -> Set a -> m
foldMap' a -> m
f (Set Set Array a
arr) = forall (arr :: * -> *) a m.
(Contiguous arr, Element arr a, Monoid m) =>
(a -> m) -> Set arr a -> m
I.foldMap' a -> m
f Set Array a
arr

-- | Lazy monoidal fold over the elements in the set.
foldMap :: Monoid m
  => (a -> m)
  -> Set a
  -> m
foldMap :: forall m a. Monoid m => (a -> m) -> Set a -> m
foldMap a -> m
f (Set Set Array a
arr) = forall (arr :: * -> *) a m.
(Contiguous arr, Element arr a, Monoid m) =>
(a -> m) -> Set arr a -> m
I.foldMap a -> m
f Set Array a
arr

-- | /O(1)/ Convert a set to an array. The elements are given in ascending
-- order. This function is zero-cost.
toArray :: Set a -> Array a
toArray :: forall a. Set a -> Array a
toArray (Set Set Array a
s) = forall (arr :: * -> *) a. Set arr a -> arr a
I.toArray Set Array a
s

-- | Traverse a set, discarding the result.
traverse_ :: Applicative m
  => (a -> m b)
  -> Set a
  -> m ()
traverse_ :: forall (m :: * -> *) a b.
Applicative m =>
(a -> m b) -> Set a -> m ()
traverse_ a -> m b
f (Set Set Array a
arr) = forall (arr :: * -> *) a (m :: * -> *) b.
(Contiguous arr, Element arr a, Applicative m) =>
(a -> m b) -> Set arr a -> m ()
I.traverse_ a -> m b
f Set Array a
arr

-- | Traverse a set with the indices, discarding the result.
itraverse_ :: Applicative m
  => (Int -> a -> m b)
  -> Set a
  -> m ()
itraverse_ :: forall (m :: * -> *) a b.
Applicative m =>
(Int -> a -> m b) -> Set a -> m ()
itraverse_ Int -> a -> m b
f (Set Set Array a
arr) = forall (arr :: * -> *) a (m :: * -> *) b.
(Contiguous arr, Element arr a, Applicative m) =>
(Int -> a -> m b) -> Set arr a -> m ()
I.itraverse_ Int -> a -> m b
f Set Array a
arr
{-# INLINEABLE itraverse_ #-}