{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
module Plots.Types.HeatMap
(
HeatMap
, heatMap
, heatMap'
, heatMapIndexed
, heatMapIndexed'
, HasHeatMap (..)
, pathHeatRender
, pixelHeatRender
, pixelHeatRender'
, HeatMatrix
, heatImage
, hmPoints
, hmSize
, mkHeatMap
, mkHeatMatrix
, mkHeatMatrix'
) where
import Control.Lens hiding (transform, ( # ))
import Control.Monad.ST
import Control.Monad.State
import qualified Data.Foldable as F
import Data.Typeable
import qualified Data.Vector.Generic.Mutable as M
import qualified Data.Vector.Storable as S
import qualified Data.Vector.Unboxed as V
import Data.Word (Word8)
import Codec.Picture
import Diagrams.Coordinates.Isomorphic
import Diagrams.Prelude
import Plots.Axis
import Plots.Style
import Plots.Types
data HeatMatrix = HeatMatrix
{ HeatMatrix -> V2 Int
hmSize :: {-# UNPACK #-} !(V2 Int)
, HeatMatrix -> Vector Double
_hmVector :: {-# UNPACK #-} !(V.Vector Double)
, HeatMatrix -> Double
hmBoundLower :: {-# UNPACK #-} !Double
, HeatMatrix -> Double
hmBoundUpper :: {-# UNPACK #-} !Double
}
mkHeatMatrix :: V2 Int -> (V2 Int -> Double) -> HeatMatrix
mkHeatMatrix :: V2 Int -> (V2 Int -> Double) -> HeatMatrix
mkHeatMatrix s :: V2 Int
s@(V2 Int
x Int
y) V2 Int -> Double
f = (forall s. ST s HeatMatrix) -> HeatMatrix
forall a. (forall s. ST s a) -> a
runST ((forall s. ST s HeatMatrix) -> HeatMatrix)
-> (forall s. ST s HeatMatrix) -> HeatMatrix
forall a b. (a -> b) -> a -> b
$ do
MVector s Double
mv <- Int -> ST s (MVector (PrimState (ST s)) Double)
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
Int -> m (v (PrimState m) a)
M.new (Int
xInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
y)
let go :: Int -> Double -> Double -> Int -> Int -> ST s HeatMatrix
go !Int
q !Double
a !Double
b !Int
i !Int
j
| Int
j Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
y = do Vector Double
v <- MVector (PrimState (ST s)) Double -> ST s (Vector Double)
forall a (m :: * -> *).
(Unbox a, PrimMonad m) =>
MVector (PrimState m) a -> m (Vector a)
V.unsafeFreeze MVector s Double
MVector (PrimState (ST s)) Double
mv
HeatMatrix -> ST s HeatMatrix
forall (m :: * -> *) a. Monad m => a -> m a
return (V2 Int -> Vector Double -> Double -> Double -> HeatMatrix
HeatMatrix V2 Int
s Vector Double
v Double
a Double
b)
| Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
x = Int -> Double -> Double -> Int -> Int -> ST s HeatMatrix
go Int
q Double
a Double
b Int
0 (Int
j Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)
| Bool
otherwise = do let !d :: Double
d = V2 Int -> Double
f (Int -> Int -> V2 Int
forall a. a -> a -> V2 a
V2 Int
i Int
j)
MVector (PrimState (ST s)) Double -> Int -> Double -> ST s ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
M.unsafeWrite MVector s Double
MVector (PrimState (ST s)) Double
mv Int
q Double
d
Int -> Double -> Double -> Int -> Int -> ST s HeatMatrix
go (Int
q Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) (Double -> Double -> Double
forall a. Ord a => a -> a -> a
min Double
a Double
d) (Double -> Double -> Double
forall a. Ord a => a -> a -> a
max Double
b Double
d) (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) Int
j
Int -> Double -> Double -> Int -> Int -> ST s HeatMatrix
go Int
0 (Double
1Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/Double
0) (-Double
1Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/Double
0) Int
0 Int
0
{-# INLINE mkHeatMatrix #-}
min' :: Double -> Double -> Double
min' :: Double -> Double -> Double
min' !Double
a !Double
b
| Double -> Bool
forall a. RealFloat a => a -> Bool
isNaN Double
b = Double
a
| Double -> Bool
forall a. RealFloat a => a -> Bool
isInfinite Double
b = Double
a
| Bool
otherwise = Double -> Double -> Double
forall a. Ord a => a -> a -> a
min Double
a Double
b
{-# INLINE min' #-}
max' :: Double -> Double -> Double
max' :: Double -> Double -> Double
max' !Double
a !Double
b
| Double -> Bool
forall a. RealFloat a => a -> Bool
isNaN Double
b = Double
a
| Double -> Bool
forall a. RealFloat a => a -> Bool
isInfinite Double
b = Double
a
| Bool
otherwise = Double -> Double -> Double
forall a. Ord a => a -> a -> a
max Double
a Double
b
{-# INLINE max' #-}
data MM = MM {-# UNPACK #-} !Double {-# UNPACK #-} !Double
minMax :: V.Vector Double -> (Double, Double)
minMax :: Vector Double -> (Double, Double)
minMax = MM -> (Double, Double)
fini (MM -> (Double, Double))
-> (Vector Double -> MM) -> Vector Double -> (Double, Double)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (MM -> Double -> MM) -> MM -> Vector Double -> MM
forall b a. Unbox b => (a -> b -> a) -> a -> Vector b -> a
V.foldl' MM -> Double -> MM
go (Double -> Double -> MM
MM (Double
1Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/Double
0) (-Double
1Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/Double
0))
where
go :: MM -> Double -> MM
go (MM Double
lo Double
hi) Double
k = Double -> Double -> MM
MM (Double -> Double -> Double
min' Double
lo Double
k) (Double -> Double -> Double
max' Double
hi Double
k)
fini :: MM -> (Double, Double)
fini (MM Double
lo Double
hi) = (Double
lo, Double
hi)
{-# INLINE minMax #-}
mkHeatMatrix' :: (F.Foldable f, F.Foldable g) => f (g Double) -> HeatMatrix
mkHeatMatrix' :: forall (f :: * -> *) (g :: * -> *).
(Foldable f, Foldable g) =>
f (g Double) -> HeatMatrix
mkHeatMatrix' f (g Double)
xss = V2 Int -> Vector Double -> Double -> Double -> HeatMatrix
HeatMatrix (Int -> Int -> V2 Int
forall a. a -> a -> V2 a
V2 Int
x Int
y) Vector Double
vd Double
a Double
b
where
(Double
a,Double
b) = Vector Double -> (Double, Double)
minMax Vector Double
vd
vd :: Vector Double
vd = (forall s. ST s (MVector s Double)) -> Vector Double
forall a. Unbox a => (forall s. ST s (MVector s a)) -> Vector a
V.create ((forall s. ST s (MVector s Double)) -> Vector Double)
-> (forall s. ST s (MVector s Double)) -> Vector Double
forall a b. (a -> b) -> a -> b
$ do
MVector s Double
mv <- Int -> ST s (MVector (PrimState (ST s)) Double)
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
Int -> m (v (PrimState m) a)
M.new (Int
xInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
y)
let go :: Int -> [Vector Double] -> ST s (MVector s Double)
go !Int
_ [] = MVector s Double -> ST s (MVector s Double)
forall (m :: * -> *) a. Monad m => a -> m a
return MVector s Double
mv
go Int
j (Vector Double
r:[Vector Double]
rs) = MVector (PrimState (ST s)) Double -> Vector Double -> ST s ()
forall a (m :: * -> *).
(Unbox a, PrimMonad m) =>
MVector (PrimState m) a -> Vector a -> m ()
V.unsafeCopy (Int -> Int -> MVector s Double -> MVector s Double
forall (v :: * -> * -> *) a s.
MVector v a =>
Int -> Int -> v s a -> v s a
M.unsafeSlice (Int
jInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
x) Int
x MVector s Double
mv) Vector Double
r ST s () -> ST s (MVector s Double) -> ST s (MVector s Double)
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Int -> [Vector Double] -> ST s (MVector s Double)
go (Int
jInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) [Vector Double]
rs
Int -> [Vector Double] -> ST s (MVector s Double)
go (Int
y Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) [Vector Double]
vs
(!Int
x,!Int
y,![Vector Double]
vs) = ((Int, Int, [Vector Double])
-> g Double -> (Int, Int, [Vector Double]))
-> (Int, Int, [Vector Double])
-> f (g Double)
-> (Int, Int, [Vector Double])
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
F.foldl' (Int, Int, [Vector Double])
-> g Double -> (Int, Int, [Vector Double])
forall {a} {t :: * -> *} {b}.
(Unbox a, Foldable t, Num b) =>
(Int, b, [Vector a]) -> t a -> (Int, b, [Vector a])
f (Int
forall a. Bounded a => a
maxBound,Int
0,[]) f (g Double)
xss
f :: (Int, b, [Vector a]) -> t a -> (Int, b, [Vector a])
f (!Int
i,!b
j,![Vector a]
ss) t a
xs = let !v :: Vector a
v = [a] -> Vector a
forall a. Unbox a => [a] -> Vector a
V.fromList (t a -> [a]
forall (t :: * -> *) a. Foldable t => t a -> [a]
F.toList t a
xs)
in (Int -> Int -> Int
forall a. Ord a => a -> a -> a
min Int
i (Vector a -> Int
forall a. Unbox a => Vector a -> Int
V.length Vector a
v), b
jb -> b -> b
forall a. Num a => a -> a -> a
+b
1, Vector a
v Vector a -> [Vector a] -> [Vector a]
forall a. a -> [a] -> [a]
: [Vector a]
ss)
hmPoints :: IndexedTraversal' (V2 Int) HeatMatrix Double
hmPoints :: IndexedTraversal' (V2 Int) HeatMatrix Double
hmPoints p Double (f Double)
f (HeatMatrix e :: V2 Int
e@(V2 Int
x Int
y) Vector Double
v Double
a Double
b) =
Int -> Int -> Int -> f [Double]
go Int
0 Int
0 Int
0 f [Double] -> ([Double] -> HeatMatrix) -> f HeatMatrix
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \[Double]
vs ->
let v' :: Vector Double
v'= Int -> [Double] -> Vector Double
forall a. Unbox a => Int -> [a] -> Vector a
V.fromListN (Int
xInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
y) [Double]
vs
in V2 Int -> Vector Double -> Double -> Double -> HeatMatrix
HeatMatrix V2 Int
e Vector Double
v' Double
a Double
b
where
go :: Int -> Int -> Int -> f [Double]
go !Int
s !Int
i !Int
j
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
x = Int -> Int -> Int -> f [Double]
go Int
s Int
0 (Int
jInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)
| Int
j Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
y = [Double] -> f [Double]
forall (f :: * -> *) a. Applicative f => a -> f a
pure []
| Bool
otherwise = (:) (Double -> [Double] -> [Double])
-> f Double -> f ([Double] -> [Double])
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> p Double (f Double) -> V2 Int -> Double -> f Double
forall i (p :: * -> * -> *) a b.
Indexable i p =>
p a b -> i -> a -> b
indexed p Double (f Double)
f (Int -> Int -> V2 Int
forall a. a -> a -> V2 a
V2 Int
i Int
j) (Vector Double -> Int -> Double
forall a. Unbox a => Vector a -> Int -> a
V.unsafeIndex Vector Double
v Int
s)
f ([Double] -> [Double]) -> f [Double] -> f [Double]
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Int -> Int -> Int -> f [Double]
go (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
j
{-# INLINE [0] hmPoints #-}
{-# RULES
"hmPoints/foldr"
hmPoints = ifoldring hmFold :: Getting (Endo r) HeatMatrix Double;
"hmPoints/ifoldr"
hmPoints = ifoldring hmFold :: IndexedGetting (V2 Int) (Endo r) HeatMatrix Double
#-}
hmFold :: (V2 Int -> Double -> b -> b) -> b -> HeatMatrix -> b
hmFold :: forall b. (V2 Int -> Double -> b -> b) -> b -> HeatMatrix -> b
hmFold V2 Int -> Double -> b -> b
f b
b0 (HeatMatrix (V2 Int
x Int
y) Vector Double
v Double
_ Double
_) = Int -> Int -> Int -> b -> b
go Int
0 Int
0 Int
0 b
b0 where
go :: Int -> Int -> Int -> b -> b
go !Int
s !Int
i !Int
j b
b
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
x = Int -> Int -> Int -> b -> b
go Int
s Int
0 (Int
jInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) b
b
| Int
j Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
y = b
b
| Bool
otherwise = V2 Int -> Double -> b -> b
f (Int -> Int -> V2 Int
forall a. a -> a -> V2 a
V2 Int
i Int
j) (Vector Double -> Int -> Double
forall a. Unbox a => Vector a -> Int -> a
V.unsafeIndex Vector Double
v Int
s) (Int -> Int -> Int -> b -> b
go (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Int
j b
b)
{-# INLINE hmFold #-}
pixelHeatRender
:: (Renderable (DImage n Embedded) b, TypeableFloat n)
=> HeatMatrix
-> ColourMap
-> QDiagram b V2 n Any
pixelHeatRender :: forall n b.
(Renderable (DImage n Embedded) b, TypeableFloat n) =>
HeatMatrix -> ColourMap -> QDiagram b V2 n Any
pixelHeatRender HeatMatrix
hm ColourMap
cm =
QDiagram b V2 n Any -> QDiagram b V2 n Any
forall n a.
(InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) =>
a -> a
alignBL (QDiagram b V2 n Any -> QDiagram b V2 n Any)
-> (DImage n Embedded -> QDiagram b V2 n Any)
-> DImage n Embedded
-> QDiagram b V2 n Any
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DImage n Embedded -> QDiagram b V2 n Any
forall n a b.
(TypeableFloat n, Typeable a, Renderable (DImage n a) b) =>
DImage n a -> QDiagram b V2 n Any
image (DImage n Embedded -> QDiagram b V2 n Any)
-> DImage n Embedded -> QDiagram b V2 n Any
forall a b. (a -> b) -> a -> b
$ ImageData Embedded
-> Int -> Int -> Transformation V2 n -> DImage n Embedded
forall b a.
ImageData b -> Int -> Int -> Transformation V2 a -> DImage a b
DImage (DynamicImage -> ImageData Embedded
ImageRaster (Image PixelRGB8 -> DynamicImage
ImageRGB8 Image PixelRGB8
img)) Int
x Int
y Transformation V2 n
forall a. Monoid a => a
mempty
where
img :: Image PixelRGB8
img = HeatMatrix -> ColourMap -> Image PixelRGB8
heatImage HeatMatrix
hm ColourMap
cm
V2 Int
x Int
y = HeatMatrix -> V2 Int
hmSize HeatMatrix
hm
pixelHeatRender'
:: (Renderable (DImage n Embedded) b, TypeableFloat n)
=> Int
-> HeatMatrix
-> ColourMap
-> QDiagram b V2 n Any
pixelHeatRender' :: forall n b.
(Renderable (DImage n Embedded) b, TypeableFloat n) =>
Int -> HeatMatrix -> ColourMap -> QDiagram b V2 n Any
pixelHeatRender' Int
n HeatMatrix
hm ColourMap
cm =
n -> QDiagram b V2 n Any -> QDiagram b V2 n Any
forall (v :: * -> *) n a.
(InSpace v n a, Eq n, Fractional n, Transformable a) =>
n -> a -> a
scale (n
1n -> n -> n
forall a. Fractional a => a -> a -> a
/Int -> n
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n) (QDiagram b V2 n Any -> QDiagram b V2 n Any)
-> (DImage n Embedded -> QDiagram b V2 n Any)
-> DImage n Embedded
-> QDiagram b V2 n Any
forall b c a. (b -> c) -> (a -> b) -> a -> c
. QDiagram b V2 n Any -> QDiagram b V2 n Any
forall n a.
(InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) =>
a -> a
alignBL (QDiagram b V2 n Any -> QDiagram b V2 n Any)
-> (DImage n Embedded -> QDiagram b V2 n Any)
-> DImage n Embedded
-> QDiagram b V2 n Any
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DImage n Embedded -> QDiagram b V2 n Any
forall n a b.
(TypeableFloat n, Typeable a, Renderable (DImage n a) b) =>
DImage n a -> QDiagram b V2 n Any
image (DImage n Embedded -> QDiagram b V2 n Any)
-> DImage n Embedded -> QDiagram b V2 n Any
forall a b. (a -> b) -> a -> b
$ ImageData Embedded
-> Int -> Int -> Transformation V2 n -> DImage n Embedded
forall b a.
ImageData b -> Int -> Int -> Transformation V2 a -> DImage a b
DImage (DynamicImage -> ImageData Embedded
ImageRaster (Image PixelRGB8 -> DynamicImage
ImageRGB8 Image PixelRGB8
img)) (Int
xInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
n) (Int
yInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
n) Transformation V2 n
forall a. Monoid a => a
mempty
where
img :: Image PixelRGB8
img = Int -> Image PixelRGB8 -> Image PixelRGB8
scaleImage Int
n (Image PixelRGB8 -> Image PixelRGB8)
-> Image PixelRGB8 -> Image PixelRGB8
forall a b. (a -> b) -> a -> b
$ HeatMatrix -> ColourMap -> Image PixelRGB8
heatImage HeatMatrix
hm ColourMap
cm
V2 Int
x Int
y = HeatMatrix -> V2 Int
hmSize HeatMatrix
hm
scaleImage :: Int -> Image PixelRGB8 -> Image PixelRGB8
scaleImage :: Int -> Image PixelRGB8 -> Image PixelRGB8
scaleImage Int
n Image PixelRGB8
img | Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 = Image PixelRGB8
img
| Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = Int
-> Int -> Vector (PixelBaseComponent PixelRGB8) -> Image PixelRGB8
forall a. Int -> Int -> Vector (PixelBaseComponent a) -> Image a
Image Int
0 Int
0 Vector (PixelBaseComponent PixelRGB8)
forall a. Storable a => Vector a
S.empty
| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = [Char] -> Image PixelRGB8
forall a. HasCallStack => [Char] -> a
error [Char]
"scaleImage: negative scale"
scaleImage Int
n (Image Int
x Int
y Vector (PixelBaseComponent PixelRGB8)
v) = Int
-> Int -> Vector (PixelBaseComponent PixelRGB8) -> Image PixelRGB8
forall a. Int -> Int -> Vector (PixelBaseComponent a) -> Image a
Image (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
x) (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
y) Vector Word8
Vector (PixelBaseComponent PixelRGB8)
vn where
!refV :: Vector Int
refV = [Int] -> Vector Int
forall a. Unbox a => [a] -> Vector a
V.fromList ([Int] -> Vector Int) -> [Int] -> Vector Int
forall a b. (a -> b) -> a -> b
$ (Int -> Int) -> [Int] -> [Int]
forall a b. (a -> b) -> [a] -> [b]
map (Int -> Int -> Int
forall a. Num a => a -> a -> a
*Int
3) [ Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
xInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
j | Int
i <- [Int
0..Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1], Int
j <- [Int
0..Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1] ]
!n3 :: Int
n3 = Int
3Int -> Int -> Int
forall a. Num a => a -> a -> a
*Int
n
vn :: Vector Word8
vn = (forall s. ST s (MVector s Word8)) -> Vector Word8
forall a. Storable a => (forall s. ST s (MVector s a)) -> Vector a
S.create ((forall s. ST s (MVector s Word8)) -> Vector Word8)
-> (forall s. ST s (MVector s Word8)) -> Vector Word8
forall a b. (a -> b) -> a -> b
$ do
MVector s Word8
mv <- Int -> ST s (MVector (PrimState (ST s)) Word8)
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
Int -> m (v (PrimState m) a)
M.new (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
* Vector Word8 -> Int
forall a. Storable a => Vector a -> Int
S.length Vector Word8
Vector (PixelBaseComponent PixelRGB8)
v)
let go :: Int -> Int -> Int -> ST s (MVector s Word8)
go !Int
q !Int
i !Int
s | Int
q Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
3Int -> Int -> Int
forall a. Num a => a -> a -> a
*Int
xInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
y = MVector s Word8 -> ST s (MVector s Word8)
forall (m :: * -> *) a. Monad m => a -> m a
return MVector s Word8
mv
| Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
x = Int -> Int -> Int -> ST s (MVector s Word8)
go Int
q Int
0 (Int
s Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
3Int -> Int -> Int
forall a. Num a => a -> a -> a
*Int
xInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
*(Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1))
go Int
q Int
i Int
s = do
let !r :: Word8
r = Vector Word8 -> Int -> Word8
forall a. Storable a => Vector a -> Int -> a
S.unsafeIndex Vector Word8
Vector (PixelBaseComponent PixelRGB8)
v Int
q
!g :: Word8
g = Vector Word8 -> Int -> Word8
forall a. Storable a => Vector a -> Int -> a
S.unsafeIndex Vector Word8
Vector (PixelBaseComponent PixelRGB8)
v (Int
qInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)
!b :: Word8
b = Vector Word8 -> Int -> Word8
forall a. Storable a => Vector a -> Int -> a
S.unsafeIndex Vector Word8
Vector (PixelBaseComponent PixelRGB8)
v (Int
qInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
2)
Vector Int -> (Int -> ST s ()) -> ST s ()
forall (m :: * -> *) a b.
(Monad m, Unbox a) =>
Vector a -> (a -> m b) -> m ()
V.forM_ Vector Int
refV ((Int -> ST s ()) -> ST s ()) -> (Int -> ST s ()) -> ST s ()
forall a b. (a -> b) -> a -> b
$ \Int
ds -> do
MVector (PrimState (ST s)) Word8 -> Int -> Word8 -> ST s ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
M.unsafeWrite MVector s Word8
MVector (PrimState (ST s)) Word8
mv (Int
s Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
ds ) Word8
r
MVector (PrimState (ST s)) Word8 -> Int -> Word8 -> ST s ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
M.unsafeWrite MVector s Word8
MVector (PrimState (ST s)) Word8
mv (Int
s Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
ds Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1) Word8
g
MVector (PrimState (ST s)) Word8 -> Int -> Word8 -> ST s ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
M.unsafeWrite MVector s Word8
MVector (PrimState (ST s)) Word8
mv (Int
s Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
ds Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
2) Word8
b
Int -> Int -> Int -> ST s (MVector s Word8)
go (Int
qInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
3) (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
n3)
Int -> Int -> Int -> ST s (MVector s Word8)
go Int
0 Int
0 Int
0
heatImage :: HeatMatrix -> ColourMap -> Image PixelRGB8
heatImage :: HeatMatrix -> ColourMap -> Image PixelRGB8
heatImage (HeatMatrix (V2 Int
x Int
y) Vector Double
dv Double
a Double
b) ColourMap
cm = Int
-> Int -> Vector (PixelBaseComponent PixelRGB8) -> Image PixelRGB8
forall a. Int -> Int -> Vector (PixelBaseComponent a) -> Image a
Image Int
x Int
y Vector Word8
Vector (PixelBaseComponent PixelRGB8)
v where
!cv :: Vector Word8
cv = ColourMap -> Vector Word8
mkColourVector ColourMap
cm
v :: S.Vector Word8
v :: Vector Word8
v = (forall s. ST s (MVector s Word8)) -> Vector Word8
forall a. Storable a => (forall s. ST s (MVector s a)) -> Vector a
S.create ((forall s. ST s (MVector s Word8)) -> Vector Word8)
-> (forall s. ST s (MVector s Word8)) -> Vector Word8
forall a b. (a -> b) -> a -> b
$ do
MVector s Word8
mv <- Int -> ST s (MVector (PrimState (ST s)) Word8)
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
Int -> m (v (PrimState m) a)
M.new (Int
3 Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
x Int -> Int -> Int
forall a. Num a => a -> a -> a
* Int
y)
let !m :: Double
m = Double
256 Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ (Double
b Double -> Double -> Double
forall a. Num a => a -> a -> a
- Double
a)
writeColour :: Int -> Colour Double -> ST s ()
writeColour Int
q (Colour Double -> RGB Word8
forall b. (RealFrac b, Floating b) => Colour b -> RGB Word8
toSRGB24 -> RGB Word8
rr Word8
gg Word8
bb) = do
MVector (PrimState (ST s)) Word8 -> Int -> Word8 -> ST s ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
M.unsafeWrite MVector s Word8
MVector (PrimState (ST s)) Word8
mv Int
q Word8
rr
MVector (PrimState (ST s)) Word8 -> Int -> Word8 -> ST s ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
M.unsafeWrite MVector s Word8
MVector (PrimState (ST s)) Word8
mv (Int
qInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Word8
gg
MVector (PrimState (ST s)) Word8 -> Int -> Word8 -> ST s ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
M.unsafeWrite MVector s Word8
MVector (PrimState (ST s)) Word8
mv (Int
qInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
2) Word8
bb
colourValue :: Int -> Double -> ST s ()
colourValue !Int
q !Double
d
| Double -> Bool
forall a. RealFloat a => a -> Bool
isNaN Double
d = Int -> Colour Double -> ST s ()
writeColour Int
q (ColourMap
cmColourMap
-> Getting (Colour Double) ColourMap (Colour Double)
-> Colour Double
forall s a. s -> Getting a s a -> a
^.Getting (Colour Double) ColourMap (Colour Double)
forall a. HasNanColours a => Lens' a (Colour Double)
nanColour)
| Double -> Bool
forall a. RealFloat a => a -> Bool
isInfinite Double
d = Int -> Colour Double -> ST s ()
writeColour Int
q (if Double
d Double -> Double -> Bool
forall a. Ord a => a -> a -> Bool
< Double
0 then ColourMap
cmColourMap
-> Getting (Colour Double) ColourMap (Colour Double)
-> Colour Double
forall s a. s -> Getting a s a -> a
^.Getting (Colour Double) ColourMap (Colour Double)
forall a. HasNanColours a => Lens' a (Colour Double)
negInfColour else ColourMap
cmColourMap
-> Getting (Colour Double) ColourMap (Colour Double)
-> Colour Double
forall s a. s -> Getting a s a -> a
^.Getting (Colour Double) ColourMap (Colour Double)
forall a. HasNanColours a => Lens' a (Colour Double)
infColour)
| Bool
otherwise = do
let !o :: Int
o = Int
3 Int -> Int -> Int
forall a. Num a => a -> a -> a
* (Int -> Int -> Int
forall a. Ord a => a -> a -> a
min Int
255 (Int -> Int) -> (Double -> Int) -> Double -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Int -> Int
forall a. Ord a => a -> a -> a
max Int
0 (Int -> Int) -> (Double -> Int) -> Double -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Double -> Int
forall a b. (RealFrac a, Integral b) => a -> b
round (Double -> Int) -> Double -> Int
forall a b. (a -> b) -> a -> b
$ (Double
d Double -> Double -> Double
forall a. Num a => a -> a -> a
- Double
a) Double -> Double -> Double
forall a. Num a => a -> a -> a
* Double
m)
MVector (PrimState (ST s)) Word8 -> Int -> Word8 -> ST s ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
M.unsafeWrite MVector s Word8
MVector (PrimState (ST s)) Word8
mv Int
q (Vector Word8 -> Int -> Word8
forall a. Unbox a => Vector a -> Int -> a
V.unsafeIndex Vector Word8
cv Int
o )
MVector (PrimState (ST s)) Word8 -> Int -> Word8 -> ST s ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
M.unsafeWrite MVector s Word8
MVector (PrimState (ST s)) Word8
mv (Int
qInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Vector Word8 -> Int -> Word8
forall a. Unbox a => Vector a -> Int -> a
V.unsafeIndex Vector Word8
cv (Int
oInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1))
MVector (PrimState (ST s)) Word8 -> Int -> Word8 -> ST s ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
M.unsafeWrite MVector s Word8
MVector (PrimState (ST s)) Word8
mv (Int
qInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
2) (Vector Word8 -> Int -> Word8
forall a. Unbox a => Vector a -> Int -> a
V.unsafeIndex Vector Word8
cv (Int
oInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
2))
go :: Int -> Int -> Int -> ST s (MVector s Word8)
go Int
s Int
i Int
q
| Int
s Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
xInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1 = do
let d :: Double
d = Vector Double -> Int -> Double
forall a. Unbox a => Vector a -> Int -> a
V.unsafeIndex Vector Double
dv Int
s
Int -> Double -> ST s ()
colourValue Int
q Double
d
MVector s Word8 -> ST s (MVector s Word8)
forall (m :: * -> *) a. Monad m => a -> m a
return MVector s Word8
mv
| Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
x = Int -> Int -> Int -> ST s (MVector s Word8)
go (Int
s Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
2Int -> Int -> Int
forall a. Num a => a -> a -> a
*Int
x) Int
0 Int
q
| Bool
otherwise = do
let d :: Double
d = Vector Double -> Int -> Double
forall a. Unbox a => Vector a -> Int -> a
V.unsafeIndex Vector Double
dv Int
s
Int -> Double -> ST s ()
colourValue Int
q Double
d
Int -> Int -> Int -> ST s (MVector s Word8)
go (Int
sInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
qInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
3)
Int -> Int -> Int -> ST s (MVector s Word8)
go (Int
x Int -> Int -> Int
forall a. Num a => a -> a -> a
* (Int
yInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)) Int
0 Int
0
mkColourVector :: ColourMap -> V.Vector Word8
mkColourVector :: ColourMap -> Vector Word8
mkColourVector ColourMap
cm = (forall s. ST s (MVector s Word8)) -> Vector Word8
forall a. Unbox a => (forall s. ST s (MVector s a)) -> Vector a
V.create ((forall s. ST s (MVector s Word8)) -> Vector Word8)
-> (forall s. ST s (MVector s Word8)) -> Vector Word8
forall a b. (a -> b) -> a -> b
$ do
MVector s Word8
mv <- Int -> ST s (MVector (PrimState (ST s)) Word8)
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
Int -> m (v (PrimState m) a)
M.new (Int
3Int -> Int -> Int
forall a. Num a => a -> a -> a
*Int
256)
let go :: Int -> ST s (MVector s Word8)
go Int
i | Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
3Int -> Int -> Int
forall a. Num a => a -> a -> a
*Int
256 = MVector s Word8 -> ST s (MVector s Word8)
forall (m :: * -> *) a. Monad m => a -> m a
return MVector s Word8
mv
| Bool
otherwise = do
let x :: Rational
x = Int -> Rational
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
i Rational -> Rational -> Rational
forall a. Fractional a => a -> a -> a
/ (Rational
3Rational -> Rational -> Rational
forall a. Num a => a -> a -> a
*Rational
256)
RGB Word8
r Word8
g Word8
b = ColourMap
cm ColourMap -> Getting (RGB Word8) ColourMap (RGB Word8) -> RGB Word8
forall s a. s -> Getting a s a -> a
^. Rational -> Lens' ColourMap (Colour Double)
ixColourR Rational
x ((Colour Double -> Const (RGB Word8) (Colour Double))
-> ColourMap -> Const (RGB Word8) ColourMap)
-> ((RGB Word8 -> Const (RGB Word8) (RGB Word8))
-> Colour Double -> Const (RGB Word8) (Colour Double))
-> Getting (RGB Word8) ColourMap (RGB Word8)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Colour Double -> RGB Word8)
-> (RGB Word8 -> Const (RGB Word8) (RGB Word8))
-> Colour Double
-> Const (RGB Word8) (Colour Double)
forall (p :: * -> * -> *) (f :: * -> *) s a.
(Profunctor p, Contravariant f) =>
(s -> a) -> Optic' p f s a
to Colour Double -> RGB Word8
forall b. (RealFrac b, Floating b) => Colour b -> RGB Word8
toSRGB24
MVector (PrimState (ST s)) Word8 -> Int -> Word8 -> ST s ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
M.unsafeWrite MVector s Word8
MVector (PrimState (ST s)) Word8
mv Int
i Word8
r
MVector (PrimState (ST s)) Word8 -> Int -> Word8 -> ST s ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
M.unsafeWrite MVector s Word8
MVector (PrimState (ST s)) Word8
mv (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) Word8
g
MVector (PrimState (ST s)) Word8 -> Int -> Word8 -> ST s ()
forall (m :: * -> *) (v :: * -> * -> *) a.
(PrimMonad m, MVector v a) =>
v (PrimState m) a -> Int -> a -> m ()
M.unsafeWrite MVector s Word8
MVector (PrimState (ST s)) Word8
mv (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
2) Word8
b
Int -> ST s (MVector s Word8)
go (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
3)
Int -> ST s (MVector s Word8)
go Int
0
pathHeatRender
:: (Renderable (Path V2 n) b, TypeableFloat n)
=> HeatMatrix
-> ColourMap
-> QDiagram b V2 n Any
pathHeatRender :: forall n b.
(Renderable (Path V2 n) b, TypeableFloat n) =>
HeatMatrix -> ColourMap -> QDiagram b V2 n Any
pathHeatRender hm :: HeatMatrix
hm@(HeatMatrix V2 Int
_ Vector Double
_ Double
a Double
b) ColourMap
cm = IndexedGetting (V2 Int) (QDiagram b V2 n Any) HeatMatrix Double
-> (V2 Int -> Double -> QDiagram b V2 n Any)
-> HeatMatrix
-> QDiagram b V2 n Any
forall i m s a. IndexedGetting i m s a -> (i -> a -> m) -> s -> m
ifoldMapOf IndexedGetting (V2 Int) (QDiagram b V2 n Any) HeatMatrix Double
IndexedTraversal' (V2 Int) HeatMatrix Double
hmPoints V2 Int -> Double -> QDiagram b V2 n Any
mk HeatMatrix
hm QDiagram b V2 n Any
-> (QDiagram b V2 n Any -> QDiagram b V2 n Any)
-> QDiagram b V2 n Any
forall a b. a -> (a -> b) -> b
# n -> QDiagram b V2 n Any -> QDiagram b V2 n Any
forall a n. (N a ~ n, HasStyle a, Typeable n) => n -> a -> a
lwO n
0
where
normalise :: Double -> Double
normalise Double
d = (Double
d Double -> Double -> Double
forall a. Num a => a -> a -> a
- Double
a) Double -> Double -> Double
forall a. Fractional a => a -> a -> a
/ (Double
b Double -> Double -> Double
forall a. Num a => a -> a -> a
- Double
a)
mk :: V2 Int -> Double -> QDiagram b V2 n Any
mk v :: V2 Int
v@(V2 Int
i Int
j) Double
d =
n -> n -> QDiagram b V2 n Any
forall n t. (InSpace V2 n t, TrailLike t) => n -> n -> t
rect n
w n
h
# alignTR
# translate (fromIntegral <$> v ^+^ 1)
# fc (cm ^. ixColour (normalise d))
where
w :: n
w | Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = n
1
| Bool
otherwise = n
1.5
h :: n
h | Int
j Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = n
1
| Bool
otherwise = n
1.5
data HeatMap b n = HeatMap
{ forall b n. HeatMap b n -> HeatMatrix
hMatrix :: HeatMatrix
, forall b n. HeatMap b n -> P2 n
hStart :: P2 n
, forall b n. HeatMap b n -> V2 n
hSize :: V2 n
, forall b n. HeatMap b n -> Style V2 n
hGridSty :: Style V2 n
, forall b n. HeatMap b n -> Bool
hGridVisible :: Bool
, forall b n. HeatMap b n -> Maybe (Double, Double)
hLimits :: Maybe (Double,Double)
, forall b n.
HeatMap b n -> HeatMatrix -> ColourMap -> QDiagram b V2 n Any
hDraw :: HeatMatrix -> ColourMap -> QDiagram b V2 n Any
} deriving Typeable
type instance V (HeatMap b n) = V2
type instance N (HeatMap b n) = n
class HasHeatMap f a b | a -> b where
heatMapOptions :: LensLike' f a (HeatMap b (N a))
heatMapGridVisible :: Functor f => LensLike' f a Bool
heatMapGridVisible = LensLike' f a (HeatMap b (N a))
forall (f :: * -> *) a b.
HasHeatMap f a b =>
LensLike' f a (HeatMap b (N a))
heatMapOptions LensLike' f a (HeatMap b (N a))
-> ((Bool -> f Bool) -> HeatMap b (N a) -> f (HeatMap b (N a)))
-> LensLike' f a Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (HeatMap b (N a) -> Bool)
-> (HeatMap b (N a) -> Bool -> HeatMap b (N a))
-> Lens (HeatMap b (N a)) (HeatMap b (N a)) Bool Bool
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens HeatMap b (N a) -> Bool
forall b n. HeatMap b n -> Bool
hGridVisible (\HeatMap b (N a)
s Bool
b -> (HeatMap b (N a)
s {hGridVisible :: Bool
hGridVisible = Bool
b}))
heatMapGridStyle :: Functor f => LensLike' f a (Style V2 (N a))
heatMapGridStyle = LensLike' f a (HeatMap b (N a))
forall (f :: * -> *) a b.
HasHeatMap f a b =>
LensLike' f a (HeatMap b (N a))
heatMapOptions LensLike' f a (HeatMap b (N a))
-> ((Style V2 (N a) -> f (Style V2 (N a)))
-> HeatMap b (N a) -> f (HeatMap b (N a)))
-> LensLike' f a (Style V2 (N a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (HeatMap b (N a) -> Style V2 (N a))
-> (HeatMap b (N a) -> Style V2 (N a) -> HeatMap b (N a))
-> Lens
(HeatMap b (N a))
(HeatMap b (N a))
(Style V2 (N a))
(Style V2 (N a))
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens HeatMap b (N a) -> Style V2 (N a)
forall b n. HeatMap b n -> Style V2 n
hGridSty (\HeatMap b (N a)
s Style V2 (N a)
b -> (HeatMap b (N a)
s {hGridSty :: Style V2 (N a)
hGridSty = Style V2 (N a)
b}))
heatMapSize :: Functor f => LensLike' f a (V2 (N a))
heatMapSize = LensLike' f a (HeatMap b (N a))
forall (f :: * -> *) a b.
HasHeatMap f a b =>
LensLike' f a (HeatMap b (N a))
heatMapOptions LensLike' f a (HeatMap b (N a))
-> ((V2 (N a) -> f (V2 (N a)))
-> HeatMap b (N a) -> f (HeatMap b (N a)))
-> LensLike' f a (V2 (N a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (HeatMap b (N a) -> V2 (N a))
-> (HeatMap b (N a) -> V2 (N a) -> HeatMap b (N a))
-> Lens (HeatMap b (N a)) (HeatMap b (N a)) (V2 (N a)) (V2 (N a))
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens HeatMap b (N a) -> V2 (N a)
forall b n. HeatMap b n -> V2 n
hSize (\HeatMap b (N a)
s V2 (N a)
b -> (HeatMap b (N a)
s {hSize :: V2 (N a)
hSize = V2 (N a)
b}))
heatMapExtent :: (Functor f, Fractional (N a)) => LensLike' f a (V2 (N a))
heatMapExtent = LensLike' f a (HeatMap b (N a))
forall (f :: * -> *) a b.
HasHeatMap f a b =>
LensLike' f a (HeatMap b (N a))
heatMapOptions LensLike' f a (HeatMap b (N a))
-> ((V2 (N a) -> f (V2 (N a)))
-> HeatMap b (N a) -> f (HeatMap b (N a)))
-> LensLike' f a (V2 (N a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (V2 (N a) -> f (V2 (N a)))
-> HeatMap b (N a) -> f (HeatMap b (N a))
forall {n} {f :: * -> *} {b}.
(Functor f, Fractional n) =>
(V2 n -> f (V2 n)) -> HeatMap b n -> f (HeatMap b n)
l where
l :: (V2 n -> f (V2 n)) -> HeatMap b n -> f (HeatMap b n)
l V2 n -> f (V2 n)
f HeatMap b n
hm = V2 n -> f (V2 n)
f (HeatMap b n -> V2 n
forall b n. HeatMap b n -> V2 n
hSize HeatMap b n
hm V2 n -> V2 n -> V2 n
forall a. Num a => a -> a -> a
* V2 n
s) f (V2 n) -> (V2 n -> HeatMap b n) -> f (HeatMap b n)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \V2 n
x -> HeatMap b n
hm { hSize :: V2 n
hSize = V2 n
x V2 n -> V2 n -> V2 n
forall a. Fractional a => a -> a -> a
/ V2 n
s }
where s :: V2 n
s = (Int -> n) -> V2 Int -> V2 n
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Int -> n
forall a b. (Integral a, Num b) => a -> b
fromIntegral (HeatMatrix -> V2 Int
hmSize (HeatMatrix -> V2 Int) -> HeatMatrix -> V2 Int
forall a b. (a -> b) -> a -> b
$ HeatMap b n -> HeatMatrix
forall b n. HeatMap b n -> HeatMatrix
hMatrix HeatMap b n
hm)
heatMapStart :: Functor f => LensLike' f a (P2 (N a))
heatMapStart = LensLike' f a (HeatMap b (N a))
forall (f :: * -> *) a b.
HasHeatMap f a b =>
LensLike' f a (HeatMap b (N a))
heatMapOptions LensLike' f a (HeatMap b (N a))
-> ((P2 (N a) -> f (P2 (N a)))
-> HeatMap b (N a) -> f (HeatMap b (N a)))
-> LensLike' f a (P2 (N a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (HeatMap b (N a) -> P2 (N a))
-> (HeatMap b (N a) -> P2 (N a) -> HeatMap b (N a))
-> Lens (HeatMap b (N a)) (HeatMap b (N a)) (P2 (N a)) (P2 (N a))
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens HeatMap b (N a) -> P2 (N a)
forall b n. HeatMap b n -> P2 n
hStart (\HeatMap b (N a)
s P2 (N a)
b -> (HeatMap b (N a)
s {hStart :: P2 (N a)
hStart = P2 (N a)
b}))
heatMapCentre :: (Functor f, Fractional (N a)) => LensLike' f a (P2 (N a))
heatMapCentre = LensLike' f a (HeatMap b (N a))
forall (f :: * -> *) a b.
HasHeatMap f a b =>
LensLike' f a (HeatMap b (N a))
heatMapOptions LensLike' f a (HeatMap b (N a))
-> ((P2 (N a) -> f (P2 (N a)))
-> HeatMap b (N a) -> f (HeatMap b (N a)))
-> LensLike' f a (P2 (N a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (P2 (N a) -> f (P2 (N a)))
-> HeatMap b (N a) -> f (HeatMap b (N a))
forall {n} {f :: * -> *} {b}.
(Fractional n, Functor f) =>
(Point V2 n -> f (Point V2 n)) -> HeatMap b n -> f (HeatMap b n)
l where
l :: (Point V2 n -> f (Point V2 n)) -> HeatMap b n -> f (HeatMap b n)
l Point V2 n -> f (Point V2 n)
f HeatMap b n
hm = Point V2 n -> f (Point V2 n)
f (HeatMap b n -> Point V2 n
forall b n. HeatMap b n -> P2 n
hStart HeatMap b n
hm Point V2 n -> Diff (Point V2) n -> Point V2 n
forall (p :: * -> *) a. (Affine p, Num a) => p a -> Diff p a -> p a
.+^ Diff (Point V2) n
V2 n
v) f (Point V2 n) -> (Point V2 n -> HeatMap b n) -> f (HeatMap b n)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \Point V2 n
p -> HeatMap b n
hm { hStart :: Point V2 n
hStart = Point V2 n
p Point V2 n -> Diff (Point V2) n -> Point V2 n
forall (p :: * -> *) a. (Affine p, Num a) => p a -> Diff p a -> p a
.-^ Diff (Point V2) n
V2 n
v }
where v :: V2 n
v = (Int -> n) -> V2 Int -> V2 n
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Int -> n
forall a b. (Integral a, Num b) => a -> b
fromIntegral (HeatMatrix -> V2 Int
hmSize (HeatMatrix -> V2 Int) -> HeatMatrix -> V2 Int
forall a b. (a -> b) -> a -> b
$ HeatMap b n -> HeatMatrix
forall b n. HeatMap b n -> HeatMatrix
hMatrix HeatMap b n
hm) V2 n -> V2 n -> V2 n
forall a. Num a => a -> a -> a
* HeatMap b n -> V2 n
forall b n. HeatMap b n -> V2 n
hSize HeatMap b n
hm V2 n -> V2 n -> V2 n
forall a. Fractional a => a -> a -> a
/ V2 n
2
heatMapLimits :: Functor f => LensLike' f a (Maybe (Double, Double))
heatMapLimits = LensLike' f a (HeatMap b (N a))
forall (f :: * -> *) a b.
HasHeatMap f a b =>
LensLike' f a (HeatMap b (N a))
heatMapOptions LensLike' f a (HeatMap b (N a))
-> ((Maybe (Double, Double) -> f (Maybe (Double, Double)))
-> HeatMap b (N a) -> f (HeatMap b (N a)))
-> LensLike' f a (Maybe (Double, Double))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (HeatMap b (N a) -> Maybe (Double, Double))
-> (HeatMap b (N a) -> Maybe (Double, Double) -> HeatMap b (N a))
-> Lens
(HeatMap b (N a))
(HeatMap b (N a))
(Maybe (Double, Double))
(Maybe (Double, Double))
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens HeatMap b (N a) -> Maybe (Double, Double)
forall b n. HeatMap b n -> Maybe (Double, Double)
hLimits (\HeatMap b (N a)
s Maybe (Double, Double)
b -> (HeatMap b (N a)
s {hLimits :: Maybe (Double, Double)
hLimits = Maybe (Double, Double)
b}))
heatMapRender :: Functor f => LensLike' f a (HeatMatrix -> ColourMap -> QDiagram b V2 (N a) Any)
heatMapRender = LensLike' f a (HeatMap b (N a))
forall (f :: * -> *) a b.
HasHeatMap f a b =>
LensLike' f a (HeatMap b (N a))
heatMapOptions LensLike' f a (HeatMap b (N a))
-> (((HeatMatrix -> ColourMap -> QDiagram b V2 (N a) Any)
-> f (HeatMatrix -> ColourMap -> QDiagram b V2 (N a) Any))
-> HeatMap b (N a) -> f (HeatMap b (N a)))
-> LensLike'
f a (HeatMatrix -> ColourMap -> QDiagram b V2 (N a) Any)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (HeatMap b (N a)
-> HeatMatrix -> ColourMap -> QDiagram b V2 (N a) Any)
-> (HeatMap b (N a)
-> (HeatMatrix -> ColourMap -> QDiagram b V2 (N a) Any)
-> HeatMap b (N a))
-> Lens
(HeatMap b (N a))
(HeatMap b (N a))
(HeatMatrix -> ColourMap -> QDiagram b V2 (N a) Any)
(HeatMatrix -> ColourMap -> QDiagram b V2 (N a) Any)
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens HeatMap b (N a)
-> HeatMatrix -> ColourMap -> QDiagram b V2 (N a) Any
forall b n.
HeatMap b n -> HeatMatrix -> ColourMap -> QDiagram b V2 n Any
hDraw (\HeatMap b (N a)
s HeatMatrix -> ColourMap -> QDiagram b V2 (N a) Any
b -> (HeatMap b (N a)
s {hDraw :: HeatMatrix -> ColourMap -> QDiagram b V2 (N a) Any
hDraw = HeatMatrix -> ColourMap -> QDiagram b V2 (N a) Any
b}))
instance HasHeatMap f (HeatMap b n) b where
heatMapOptions :: LensLike' f (HeatMap b n) (HeatMap b (N (HeatMap b n)))
heatMapOptions = LensLike' f (HeatMap b n) (HeatMap b (N (HeatMap b n)))
forall a. a -> a
id
instance (Functor f, HasHeatMap f a b) => HasHeatMap f (Plot a b) b where
heatMapOptions :: LensLike' f (Plot a b) (HeatMap b (N (Plot a b)))
heatMapOptions = (a -> f a) -> Plot a b -> f (Plot a b)
forall p p' b. SameSpace p p' => Lens (Plot p b) (Plot p' b) p p'
rawPlot ((a -> f a) -> Plot a b -> f (Plot a b))
-> ((HeatMap b (N a) -> f (HeatMap b (N a))) -> a -> f a)
-> (HeatMap b (N a) -> f (HeatMap b (N a)))
-> Plot a b
-> f (Plot a b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (HeatMap b (N a) -> f (HeatMap b (N a))) -> a -> f a
forall (f :: * -> *) a b.
HasHeatMap f a b =>
LensLike' f a (HeatMap b (N a))
heatMapOptions
instance OrderedField n => Enveloped (HeatMap b n) where
getEnvelope :: HeatMap b n -> Envelope (V (HeatMap b n)) (N (HeatMap b n))
getEnvelope HeatMap b n
hm = BoundingBox V2 (N (HeatMap b n))
-> Envelope
(V (BoundingBox V2 (N (HeatMap b n))))
(N (BoundingBox V2 (N (HeatMap b n))))
forall a. Enveloped a => a -> Envelope (V a) (N a)
getEnvelope (Point V2 (N (HeatMap b n))
-> Point V2 (N (HeatMap b n)) -> BoundingBox V2 (N (HeatMap b n))
forall (v :: * -> *) n.
(Additive v, Foldable v, Ord n) =>
Point v n -> Point v n -> BoundingBox v n
fromCorners Point V2 (N (HeatMap b n))
p (Point V2 (N (HeatMap b n))
p Point V2 (N (HeatMap b n))
-> Diff (Point V2) (N (HeatMap b n)) -> Point V2 (N (HeatMap b n))
forall (p :: * -> *) a. (Affine p, Num a) => p a -> Diff p a -> p a
.+^ Diff (Point V2) (N (HeatMap b n))
V2 (N (HeatMap b n))
v))
where p :: Point V2 (N (HeatMap b n))
p = Getting
(Point V2 (N (HeatMap b n)))
(HeatMap b n)
(Point V2 (N (HeatMap b n)))
-> HeatMap b n -> Point V2 (N (HeatMap b n))
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
view Getting
(Point V2 (N (HeatMap b n)))
(HeatMap b n)
(Point V2 (N (HeatMap b n)))
forall (f :: * -> *) a b.
(HasHeatMap f a b, Functor f) =>
LensLike' f a (P2 (N a))
heatMapStart HeatMap b n
hm
v :: V2 (N (HeatMap b n))
v = Getting (V2 (N (HeatMap b n))) (HeatMap b n) (V2 (N (HeatMap b n)))
-> HeatMap b n -> V2 (N (HeatMap b n))
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
view Getting (V2 (N (HeatMap b n))) (HeatMap b n) (V2 (N (HeatMap b n)))
forall (f :: * -> *) a b.
(HasHeatMap f a b, Functor f, Fractional (N a)) =>
LensLike' f a (V2 (N a))
heatMapExtent HeatMap b n
hm
instance (Typeable b, TypeableFloat n, Renderable (Path V2 n) b)
=> Plotable (HeatMap b n) b where
renderPlotable :: forall (v :: * -> *) n.
InSpace v n (HeatMap b n) =>
AxisSpec v n
-> PlotStyle b v n -> HeatMap b n -> QDiagram b v n Any
renderPlotable AxisSpec v n
s PlotStyle b v n
_sty HeatMap {Bool
Maybe (Double, Double)
Style V2 n
P2 n
V2 n
HeatMatrix
HeatMatrix -> ColourMap -> QDiagram b V2 n Any
hDraw :: HeatMatrix -> ColourMap -> QDiagram b V2 n Any
hLimits :: Maybe (Double, Double)
hGridVisible :: Bool
hGridSty :: Style V2 n
hSize :: V2 n
hStart :: P2 n
hMatrix :: HeatMatrix
hDraw :: forall b n.
HeatMap b n -> HeatMatrix -> ColourMap -> QDiagram b V2 n Any
hLimits :: forall b n. HeatMap b n -> Maybe (Double, Double)
hGridVisible :: forall b n. HeatMap b n -> Bool
hGridSty :: forall b n. HeatMap b n -> Style V2 n
hSize :: forall b n. HeatMap b n -> V2 n
hStart :: forall b n. HeatMap b n -> P2 n
hMatrix :: forall b n. HeatMap b n -> HeatMatrix
..} =
Transformation (V (QDiagram b v n Any)) (N (QDiagram b v n Any))
-> QDiagram b v n Any -> QDiagram b v n Any
forall t. Transformable t => Transformation (V t) (N t) -> t -> t
transform (AxisSpec v n
sAxisSpec v n
-> Getting (Transformation v n) (AxisSpec v n) (Transformation v n)
-> Transformation v n
forall s a. s -> Getting a s a -> a
^.Getting (Transformation v n) (AxisSpec v n) (Transformation v n)
forall (v :: * -> *) n. Lens' (AxisSpec v n) (Transformation v n)
specTrans) (QDiagram b v n Any -> QDiagram b v n Any)
-> QDiagram b v n Any -> QDiagram b v n Any
forall a b. (a -> b) -> a -> b
$
QDiagram b v n Any
grid QDiagram b v n Any -> QDiagram b v n Any -> QDiagram b v n Any
forall a. Semigroup a => a -> a -> a
<> HeatMatrix -> ColourMap -> QDiagram b V2 n Any
hDraw HeatMatrix
matrix' (AxisSpec v n
sAxisSpec v n
-> Getting ColourMap (AxisSpec v n) ColourMap -> ColourMap
forall s a. s -> Getting a s a -> a
^.Getting ColourMap (AxisSpec v n) ColourMap
forall (v :: * -> *) n. Lens' (AxisSpec v n) ColourMap
specColourMap)
# transform (scaleV hSize)
# moveTo hStart
where
grid :: QDiagram b v n Any
grid = QDiagram b v n Any
forall a. Monoid a => a
mempty
matrix' :: HeatMatrix
matrix' = case Maybe (Double, Double)
hLimits of
Just (Double
a,Double
b) -> HeatMatrix
hMatrix { hmBoundLower :: Double
hmBoundLower = Double
a, hmBoundUpper :: Double
hmBoundUpper = Double
b }
Maybe (Double, Double)
Nothing -> HeatMatrix
hMatrix
defLegendPic :: forall (v :: * -> *) n.
InSpace v n (HeatMap b n) =>
PlotStyle b v n -> HeatMap b n -> QDiagram b v n Any
defLegendPic PlotStyle b v n
sty HeatMap {} = n -> QDiagram b v n Any
forall n t. (InSpace V2 n t, TrailLike t) => n -> t
square n
5 QDiagram b v n Any
-> (QDiagram b v n Any -> QDiagram b v n Any) -> QDiagram b v n Any
forall a b. a -> (a -> b) -> b
# PlotStyle b v n -> QDiagram b v n Any -> QDiagram b v n Any
forall a t b.
(SameSpace a t, HasPlotStyle (Const (PlotStyle b (V a) (N a))) a b,
HasStyle t) =>
a -> t -> t
applyAreaStyle PlotStyle b v n
sty
scaleV :: (Additive v, Fractional n) => v n -> Transformation v n
scaleV :: forall (v :: * -> *) n.
(Additive v, Fractional n) =>
v n -> Transformation v n
scaleV v n
v = (v n :-: v n) -> (v n :-: v n) -> Transformation v n
forall (v :: * -> *) n.
(Additive v, Num n) =>
(v n :-: v n) -> (v n :-: v n) -> Transformation v n
fromLinear v n :-: v n
f v n :-: v n
f
where f :: v n :-: v n
f = ((n -> n -> n) -> v n -> v n -> v n
forall (f :: * -> *) a.
Additive f =>
(a -> a -> a) -> f a -> f a -> f a
liftU2 n -> n -> n
forall a. Num a => a -> a -> a
(*) v n
v) (v n -> v n) -> (v n -> v n) -> v n :-: v n
forall u v. (u -> v) -> (v -> u) -> u :-: v
<-> (\v n
u -> (n -> n -> n) -> v n -> v n -> v n
forall (f :: * -> *) a.
Additive f =>
(a -> a -> a) -> f a -> f a -> f a
liftU2 n -> n -> n
forall a. Fractional a => a -> a -> a
(/) v n
u v n
v)
mkHeatMap :: (Renderable (Path V2 n) b, TypeableFloat n)
=> HeatMatrix -> HeatMap b n
mkHeatMap :: forall n b.
(Renderable (Path V2 n) b, TypeableFloat n) =>
HeatMatrix -> HeatMap b n
mkHeatMap HeatMatrix
mat = HeatMap
{ hMatrix :: HeatMatrix
hMatrix = HeatMatrix
mat
, hStart :: P2 n
hStart = P2 n
forall (f :: * -> *) a. (Additive f, Num a) => Point f a
origin
, hSize :: V2 n
hSize = n -> n -> V2 n
forall a. a -> a -> V2 a
V2 n
1 n
1
, hGridSty :: Style V2 n
hGridSty = Style V2 n
forall a. Monoid a => a
mempty
, hGridVisible :: Bool
hGridVisible = Bool
False
, hLimits :: Maybe (Double, Double)
hLimits = Maybe (Double, Double)
forall a. Maybe a
Nothing
, hDraw :: HeatMatrix -> ColourMap -> QDiagram b V2 n Any
hDraw = HeatMatrix -> ColourMap -> QDiagram b V2 n Any
forall n b.
(Renderable (Path V2 n) b, TypeableFloat n) =>
HeatMatrix -> ColourMap -> QDiagram b V2 n Any
pathHeatRender
}
heatMap
:: (F.Foldable f,
F.Foldable g,
TypeableFloat n,
Typeable b,
MonadState (Axis b V2 n) m,
Renderable (Path V2 n) b)
=> f (g Double)
-> State (Plot (HeatMap b n) b) ()
-> m ()
heatMap :: forall (f :: * -> *) (g :: * -> *) n b (m :: * -> *).
(Foldable f, Foldable g, TypeableFloat n, Typeable b,
MonadState (Axis b V2 n) m, Renderable (Path V2 n) b) =>
f (g Double) -> State (Plot (HeatMap b n) b) () -> m ()
heatMap f (g Double)
xss State (Plot (HeatMap b n) b) ()
s = do
let hm :: HeatMatrix
hm@(HeatMatrix V2 Int
_ Vector Double
_ Double
a Double
b) = f (g Double) -> HeatMatrix
forall (f :: * -> *) (g :: * -> *).
(Foldable f, Foldable g) =>
f (g Double) -> HeatMatrix
mkHeatMatrix' f (g Double)
xss
HeatMap b n -> State (Plot (HeatMap b n) b) () -> m ()
forall (c :: * -> *) n p b (m :: * -> *).
(InSpace (BaseSpace c) n p, MonadState (Axis b c n) m,
Plotable p b) =>
p -> State (Plot p b) () -> m ()
addPlotable (HeatMatrix -> HeatMap b n
forall n b.
(Renderable (Path V2 n) b, TypeableFloat n) =>
HeatMatrix -> HeatMap b n
mkHeatMap HeatMatrix
hm) State (Plot (HeatMap b n) b) ()
s
((n, n) -> Identity (n, n))
-> Axis b V2 n -> Identity (Axis b V2 n)
forall b (v :: * -> *) n. Lens' (Axis b v n) (n, n)
colourBarRange (((n, n) -> Identity (n, n))
-> Axis b V2 n -> Identity (Axis b V2 n))
-> (n, n) -> m ()
forall s (m :: * -> *) a b.
MonadState s m =>
ASetter s s a b -> b -> m ()
.= ASetter (Double, Double) (n, n) Double n
-> (Double -> n) -> (Double, Double) -> (n, n)
forall s t a b. ASetter s t a b -> (a -> b) -> s -> t
over ASetter (Double, Double) (n, n) Double n
forall (r :: * -> * -> *) a b.
Bitraversable r =>
Traversal (r a a) (r b b) a b
both Double -> n
forall a b. (Real a, Fractional b) => a -> b
realToFrac (Double
a,Double
b)
heatMap'
:: (F.Foldable f,
F.Foldable g,
TypeableFloat n,
Typeable b,
MonadState (Axis b V2 n) m,
Renderable (Path V2 n) b)
=> f (g Double)
-> m ()
heatMap' :: forall (f :: * -> *) (g :: * -> *) n b (m :: * -> *).
(Foldable f, Foldable g, TypeableFloat n, Typeable b,
MonadState (Axis b V2 n) m, Renderable (Path V2 n) b) =>
f (g Double) -> m ()
heatMap' f (g Double)
xss = f (g Double) -> State (Plot (HeatMap b n) b) () -> m ()
forall (f :: * -> *) (g :: * -> *) n b (m :: * -> *).
(Foldable f, Foldable g, TypeableFloat n, Typeable b,
MonadState (Axis b V2 n) m, Renderable (Path V2 n) b) =>
f (g Double) -> State (Plot (HeatMap b n) b) () -> m ()
heatMap f (g Double)
xss (() -> State (Plot (HeatMap b n) b) ()
forall (m :: * -> *) a. Monad m => a -> m a
return ())
heatMapIndexed
:: (VectorLike V2 Int i,
TypeableFloat n,
Typeable b,
MonadState (Axis b V2 n) m,
Renderable (Path V2 n) b)
=> i
-> (i -> Double)
-> State (Plot (HeatMap b n) b) ()
-> m ()
heatMapIndexed :: forall i n b (m :: * -> *).
(VectorLike V2 Int i, TypeableFloat n, Typeable b,
MonadState (Axis b V2 n) m, Renderable (Path V2 n) b) =>
i -> (i -> Double) -> State (Plot (HeatMap b n) b) () -> m ()
heatMapIndexed i
i i -> Double
f State (Plot (HeatMap b n) b) ()
s = do
let hm :: HeatMatrix
hm@(HeatMatrix V2 Int
_ Vector Double
_ Double
a Double
b) = V2 Int -> (V2 Int -> Double) -> HeatMatrix
mkHeatMatrix (Getting (V2 Int) i (V2 Int) -> i -> V2 Int
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
view Getting (V2 Int) i (V2 Int)
forall (v :: * -> *) n a. VectorLike v n a => Iso' a (v n)
unvectorLike i
i) (i -> Double
f (i -> Double) -> (V2 Int -> i) -> V2 Int -> Double
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Getting i (V2 Int) i -> V2 Int -> i
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
view Getting i (V2 Int) i
forall (v :: * -> *) n a. VectorLike v n a => Iso' (v n) a
vectorLike)
HeatMap b n -> State (Plot (HeatMap b n) b) () -> m ()
forall (c :: * -> *) n p b (m :: * -> *).
(InSpace (BaseSpace c) n p, MonadState (Axis b c n) m,
Plotable p b) =>
p -> State (Plot p b) () -> m ()
addPlotable (HeatMatrix -> HeatMap b n
forall n b.
(Renderable (Path V2 n) b, TypeableFloat n) =>
HeatMatrix -> HeatMap b n
mkHeatMap HeatMatrix
hm) State (Plot (HeatMap b n) b) ()
s
((n, n) -> Identity (n, n))
-> Axis b V2 n -> Identity (Axis b V2 n)
forall b (v :: * -> *) n. Lens' (Axis b v n) (n, n)
colourBarRange (((n, n) -> Identity (n, n))
-> Axis b V2 n -> Identity (Axis b V2 n))
-> (n, n) -> m ()
forall s (m :: * -> *) a b.
MonadState s m =>
ASetter s s a b -> b -> m ()
.= ASetter (Double, Double) (n, n) Double n
-> (Double -> n) -> (Double, Double) -> (n, n)
forall s t a b. ASetter s t a b -> (a -> b) -> s -> t
over ASetter (Double, Double) (n, n) Double n
forall (r :: * -> * -> *) a b.
Bitraversable r =>
Traversal (r a a) (r b b) a b
both Double -> n
forall a b. (Real a, Fractional b) => a -> b
realToFrac (Double
a,Double
b)
heatMapIndexed'
:: (VectorLike V2 Int i,
TypeableFloat n,
Typeable b,
MonadState (Axis b V2 n) m,
Renderable (Path V2 n) b)
=> i
-> (i -> Double)
-> m ()
heatMapIndexed' :: forall i n b (m :: * -> *).
(VectorLike V2 Int i, TypeableFloat n, Typeable b,
MonadState (Axis b V2 n) m, Renderable (Path V2 n) b) =>
i -> (i -> Double) -> m ()
heatMapIndexed' i
i i -> Double
f = i -> (i -> Double) -> State (Plot (HeatMap b n) b) () -> m ()
forall i n b (m :: * -> *).
(VectorLike V2 Int i, TypeableFloat n, Typeable b,
MonadState (Axis b V2 n) m, Renderable (Path V2 n) b) =>
i -> (i -> Double) -> State (Plot (HeatMap b n) b) () -> m ()
heatMapIndexed i
i i -> Double
f (() -> State (Plot (HeatMap b n) b) ()
forall (m :: * -> *) a. Monad m => a -> m a
return ())