{-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE RecordWildCards #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UndecidableInstances #-} ----------------------------------------------------------------------------- -- | -- Module : Plots.Types.Histogram -- Copyright : (C) 2015 Christopher Chalmers -- License : BSD-style (see the file LICENSE) -- Maintainer : Christopher Chalmers -- Stability : experimental -- Portability : non-portable -- A histogram is a graphical representation of the distribution of -- numerical data. It is an estimate of the probability distribution of -- a continuous variable. -- ---------------------------------------------------------------------------- module Plots.Types.Histogram ( -- * Histogram plot HistogramPlot -- ** Already computed histograms , computedHistogram -- ** Histogram options , HistogramOptions , HasHistogramOptions (..) -- ** Normalisation , NormalisationMethod , count , probability , countDensity , pdf , cumilative , cdf -- ** Plotting histograms , histogramPlot , histogramPlot' , histogramPlotOf , histogramPlotOf' -- * Low level constructors , mkComputedHistogram , mkHistogramPlot ) where import Control.Monad.State.Lazy import qualified Data.Foldable as F import Data.Maybe import Data.Typeable import qualified Data.Vector as V import qualified Statistics.Sample.Histogram as Stat import Diagrams.Prelude hiding (orient) import Linear.V2 (_yx) import Plots.Axis import Plots.Style import Plots.Types import Plots.Util import Geometry.TwoD.Transform -- | Construct a rectangle of size $v$ with the bottom left at point $p$. rectBL :: (InSpace V2 n t, FromTrail t) => Point V2 n -> V2 n -> t rectBL p (V2 x y) = fromLocTrail $ fromOffsets [V2 x 0, V2 0 y, V2 (-x) 0] # closeTrail `at` p ------------------------------------------------------------------------ -- GHistogram plot ------------------------------------------------------------------------ -- | Simple histogram type supporting uniform bins. data HistogramPlot = HistogramPlot { hWidth :: Double , hStart :: Double , hValues :: [Double] , hOrient :: Orientation } deriving Typeable type instance V HistogramPlot = V2 type instance N HistogramPlot = Double instance Enveloped HistogramPlot where getEnvelope HistogramPlot {..} = -- don't like this reduntent code getEnvelope . orient hOrient _reflectXY id . (id :: Path V2 Double -> Path V2 Double) $ ifoldMap drawBar hValues where drawBar i h = rectBL (mkP2 x 0) (V2 hWidth h) where x = hStart + fromIntegral i * hWidth instance Plotable HistogramPlot where renderPlotable s sty HistogramPlot {..} = ifoldMap drawBar hValues # orient hOrient _reflectXY id # applyAreaStyle sty # transform (s^.specTrans) where drawBar i h = rectBL (mkP2 x 0) (V2 hWidth h) where x = hStart + fromIntegral i * hWidth defLegendPic sty HistogramPlot {..} = centerXY . applyAreaStyle sty' . orient hOrient _reflectXY id $ alignB (rect 4 7) ||| alignB (rect 4 10) ||| alignB (rect 4 6) where -- The legend bars don't look right if the line width is too big so we limit it sty' = sty & areaStyle . _lw . mapped %~ atMost (local 0.8) instance HasOrientation HistogramPlot where orientation = lens hOrient $ \hp o -> hp {hOrient = o} ------------------------------------------------------------------------ -- Simple histogram plot ------------------------------------------------------------------------ -- | Plot an already computed histogram with equally sized bins. computedHistogram :: (MonadState (Axis V2) m, F.Foldable f) => Double -- ^ start of first bin -> Double -- ^ width of each bin -> f Double -- ^ heights of the bins -> State (Plot HistogramPlot) () -> m () computedHistogram x0 w xs = addPlotable (mkComputedHistogram x0 w xs) -- | Construct a 'HistogramPlot' from raw histogram data. mkComputedHistogram :: F.Foldable f => Double -- ^ start of first bin -> Double -- ^ width of each bin -> f Double -- ^ heights of the bins -> HistogramPlot mkComputedHistogram x0 w xs = HistogramPlot x0 w (F.toList xs) Horizontal ---------------------------------------------------------------------------- -- Building histograms ---------------------------------------------------------------------------- -- example setup -- > import Plots -- > sampleData :: [Double] -- > sampleData = -- > [5.1,4.9,4.7,4.6,5.0,5.4,4.6,5.0,4.4,4.9 -- > ,5.4,4.8,4.8,4.3,5.8,5.7,5.4,5.1,5.7,5.1 -- > ,5.4,5.1,4.6,5.1,4.8,5.0,5.0,5.2,5.2,4.7 -- > ,4.8,5.4,5.2,5.5,4.9,5.0,5.5,4.9,4.4,5.1 -- > ,5.0,4.5,4.4,5.0,5.1,4.8,5.1,4.6,5.3,5.0 -- > ,7.0,6.4,6.9,5.5,6.5,5.7,6.3,4.9,6.6,5.2 -- > ,5.0,5.9,6.0,6.1,5.6,6.7,5.6,5.8,6.2,5.6 -- > ,5.9,6.1,6.3,6.1,6.4,6.6,6.8,6.7,6.0,5.7 -- > ,5.5,5.5,5.8,6.0,5.4,6.0,6.7,6.3,5.6,5.5 -- > ,5.5,6.1,5.8,5.0,5.6,5.7,5.7,6.2,5.1,5.7 -- > ,6.3,5.8,7.1,6.3,6.5,7.6,4.9,7.3,6.7,7.2 -- > ,6.5,6.4,6.8,5.7,5.8,6.4,6.5,7.7,7.7,6.0 -- > ,6.9,5.6,7.7,6.3,6.7,7.2,6.2,6.1,6.4,7.2 -- > ,7.4,7.9,6.4,6.3,6.1,7.7,6.3,6.4,6.0,6.9 -- > ,6.7,6.9,5.8,6.8,6.7,6.7,6.3,6.5,6.2,5.9 -- > ] -- -- > mkNmExample nm = r2Axis &~ do -- > yMin ?= 0 -- > histogramPlot sampleData $ do -- > normaliseSample .= nm -- > countDia = renderAxis $ mkNmExample count -- > probabilityDia = renderAxis $ mkNmExample probability -- > countDensityDia = renderAxis $ mkNmExample countDensity -- > pdfDia = renderAxis $ mkNmExample pdf -- > cumilativeDia = renderAxis $ mkNmExample cumilative -- > cdfDia = renderAxis $ mkNmExample cdf -- Histogram options --------------------------------------------------- -- | The way to normalise the data from a histogram. The default method -- is 'count'. newtype NormalisationMethod = NM { runNM :: Double -> V.Vector Double -> V.Vector Double } -- width -> heights -> normalised heights instance Default NormalisationMethod where def = count -- | The height of each bar is the number of observations. This is the -- 'Default' method. -- -- === __Example__ -- -- <<diagrams/src_Plots_Types_Histogram_countDia.svg#diagram=countDia&height=350>> count :: NormalisationMethod count = NM $ \_ v -> v -- | The sum of the heights of the bars is equal to 1. -- -- === __Example__ -- -- <<diagrams/src_Plots_Types_Histogram_probabilityDia.svg#diagram=probabilityDia&height=350>> probability :: NormalisationMethod probability = NM $ \_ v -> v ^/ V.sum v -- | The height of each bar is @n / w@ where @n@ is the number of -- observations and @w@ is the total width. -- -- === __Example__ -- -- <<diagrams/src_Plots_Types_Histogram_countDensityDia.svg#diagram=countDensityDia&height=350>> countDensity :: NormalisationMethod countDensity = NM $ \w v -> v ^/ w -- | The total area of the bars is @1@. This gives a probability density -- function estimate. -- -- === __Example__ -- -- <<diagrams/src_Plots_Types_Histogram_pdfDia.svg#diagram=pdfDia&height=350>> pdf :: NormalisationMethod pdf = NM $ \w v -> v ^/ (w * V.sum v) -- | The height of each bar is the cumulative number of observations in -- each bin and all previous bins. The height of the last bar is the -- total number of observations. -- -- === __Example__ -- -- <<diagrams/src_Plots_Types_Histogram_cumilativeDia.svg#diagram=cumilativeDia&height=350>> cumilative :: NormalisationMethod cumilative = NM $ \_ -> V.scanl1 (+) -- | Cumulative density function estimate. The height of each bar is -- equal to the cumulative relative number of observations in the bin -- and all previous bins. The height of the last bar is 1. -- -- === __Example__ -- -- <<diagrams/src_Plots_Types_Histogram_cdfDia.svg#diagram=cdfDia&height=350>> cdf :: NormalisationMethod cdf = NM $ \_ v -> V.scanl1 (+) v ^/ V.sum v -- | Options for binning histogram data. For now only very basic -- histograms building is supported. data HistogramOptions = HistogramOptions { hBins :: Int , hRange :: Maybe (Double, Double) , hNorm :: NormalisationMethod , oOrient :: Orientation } type instance V HistogramOptions = V2 type instance N HistogramOptions = Double instance Default HistogramOptions where def = HistogramOptions { hBins = 10 , hRange = Nothing , hNorm = def , oOrient = Vertical } instance HasOrientation HistogramOptions where orientation = lens oOrient $ \ho o -> ho {oOrient = o} class HasOrientation a => HasHistogramOptions a where -- | Options for building the histogram from data. histogramOptions :: Lens' a HistogramOptions -- | The number of bins (bars) to use for the histogram. Must be -- positive. -- -- 'Default' is @10@. numBins :: Lens' a Int numBins = histogramOptions . lens hBins (\ho n -> ho {hBins = n}) -- | The range of data to consider when building the histogram. Any -- data outside the range is ignored. -- -- 'Default' is 'Nothing'. binRange :: Lens' a (Maybe (Double, Double)) binRange = histogramOptions . lens hRange (\ho r -> ho {hRange = r}) -- | Should the resulting histogram be normalised so the total area is -- 1. -- -- 'Default' is False. normaliseSample :: Lens' a NormalisationMethod normaliseSample = histogramOptions . lens hNorm (\ho b -> ho {hNorm = b}) instance HasHistogramOptions HistogramOptions where histogramOptions = id instance HasHistogramOptions a => HasHistogramOptions (Plot a) where histogramOptions = rawPlot . histogramOptions -- | Create a histogram by binning the data using the -- 'HistogramOptions'. mkHistogramPlot :: F.Foldable f => HistogramOptions -> f Double -> HistogramPlot mkHistogramPlot HistogramOptions {..} xs = HistogramPlot { hWidth = w , hStart = a , hValues = V.toList $ runNM hNorm w ns , hOrient = Vertical } where w = (b - a) / fromIntegral hBins ns = Stat.histogram_ hBins a b v v = V.fromList (F.toList xs) (a,b) = fromMaybe (range hBins v) hRange -- Taken from Statistics, which was limited to 'Double'. range :: Int -- ^ Number of bins (must be positive). -> V.Vector Double -- ^ Sample data (cannot be empty). -> (Double, Double) range nBins xs | nBins < 1 = error "Plots.Types.Histogram: invalid bin count" | V.null xs = error "Plots.Types.Histogram: empty sample" | lo == hi = case abs lo / 10 of a | a < 1e-6 -> (-1,1) | otherwise -> (lo - a, lo + a) | otherwise = (lo-d, hi+d) where d | nBins == 1 = 0 | otherwise = (hi - lo) / ((fromIntegral nBins - 1) * 2) (lo,hi) = minMaxOf folded xs {-# INLINE range #-} -- | -- mkWeightedHistogram -- :: (F.Foldable f, OrderdField n) -- => HistogramOptions n -> [(n, n)] -> HistogramPlot n -- mkWeightedHistogram ------------------------------------------------------------------------ -- Histogram ------------------------------------------------------------------------ -- $ histogram -- Histograms display data as barplot of x data, bin y data. -- Box plots have the following lenses: -- -- @ -- * 'setBin' :: 'Lens'' ('BoxPlot' v n) 'Double' - 10 -- @ -- | Add a 'HistogramPlot' to the 'AxisState' from a data set. -- -- === __Example__ -- -- <<diagrams/src_Plots_Types_Histogram_histogramExample.svg#diagram=histogramExample&height=350>> -- -- > import Plots -- > histogramAxis :: Axis B V2 Double -- > histogramAxis = r2Axis &~ do -- > histogramPlot sampleData $ do -- > key "histogram" -- > plotColor .= blue -- > areaStyle . _opacity .= 0.5 -- -- > histogramExample = renderAxis histogramAxis histogramPlot :: (MonadState (Axis V2) m, F.Foldable f) => f Double -- ^ data -> State (Plot HistogramOptions) () -- ^ changes to plot options -> m () -- ^ add plot to axis histogramPlot ns s = addPlot (hoPlot & rawPlot %~ \ho -> mkHistogramPlot ho ns) where hoPlot = mkPlot def &~ s -- | Make a 'HistogramPlot' without changes to the plot options. histogramPlot' :: (MonadState (Axis V2) m, F.Foldable f) => f Double -- ^ data -> m () -- ^ add plot to axis histogramPlot' d = histogramPlot d (return ()) -- | Add a 'HistogramPlot' using a fold over the data. histogramPlotOf :: (MonadState (Axis V2) m) => Fold s Double -- ^ fold over the data -> s -- ^ data to fold -> State (Plot HistogramOptions) () -- ^ change to the plot -> m () -- ^ add plot to the 'Axis' histogramPlotOf f s = histogramPlot (toListOf f s) -- | Same as 'histogramPlotOf' without any changes to the plot. histogramPlotOf' :: MonadState (Axis V2) m => Fold s Double -> s -> m () histogramPlotOf' f s = histogramPlotOf f s (return ()) -- temporary functions that will be in next lib release _reflectionXY :: (HasLinearMap v, R2 v, Num n) => Transformation v n _reflectionXY = reflectionX <> reflectionY _reflectXY :: (InSpace v n t, HasLinearMap v, R2 v, Transformable t) => t -> t _reflectXY = transform _reflectionXY