-- | -- Module: Optics.Traversal -- Description: Lifts an effectful operation on elements to act on structures. -- -- A 'Traversal' lifts an effectful operation on elements to act on structures -- containing those elements. -- -- That is, given a function @op :: A -> F B@ where @F@ is 'Applicative', a -- @'Traversal' S T A B@ can produce a function @S -> F T@ that applies @op@ to -- all the @A@s contained in the @S@. -- -- This can be seen as a generalisation of 'traverse', where the type @S@ does -- not need to be a type constructor with @A@ as the last parameter. -- -- A 'Lens' is a 'Traversal' that acts on a single value. -- -- A close relative is the 'Optics.AffineTraversal.AffineTraversal', which is a -- 'Traversal' that acts on at most one value. -- module Optics.Traversal ( -- * Formation Traversal , Traversal' -- * Introduction , traversalVL -- * Elimination , traverseOf -- * Computation -- | -- -- @ -- 'traverseOf' ('traversalVL' f) ≡ f -- @ -- * Well-formedness -- | -- -- @ -- 'traverseOf' o 'pure' ≡ 'pure' -- 'fmap' ('traverseOf' o f) . 'traverseOf' o g ≡ 'Data.Functor.Compose.getCompose' . 'traverseOf' o ('Data.Functor.Compose.Compose' . 'fmap' f . g) -- @ -- * Additional introduction forms , traversed -- * Additional elimination forms , forOf , sequenceOf , transposeOf , mapAccumROf , mapAccumLOf , scanr1Of , scanl1Of , failover , failover' -- * Combinators , backwards , partsOf , singular -- * Subtyping , A_Traversal -- | <<diagrams/Traversal.png Traversal in the optics hierarchy>> -- * van Laarhoven encoding -- | The van Laarhoven representation of a 'Traversal' directly expresses how -- it lifts an effectful operation @A -> F B@ on elements to act on structures -- @S -> F T@. Thus 'traverseOf' converts a 'Traversal' to a 'TraversalVL'. , TraversalVL , TraversalVL' ) where import Control.Applicative import Control.Applicative.Backwards import Control.Monad.Trans.State import Data.Functor.Identity import Data.Profunctor.Indexed import Optics.AffineTraversal import Optics.Fold import Optics.Internal.Optic import Optics.Internal.Traversal import Optics.Internal.Utils import Optics.Lens import Optics.ReadOnly -- | Type synonym for a type-modifying traversal. type Traversal s t a b = Optic A_Traversal NoIx s t a b -- | Type synonym for a type-preserving traversal. type Traversal' s a = Optic' A_Traversal NoIx s a -- | Type synonym for a type-modifying van Laarhoven traversal. type TraversalVL s t a b = forall f. Applicative f => (a -> f b) -> s -> f t -- | Type synonym for a type-preserving van Laarhoven traversal. type TraversalVL' s a = TraversalVL s s a a -- | Build a traversal from the van Laarhoven representation. -- -- @ -- 'traversalVL' '.' 'traverseOf' ≡ 'id' -- 'traverseOf' '.' 'traversalVL' ≡ 'id' -- @ traversalVL :: TraversalVL s t a b -> Traversal s t a b traversalVL t = Optic (wander t) {-# INLINE traversalVL #-} -- | Map each element of a structure targeted by a 'Traversal', evaluate these -- actions from left to right, and collect the results. traverseOf :: (Is k A_Traversal, Applicative f) => Optic k is s t a b -> (a -> f b) -> s -> f t traverseOf o = \f -> runStar $ getOptic (castOptic @A_Traversal o) (Star f) {-# INLINE traverseOf #-} -- | A version of 'traverseOf' with the arguments flipped. forOf :: (Is k A_Traversal, Applicative f) => Optic k is s t a b -> s -> (a -> f b) -> f t forOf = flip . traverseOf {-# INLINE forOf #-} -- | Evaluate each action in the structure from left to right, and collect the -- results. -- -- >>> sequenceOf each ([1,2],[3,4]) -- [(1,3),(1,4),(2,3),(2,4)] -- -- @ -- 'sequence' ≡ 'sequenceOf' 'traversed' ≡ 'traverse' 'id' -- 'sequenceOf' o ≡ 'traverseOf' o 'id' -- @ sequenceOf :: (Is k A_Traversal, Applicative f) => Optic k is s t (f b) b -> s -> f t sequenceOf o = traverseOf o id {-# INLINE sequenceOf #-} -- | This generalizes 'Data.List.transpose' to an arbitrary 'Traversal'. -- -- Note: 'Data.List.transpose' handles ragged inputs more intelligently, but for -- non-ragged inputs: -- -- >>> transposeOf traversed [[1,2,3],[4,5,6]] -- [[1,4],[2,5],[3,6]] -- -- @ -- 'Data.List.transpose' ≡ 'transposeOf' 'traverse' -- @ transposeOf :: Is k A_Traversal => Optic k is s t [a] a -> s -> [t] transposeOf o = getZipList #. traverseOf o ZipList {-# INLINE transposeOf #-} -- | This generalizes 'Data.Traversable.mapAccumL' to an arbitrary 'Traversal'. -- -- @ -- 'Data.Traversable.mapAccumL' ≡ 'mapAccumLOf' 'traverse' -- @ -- -- 'mapAccumLOf' accumulates 'State' from left to right. mapAccumLOf :: Is k A_Traversal => Optic k is s t a b -> (acc -> a -> (b, acc)) -> acc -> s -> (t, acc) mapAccumLOf o = \f acc0 s -> let g a = state $ \acc -> f acc a in runState (traverseOf o g s) acc0 {-# INLINE mapAccumLOf #-} -- | This generalizes 'Data.Traversable.mapAccumR' to an arbitrary 'Traversal'. -- -- @ -- 'Data.Traversable.mapAccumR' ≡ 'mapAccumROf' 'traversed' -- @ -- -- 'mapAccumROf' accumulates 'State' from right to left. mapAccumROf :: Is k A_Traversal => Optic k is s t a b -> (acc -> a -> (b, acc)) -> acc -> s -> (t, acc) mapAccumROf = mapAccumLOf . backwards {-# INLINE mapAccumROf #-} -- | This permits the use of 'scanl1' over an arbitrary 'Traversal'. -- -- @ -- 'scanl1' ≡ 'scanl1Of' 'traversed' -- @ scanl1Of :: Is k A_Traversal => Optic k is s t a a -> (a -> a -> a) -> s -> t scanl1Of o = \f -> let step Nothing a = (a, Just a) step (Just s) a = let r = f s a in (r, Just r) in fst . mapAccumLOf o step Nothing {-# INLINE scanl1Of #-} -- | This permits the use of 'scanr1' over an arbitrary 'Traversal'. -- -- @ -- 'scanr1' ≡ 'scanr1Of' 'traversed' -- @ scanr1Of :: Is k A_Traversal => Optic k is s t a a -> (a -> a -> a) -> s -> t scanr1Of o = \f -> let step Nothing a = (a, Just a) step (Just s) a = let r = f a s in (r, Just r) in fst . mapAccumROf o step Nothing {-# INLINE scanr1Of #-} -- | Try to map a function over this 'Traversal', returning Nothing if the -- traversal has no targets. -- -- >>> failover (element 3) (*2) [1,2] -- Nothing -- -- >>> failover _Left (*2) (Right 4) -- Nothing -- -- >>> failover _Right (*2) (Right 4) -- Just (Right 8) -- failover :: Is k A_Traversal => Optic k is s t a b -> (a -> b) -> s -> Maybe t failover o = \f s -> let OrT visited t = traverseOf o (wrapOrT . Identity #. f) s in if visited then Just (runIdentity t) else Nothing {-# INLINE failover #-} -- | Version of 'failover' strict in the application of @f@. failover' :: Is k A_Traversal => Optic k is s t a b -> (a -> b) -> s -> Maybe t failover' o = \f s -> let OrT visited t = traverseOf o (wrapOrT . wrapIdentity' . f) s in if visited then Just (unwrapIdentity' t) else Nothing {-# INLINE failover' #-} ---------------------------------------- -- Traversals -- | Construct a 'Traversal' via the 'Traversable' class. -- -- @ -- 'traverseOf' 'traversed' = 'traverse' -- @ -- traversed :: Traversable t => Traversal (t a) (t b) a b traversed = Optic traversed__ {-# INLINE traversed #-} ---------------------------------------- -- Traversal combinators -- | This allows you to 'traverse' the elements of a traversal in the opposite -- order. backwards :: Is k A_Traversal => Optic k is s t a b -> Traversal s t a b backwards o = traversalVL $ \f -> forwards #. traverseOf o (Backwards #. f) {-# INLINE backwards #-} -- | 'partsOf' turns a 'Traversal' into a 'Lens'. -- -- /Note:/ You should really try to maintain the invariant of the number of -- children in the list. -- -- >>> ('a','b','c') & partsOf each .~ ['x','y','z'] -- ('x','y','z') -- -- Any extras will be lost. If you do not supply enough, then the remainder will -- come from the original structure. -- -- >>> ('a','b','c') & partsOf each .~ ['w','x','y','z'] -- ('w','x','y') -- -- >>> ('a','b','c') & partsOf each .~ ['x','y'] -- ('x','y','c') -- -- >>> ('b', 'a', 'd', 'c') & partsOf each %~ sort -- ('a','b','c','d') -- -- So technically, this is only a 'Lens' if you do not change the number of -- results it returns. partsOf :: forall k is s t a. Is k A_Traversal => Optic k is s t a a -> Lens s t [a] [a] partsOf o = lensVL $ \f s -> evalState (traverseOf o update s) <$> f (toListOf (getting $ castOptic @A_Traversal o) s) where update a = get >>= \case a' : as' -> put as' >> pure a' [] -> pure a {-# INLINE partsOf #-} -- | Convert a traversal to an 'AffineTraversal' that visits the first element -- of the original traversal. -- -- For the fold version see 'Optics.Fold.pre'. -- -- >>> "foo" & singular traversed .~ 'z' -- "zoo" -- -- @since 0.3 singular :: forall k is s a. Is k A_Traversal => Optic' k is s a -> AffineTraversal' s a singular o = atraversalVL $ \point f s -> case headOf (castOptic @A_Traversal o) s of Nothing -> point s Just a -> evalState (traverseOf o update s) . Just <$> f a where update a = get >>= \case Just a' -> put Nothing >> pure a' Nothing -> pure a {-# INLINE singular #-} -- $setup -- >>> import Data.List -- >>> import Optics.Core