module Lorentz.Arith
( ArithOpHs (..)
, UnaryArithOpHs (..)
) where
import qualified Data.Kind as Kind
import Lorentz.Value
import Lorentz.Constraints.Scopes (NiceComparable)
import Michelson.Typed.Arith
class ( ArithOp aop (ToT n) (ToT m)
, NiceComparable n, NiceComparable m
, ToT (ArithResHs aop n m) ~ ArithRes aop (ToT n) (ToT m)
) => ArithOpHs (aop :: Kind.Type) (n :: Kind.Type) (m :: Kind.Type) where
type ArithResHs aop n m :: Kind.Type
class ( UnaryArithOp aop (ToT n)
, NiceComparable n
, ToT (UnaryArithResHs aop n) ~ UnaryArithRes aop (ToT n)
) => UnaryArithOpHs (aop :: Kind.Type) (n :: Kind.Type) where
type UnaryArithResHs aop n :: Kind.Type
instance ArithOpHs Add Natural Integer where
type ArithResHs Add Natural Integer = Integer
instance ArithOpHs Add Integer Natural where
type ArithResHs Add Integer Natural = Integer
instance ArithOpHs Add Natural Natural where
type ArithResHs Add Natural Natural = Natural
instance ArithOpHs Add Integer Integer where
type ArithResHs Add Integer Integer = Integer
instance ArithOpHs Add Timestamp Integer where
type ArithResHs Add Timestamp Integer = Timestamp
instance ArithOpHs Add Integer Timestamp where
type ArithResHs Add Integer Timestamp = Timestamp
instance ArithOpHs Add Mutez Mutez where
type ArithResHs Add Mutez Mutez = Mutez
instance ArithOpHs Sub Natural Integer where
type ArithResHs Sub Natural Integer = Integer
instance ArithOpHs Sub Integer Natural where
type ArithResHs Sub Integer Natural = Integer
instance ArithOpHs Sub Natural Natural where
type ArithResHs Sub Natural Natural = Integer
instance ArithOpHs Sub Integer Integer where
type ArithResHs Sub Integer Integer = Integer
instance ArithOpHs Sub Timestamp Integer where
type ArithResHs Sub Timestamp Integer = Timestamp
instance ArithOpHs Sub Timestamp Timestamp where
type ArithResHs Sub Timestamp Timestamp = Integer
instance ArithOpHs Sub Mutez Mutez where
type ArithResHs Sub Mutez Mutez = Mutez
instance ArithOpHs Mul Natural Integer where
type ArithResHs Mul Natural Integer = Integer
instance ArithOpHs Mul Integer Natural where
type ArithResHs Mul Integer Natural = Integer
instance ArithOpHs Mul Natural Natural where
type ArithResHs Mul Natural Natural = Natural
instance ArithOpHs Mul Integer Integer where
type ArithResHs Mul Integer Integer = Integer
instance ArithOpHs Mul Natural Mutez where
type ArithResHs Mul Natural Mutez = Mutez
instance ArithOpHs Mul Mutez Natural where
type ArithResHs Mul Mutez Natural = Mutez
instance UnaryArithOpHs Abs Integer where
type UnaryArithResHs Abs Integer = Natural
instance UnaryArithOpHs Neg Integer where
type UnaryArithResHs Neg Integer = Integer
instance UnaryArithOpHs Neg Natural where
type UnaryArithResHs Neg Natural = Integer
instance ArithOpHs Or Natural Natural where
type ArithResHs Or Natural Natural = Natural
instance ArithOpHs Or Bool Bool where
type ArithResHs Or Bool Bool = Bool
instance ArithOpHs And Integer Natural where
type ArithResHs And Integer Natural = Natural
instance ArithOpHs And Natural Natural where
type ArithResHs And Natural Natural = Natural
instance ArithOpHs And Bool Bool where
type ArithResHs And Bool Bool = Bool
instance ArithOpHs Xor Natural Natural where
type ArithResHs Xor Natural Natural = Natural
instance ArithOpHs Xor Bool Bool where
type ArithResHs Xor Bool Bool = Bool
instance ArithOpHs Lsl Natural Natural where
type ArithResHs Lsl Natural Natural = Natural
instance ArithOpHs Lsr Natural Natural where
type ArithResHs Lsr Natural Natural = Natural
instance UnaryArithOpHs Not Integer where
type UnaryArithResHs Not Integer = Integer
instance UnaryArithOpHs Not Natural where
type UnaryArithResHs Not Natural = Integer
instance UnaryArithOpHs Not Bool where
type UnaryArithResHs Not Bool = Bool
instance UnaryArithOpHs Eq' Integer where
type UnaryArithResHs Eq' Integer = Bool
instance UnaryArithOpHs Neq Integer where
type UnaryArithResHs Neq Integer = Bool
instance UnaryArithOpHs Lt Integer where
type UnaryArithResHs Lt Integer = Bool
instance UnaryArithOpHs Gt Integer where
type UnaryArithResHs Gt Integer = Bool
instance UnaryArithOpHs Le Integer where
type UnaryArithResHs Le Integer = Bool
instance UnaryArithOpHs Ge Integer where
type UnaryArithResHs Ge Integer = Bool