parsec-free-3.1.11.7: Parsec API encoded as a deeply-embedded DSL, for debugging and analysis
Copyright(c) Daan Leijen 1999-2001 (c) Paolo Martini 2007
LicenseBSD-style (see the file libraries/parsec/LICENSE)
Maintainerderek.a.elkins@gmail.com
Stabilityprovisional
Portabilitynon-portable (uses existentially quantified data constructors)
Safe HaskellSafe-Inferred
LanguageHaskell2010

Text.Parsec.Perm

Description

This module implements permutation parsers. The algorithm used is fairly complex since we push the type system to its limits :-) The algorithm is described in:

Parsing Permutation Phrases, by Arthur Baars, Andres Loh and Doaitse Swierstra. Published as a functional pearl at the Haskell Workshop 2001.

Synopsis

Documentation

type PermParser tok st a = StreamPermParser String st a Source #

Provided for backwards compatibility. The tok type is ignored.

data StreamPermParser s st a Source #

The type StreamPermParser s st a denotes a permutation parser that, when converted by the permute function, parses s streams with user state st and returns a value of type a on success.

Normally, a permutation parser is first build with special operators like (<||>) and than transformed into a normal parser using permute.

permute :: Stream s Identity tok => StreamPermParser s st a -> Parsec s st a Source #

The parser permute perm parses a permutation of parser described by perm. For example, suppose we want to parse a permutation of: an optional string of a's, the character b and an optional c. This can be described by:

 test  = permute (tuple <$?> ("",many1 (char 'a'))
                        <||> char 'b' 
                        <|?> ('_',char 'c'))
       where
         tuple a b c  = (a,b,c)

(<||>) :: Stream s Identity tok => StreamPermParser s st (a -> b) -> Parsec s st a -> StreamPermParser s st b infixl 1 Source #

The expression perm <||> p adds parser p to the permutation parser perm. The parser p is not allowed to accept empty input - use the optional combinator (<|?>) instead. Returns a new permutation parser that includes p.

(<$$>) :: Stream s Identity tok => (a -> b) -> Parsec s st a -> StreamPermParser s st b infixl 2 Source #

The expression f <$$> p creates a fresh permutation parser consisting of parser p. The the final result of the permutation parser is the function f applied to the return value of p. The parser p is not allowed to accept empty input - use the optional combinator (<$?>) instead.

If the function f takes more than one parameter, the type variable b is instantiated to a functional type which combines nicely with the adds parser p to the (<||>) combinator. This results in stylized code where a permutation parser starts with a combining function f followed by the parsers. The function f gets its parameters in the order in which the parsers are specified, but actual input can be in any order.

(<|?>) :: Stream s Identity tok => StreamPermParser s st (a -> b) -> (a, Parsec s st a) -> StreamPermParser s st b infixl 1 Source #

The expression perm <||> (x,p) adds parser p to the permutation parser perm. The parser p is optional - if it can not be applied, the default value x will be used instead. Returns a new permutation parser that includes the optional parser p.

(<$?>) :: Stream s Identity tok => (a -> b) -> (a, Parsec s st a) -> StreamPermParser s st b infixl 2 Source #

The expression f <$?> (x,p) creates a fresh permutation parser consisting of parser p. The the final result of the permutation parser is the function f applied to the return value of p. The parser p is optional - if it can not be applied, the default value x will be used instead.