{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE MultiParamTypeClasses, FlexibleContexts, FlexibleInstances, UndecidableInstances #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE DeriveGeneric #-}

#ifndef MIN_VERSION_hashable
#define MIN_VERSION_hashable(x,y,z) 1
#endif

#ifndef MIN_VERSION_reflection
#define MIN_VERSION_reflection(x,y,z) 1
#endif

#ifndef MIN_VERSION_transformers
#define MIN_VERSION_transformers(x,y,z) 1
#endif

#ifndef MIN_VERSION_base
#define MIN_VERSION_base(x,y,z) 1
#endif

-----------------------------------------------------------------------------
-- |
-- Copyright   :  (C) 2012-2015 Edward Kmett
-- License     :  BSD-style (see the file LICENSE)
--
-- Maintainer  :  Edward Kmett <ekmett@gmail.com>
-- Stability   :  experimental
-- Portability :  non-portable
--
-- n-D Vectors
----------------------------------------------------------------------------

module Linear.V
  ( V(V,toVector)
#ifdef MIN_VERSION_template_haskell
  , int
#endif
  , dim
  , Dim(..)
  , reifyDim
  , reifyVector
  , reifyDimNat
  , reifyVectorNat
  , fromVector
  , Finite(..)
  , _V, _V'
  ) where

import Control.Applicative
import Control.DeepSeq (NFData)
import Control.Monad
import Control.Monad.Fix
import Control.Monad.Trans.State
import Control.Monad.Zip
import Control.Lens as Lens
import Data.Binary as Binary
import Data.Bytes.Serial
import Data.Complex
import Data.Data
import Data.Distributive
import Data.Foldable as Foldable
import qualified Data.Foldable.WithIndex as WithIndex
import Data.Functor.Bind
import Data.Functor.Classes
import Data.Functor.Rep as Rep
import qualified Data.Functor.WithIndex as WithIndex
import Data.Hashable
import Data.Hashable.Lifted
import Data.Kind
import Data.Reflection as R
import Data.Serialize as Cereal
import qualified Data.Traversable.WithIndex as WithIndex
import qualified Data.Vector as V
import Data.Vector (Vector)
import Data.Vector.Fusion.Util (Box(..))
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Unboxed as U
import qualified Data.Vector.Generic.Mutable as M
import Foreign.Ptr
import Foreign.Storable
import GHC.TypeLits
import GHC.Generics (Generic, Generic1)
#if !(MIN_VERSION_reflection(1,3,0)) && defined(MIN_VERSION_template_haskell)
import Language.Haskell.TH
#endif
import Linear.Epsilon
import Linear.Metric
import Linear.Vector
import Prelude as P
#if !(MIN_VERSION_base(4,11,0))
import Data.Semigroup
#endif
import System.Random (Random(..))

class Dim n where
  reflectDim :: p n -> Int

type role V nominal representational

class Finite v where
  type Size (v :: Type -> Type) :: Nat -- this should allow kind k, for Reifies k Int
  toV :: v a -> V (Size v) a
  default toV :: Foldable v => v a -> V (Size v) a
  toV = Vector a -> V (Size v) a
forall k (n :: k) a. Vector a -> V n a
V (Vector a -> V (Size v) a)
-> (v a -> Vector a) -> v a -> V (Size v) a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> Vector a
forall a. [a] -> Vector a
V.fromList ([a] -> Vector a) -> (v a -> [a]) -> v a -> Vector a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. v a -> [a]
forall (t :: * -> *) a. Foldable t => t a -> [a]
Foldable.toList
  fromV :: V (Size v) a -> v a

instance Finite Complex where
  type Size Complex = 2
  toV :: Complex a -> V (Size Complex) a
toV (a
a :+ a
b) = Vector a -> V 2 a
forall k (n :: k) a. Vector a -> V n a
V (Int -> [a] -> Vector a
forall a. Int -> [a] -> Vector a
V.fromListN Int
2 [a
a, a
b])
  fromV :: V (Size Complex) a -> Complex a
fromV (V Vector a
v) = (Vector a
v Vector a -> Int -> a
forall a. Vector a -> Int -> a
V.! Int
0) a -> a -> Complex a
forall a. a -> a -> Complex a
:+ (Vector a
v Vector a -> Int -> a
forall a. Vector a -> Int -> a
V.! Int
1)

_V :: (Finite u, Finite v) => Iso (V (Size u) a) (V (Size v) b) (u a) (v b)
_V :: Iso (V (Size u) a) (V (Size v) b) (u a) (v b)
_V = (V (Size u) a -> u a)
-> (v b -> V (Size v) b)
-> Iso (V (Size u) a) (V (Size v) b) (u a) (v b)
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso V (Size u) a -> u a
forall (v :: * -> *) a. Finite v => V (Size v) a -> v a
fromV v b -> V (Size v) b
forall (v :: * -> *) a. Finite v => v a -> V (Size v) a
toV

_V' :: Finite v => Iso (V (Size v) a) (V (Size v) b) (v a) (v b)
_V' :: Iso (V (Size v) a) (V (Size v) b) (v a) (v b)
_V' = (V (Size v) a -> v a)
-> (v b -> V (Size v) b)
-> Iso (V (Size v) a) (V (Size v) b) (v a) (v b)
forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso V (Size v) a -> v a
forall (v :: * -> *) a. Finite v => V (Size v) a -> v a
fromV v b -> V (Size v) b
forall (v :: * -> *) a. Finite v => v a -> V (Size v) a
toV

instance Finite (V (n :: Nat)) where
  type Size (V n) = n
  toV :: V n a -> V (Size (V n)) a
toV = V n a -> V (Size (V n)) a
forall a. a -> a
id
  fromV :: V (Size (V n)) a -> V n a
fromV = V (Size (V n)) a -> V n a
forall a. a -> a
id

newtype V n a = V { V n a -> Vector a
toVector :: V.Vector a } deriving (V n a -> V n a -> Bool
(V n a -> V n a -> Bool) -> (V n a -> V n a -> Bool) -> Eq (V n a)
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall k (n :: k) a. Eq a => V n a -> V n a -> Bool
/= :: V n a -> V n a -> Bool
$c/= :: forall k (n :: k) a. Eq a => V n a -> V n a -> Bool
== :: V n a -> V n a -> Bool
$c== :: forall k (n :: k) a. Eq a => V n a -> V n a -> Bool
Eq,Eq (V n a)
Eq (V n a)
-> (V n a -> V n a -> Ordering)
-> (V n a -> V n a -> Bool)
-> (V n a -> V n a -> Bool)
-> (V n a -> V n a -> Bool)
-> (V n a -> V n a -> Bool)
-> (V n a -> V n a -> V n a)
-> (V n a -> V n a -> V n a)
-> Ord (V n a)
V n a -> V n a -> Bool
V n a -> V n a -> Ordering
V n a -> V n a -> V n a
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
forall k (n :: k) a. Ord a => Eq (V n a)
forall k (n :: k) a. Ord a => V n a -> V n a -> Bool
forall k (n :: k) a. Ord a => V n a -> V n a -> Ordering
forall k (n :: k) a. Ord a => V n a -> V n a -> V n a
min :: V n a -> V n a -> V n a
$cmin :: forall k (n :: k) a. Ord a => V n a -> V n a -> V n a
max :: V n a -> V n a -> V n a
$cmax :: forall k (n :: k) a. Ord a => V n a -> V n a -> V n a
>= :: V n a -> V n a -> Bool
$c>= :: forall k (n :: k) a. Ord a => V n a -> V n a -> Bool
> :: V n a -> V n a -> Bool
$c> :: forall k (n :: k) a. Ord a => V n a -> V n a -> Bool
<= :: V n a -> V n a -> Bool
$c<= :: forall k (n :: k) a. Ord a => V n a -> V n a -> Bool
< :: V n a -> V n a -> Bool
$c< :: forall k (n :: k) a. Ord a => V n a -> V n a -> Bool
compare :: V n a -> V n a -> Ordering
$ccompare :: forall k (n :: k) a. Ord a => V n a -> V n a -> Ordering
$cp1Ord :: forall k (n :: k) a. Ord a => Eq (V n a)
Ord,Int -> V n a -> ShowS
[V n a] -> ShowS
V n a -> String
(Int -> V n a -> ShowS)
-> (V n a -> String) -> ([V n a] -> ShowS) -> Show (V n a)
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall k (n :: k) a. Show a => Int -> V n a -> ShowS
forall k (n :: k) a. Show a => [V n a] -> ShowS
forall k (n :: k) a. Show a => V n a -> String
showList :: [V n a] -> ShowS
$cshowList :: forall k (n :: k) a. Show a => [V n a] -> ShowS
show :: V n a -> String
$cshow :: forall k (n :: k) a. Show a => V n a -> String
showsPrec :: Int -> V n a -> ShowS
$cshowsPrec :: forall k (n :: k) a. Show a => Int -> V n a -> ShowS
Show,ReadPrec [V n a]
ReadPrec (V n a)
Int -> ReadS (V n a)
ReadS [V n a]
(Int -> ReadS (V n a))
-> ReadS [V n a]
-> ReadPrec (V n a)
-> ReadPrec [V n a]
-> Read (V n a)
forall a.
(Int -> ReadS a)
-> ReadS [a] -> ReadPrec a -> ReadPrec [a] -> Read a
forall k (n :: k) a. Read a => ReadPrec [V n a]
forall k (n :: k) a. Read a => ReadPrec (V n a)
forall k (n :: k) a. Read a => Int -> ReadS (V n a)
forall k (n :: k) a. Read a => ReadS [V n a]
readListPrec :: ReadPrec [V n a]
$creadListPrec :: forall k (n :: k) a. Read a => ReadPrec [V n a]
readPrec :: ReadPrec (V n a)
$creadPrec :: forall k (n :: k) a. Read a => ReadPrec (V n a)
readList :: ReadS [V n a]
$creadList :: forall k (n :: k) a. Read a => ReadS [V n a]
readsPrec :: Int -> ReadS (V n a)
$creadsPrec :: forall k (n :: k) a. Read a => Int -> ReadS (V n a)
Read,V n a -> ()
(V n a -> ()) -> NFData (V n a)
forall a. (a -> ()) -> NFData a
forall k (n :: k) a. NFData a => V n a -> ()
rnf :: V n a -> ()
$crnf :: forall k (n :: k) a. NFData a => V n a -> ()
NFData
                                                      ,(forall x. V n a -> Rep (V n a) x)
-> (forall x. Rep (V n a) x -> V n a) -> Generic (V n a)
forall x. Rep (V n a) x -> V n a
forall x. V n a -> Rep (V n a) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall k (n :: k) a x. Rep (V n a) x -> V n a
forall k (n :: k) a x. V n a -> Rep (V n a) x
$cto :: forall k (n :: k) a x. Rep (V n a) x -> V n a
$cfrom :: forall k (n :: k) a x. V n a -> Rep (V n a) x
Generic,(forall a. V n a -> Rep1 (V n) a)
-> (forall a. Rep1 (V n) a -> V n a) -> Generic1 (V n)
forall a. Rep1 (V n) a -> V n a
forall a. V n a -> Rep1 (V n) a
forall k (n :: k) a. Rep1 (V n) a -> V n a
forall k (n :: k) a. V n a -> Rep1 (V n) a
forall k (f :: k -> *).
(forall (a :: k). f a -> Rep1 f a)
-> (forall (a :: k). Rep1 f a -> f a) -> Generic1 f
$cto1 :: forall k (n :: k) a. Rep1 (V n) a -> V n a
$cfrom1 :: forall k (n :: k) a. V n a -> Rep1 (V n) a
Generic1
                                                      )

dim :: forall n a. Dim n => V n a -> Int
dim :: V n a -> Int
dim V n a
_ = Proxy n -> Int
forall k (n :: k) (p :: k -> *). Dim n => p n -> Int
reflectDim (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n)
{-# INLINE dim #-}

instance KnownNat n => Dim (n :: Nat) where
  reflectDim :: p n -> Int
reflectDim = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Integer -> Int) -> (p n -> Integer) -> p n -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. p n -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal
  {-# INLINE reflectDim #-}

instance (Dim n, Random a) => Random (V n a) where
  random :: g -> (V n a, g)
random = State g (V n a) -> g -> (V n a, g)
forall s a. State s a -> s -> (a, s)
runState (Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V (Vector a -> V n a)
-> StateT g Identity (Vector a) -> State g (V n a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> StateT g Identity a -> StateT g Identity (Vector a)
forall (m :: * -> *) a. Monad m => Int -> m a -> m (Vector a)
V.replicateM (Proxy n -> Int
forall k (n :: k) (p :: k -> *). Dim n => p n -> Int
reflectDim (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n)) ((g -> (a, g)) -> StateT g Identity a
forall (m :: * -> *) s a. Monad m => (s -> (a, s)) -> StateT s m a
state g -> (a, g)
forall a g. (Random a, RandomGen g) => g -> (a, g)
random))
  randomR :: (V n a, V n a) -> g -> (V n a, g)
randomR (V Vector a
ls,V Vector a
hs) = State g (V n a) -> g -> (V n a, g)
forall s a. State s a -> s -> (a, s)
runState (Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V (Vector a -> V n a)
-> StateT g Identity (Vector a) -> State g (V n a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (a -> a -> StateT g Identity a)
-> Vector a -> Vector a -> StateT g Identity (Vector a)
forall (m :: * -> *) a b c.
Monad m =>
(a -> b -> m c) -> Vector a -> Vector b -> m (Vector c)
V.zipWithM (\a
l a
h -> (g -> (a, g)) -> StateT g Identity a
forall (m :: * -> *) s a. Monad m => (s -> (a, s)) -> StateT s m a
state ((g -> (a, g)) -> StateT g Identity a)
-> (g -> (a, g)) -> StateT g Identity a
forall a b. (a -> b) -> a -> b
$ (a, a) -> g -> (a, g)
forall a g. (Random a, RandomGen g) => (a, a) -> g -> (a, g)
randomR (a
l,a
h)) Vector a
ls Vector a
hs)

data ReifiedDim (s :: Type)

retagDim :: (Proxy s -> a) -> proxy (ReifiedDim s) -> a
retagDim :: (Proxy s -> a) -> proxy (ReifiedDim s) -> a
retagDim Proxy s -> a
f proxy (ReifiedDim s)
_ = Proxy s -> a
f Proxy s
forall k (t :: k). Proxy t
Proxy
{-# INLINE retagDim #-}

instance Reifies s Int => Dim (ReifiedDim s) where
  reflectDim :: p (ReifiedDim s) -> Int
reflectDim = (Proxy s -> Int) -> p (ReifiedDim s) -> Int
forall s a (proxy :: * -> *).
(Proxy s -> a) -> proxy (ReifiedDim s) -> a
retagDim Proxy s -> Int
forall k (s :: k) a (proxy :: k -> *). Reifies s a => proxy s -> a
reflect
  {-# INLINE reflectDim #-}

reifyDimNat :: Int -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyDimNat :: Int -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyDimNat Int
i forall (n :: Nat). KnownNat n => Proxy n -> r
f = Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
R.reifyNat (Int -> Integer
forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
i) forall (n :: Nat). KnownNat n => Proxy n -> r
f
{-# INLINE reifyDimNat #-}

reifyVectorNat :: forall a r. Vector a -> (forall (n :: Nat). KnownNat n => V n a -> r) -> r
reifyVectorNat :: Vector a -> (forall (n :: Nat). KnownNat n => V n a -> r) -> r
reifyVectorNat Vector a
v forall (n :: Nat). KnownNat n => V n a -> r
f = Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat (Int -> Integer
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Int -> Integer) -> Int -> Integer
forall a b. (a -> b) -> a -> b
$ Vector a -> Int
forall a. Vector a -> Int
V.length Vector a
v) ((forall (n :: Nat). KnownNat n => Proxy n -> r) -> r)
-> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
forall a b. (a -> b) -> a -> b
$ \(Proxy n
Proxy :: Proxy n) -> V n a -> r
forall (n :: Nat). KnownNat n => V n a -> r
f (Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V Vector a
v :: V n a)
{-# INLINE reifyVectorNat #-}

reifyDim :: Int -> (forall (n :: Type). Dim n => Proxy n -> r) -> r
reifyDim :: Int -> (forall n. Dim n => Proxy n -> r) -> r
reifyDim Int
i forall n. Dim n => Proxy n -> r
f = Int -> (forall s. Reifies s Int => Proxy s -> r) -> r
forall a r. a -> (forall s. Reifies s a => Proxy s -> r) -> r
R.reify Int
i ((Proxy (ReifiedDim s) -> r) -> Proxy s -> r
forall n a (proxy :: * -> *).
(Proxy (ReifiedDim n) -> a) -> proxy n -> a
go Proxy (ReifiedDim s) -> r
forall n. Dim n => Proxy n -> r
f) where
  go :: (Proxy (ReifiedDim n) -> a) -> proxy n -> a
  go :: (Proxy (ReifiedDim n) -> a) -> proxy n -> a
go Proxy (ReifiedDim n) -> a
g proxy n
_ = Proxy (ReifiedDim n) -> a
g Proxy (ReifiedDim n)
forall k (t :: k). Proxy t
Proxy
{-# INLINE reifyDim #-}

reifyVector :: forall a r. Vector a -> (forall (n :: Type). Dim n => V n a -> r) -> r
reifyVector :: Vector a -> (forall n. Dim n => V n a -> r) -> r
reifyVector Vector a
v forall n. Dim n => V n a -> r
f = Int -> (forall n. Dim n => Proxy n -> r) -> r
forall r. Int -> (forall n. Dim n => Proxy n -> r) -> r
reifyDim (Vector a -> Int
forall a. Vector a -> Int
V.length Vector a
v) ((forall n. Dim n => Proxy n -> r) -> r)
-> (forall n. Dim n => Proxy n -> r) -> r
forall a b. (a -> b) -> a -> b
$ \(Proxy n
Proxy :: Proxy n) -> V n a -> r
forall n. Dim n => V n a -> r
f (Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V Vector a
v :: V n a)
{-# INLINE reifyVector #-}

instance Dim n => Dim (V n a) where
  reflectDim :: p (V n a) -> Int
reflectDim p (V n a)
_ = Proxy n -> Int
forall k (n :: k) (p :: k -> *). Dim n => p n -> Int
reflectDim (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n)
  {-# INLINE reflectDim #-}

instance (Dim n, Semigroup a) => Semigroup (V n a) where
 <> :: V n a -> V n a -> V n a
(<>) = (a -> a -> a) -> V n a -> V n a -> V n a
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 a -> a -> a
forall a. Semigroup a => a -> a -> a
(<>)

instance (Dim n, Monoid a) => Monoid (V n a) where
  mempty :: V n a
mempty = a -> V n a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
forall a. Monoid a => a
mempty
#if !(MIN_VERSION_base(4,11,0))
  mappend = liftA2 mappend
#endif

instance Functor (V n) where
  fmap :: (a -> b) -> V n a -> V n b
fmap a -> b
f (V Vector a
as) = Vector b -> V n b
forall k (n :: k) a. Vector a -> V n a
V ((a -> b) -> Vector a -> Vector b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f Vector a
as)
  {-# INLINE fmap #-}

instance WithIndex.FunctorWithIndex Int (V n) where
  imap :: (Int -> a -> b) -> V n a -> V n b
imap Int -> a -> b
f (V Vector a
as) = Vector b -> V n b
forall k (n :: k) a. Vector a -> V n a
V ((Int -> a -> b) -> Vector a -> Vector b
forall i (f :: * -> *) a b.
FunctorWithIndex i f =>
(i -> a -> b) -> f a -> f b
Lens.imap Int -> a -> b
f Vector a
as)
  {-# INLINE imap #-}

instance Foldable (V n) where
  fold :: V n m -> m
fold (V Vector m
as) = Vector m -> m
forall (t :: * -> *) m. (Foldable t, Monoid m) => t m -> m
fold Vector m
as
  {-# INLINE fold #-}
  foldMap :: (a -> m) -> V n a -> m
foldMap a -> m
f (V Vector a
as) = (a -> m) -> Vector a -> m
forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
Foldable.foldMap a -> m
f Vector a
as
  {-# INLINE foldMap #-}
  foldr :: (a -> b -> b) -> b -> V n a -> b
foldr a -> b -> b
f b
z (V Vector a
as) = (a -> b -> b) -> b -> Vector a -> b
forall a b. (a -> b -> b) -> b -> Vector a -> b
V.foldr a -> b -> b
f b
z Vector a
as
  {-# INLINE foldr #-}
  foldl :: (b -> a -> b) -> b -> V n a -> b
foldl b -> a -> b
f b
z (V Vector a
as) = (b -> a -> b) -> b -> Vector a -> b
forall a b. (a -> b -> a) -> a -> Vector b -> a
V.foldl b -> a -> b
f b
z Vector a
as
  {-# INLINE foldl #-}
  foldr' :: (a -> b -> b) -> b -> V n a -> b
foldr' a -> b -> b
f b
z (V Vector a
as) = (a -> b -> b) -> b -> Vector a -> b
forall a b. (a -> b -> b) -> b -> Vector a -> b
V.foldr' a -> b -> b
f b
z Vector a
as
  {-# INLINE foldr' #-}
  foldl' :: (b -> a -> b) -> b -> V n a -> b
foldl' b -> a -> b
f b
z (V Vector a
as) = (b -> a -> b) -> b -> Vector a -> b
forall a b. (a -> b -> a) -> a -> Vector b -> a
V.foldl' b -> a -> b
f b
z Vector a
as
  {-# INLINE foldl' #-}
  foldr1 :: (a -> a -> a) -> V n a -> a
foldr1 a -> a -> a
f (V Vector a
as) = (a -> a -> a) -> Vector a -> a
forall a. (a -> a -> a) -> Vector a -> a
V.foldr1 a -> a -> a
f Vector a
as
  {-# INLINE foldr1 #-}
  foldl1 :: (a -> a -> a) -> V n a -> a
foldl1 a -> a -> a
f (V Vector a
as) = (a -> a -> a) -> Vector a -> a
forall a. (a -> a -> a) -> Vector a -> a
V.foldl1 a -> a -> a
f Vector a
as
  {-# INLINE foldl1 #-}
  length :: V n a -> Int
length (V Vector a
as) = Vector a -> Int
forall a. Vector a -> Int
V.length Vector a
as
  {-# INLINE length #-}
  null :: V n a -> Bool
null (V Vector a
as) = Vector a -> Bool
forall a. Vector a -> Bool
V.null Vector a
as
  {-# INLINE null #-}
  toList :: V n a -> [a]
toList (V Vector a
as) = Vector a -> [a]
forall a. Vector a -> [a]
V.toList Vector a
as
  {-# INLINE toList #-}
  elem :: a -> V n a -> Bool
elem a
a (V Vector a
as) = a -> Vector a -> Bool
forall a. Eq a => a -> Vector a -> Bool
V.elem a
a Vector a
as
  {-# INLINE elem #-}
  maximum :: V n a -> a
maximum (V Vector a
as) = Vector a -> a
forall a. Ord a => Vector a -> a
V.maximum Vector a
as
  {-# INLINE maximum #-}
  minimum :: V n a -> a
minimum (V Vector a
as) = Vector a -> a
forall a. Ord a => Vector a -> a
V.minimum Vector a
as
  {-# INLINE minimum #-}
  sum :: V n a -> a
sum (V Vector a
as) = Vector a -> a
forall a. Num a => Vector a -> a
V.sum Vector a
as
  {-# INLINE sum #-}
  product :: V n a -> a
product (V Vector a
as) = Vector a -> a
forall a. Num a => Vector a -> a
V.product Vector a
as
  {-# INLINE product #-}

instance WithIndex.FoldableWithIndex Int (V n) where
  ifoldMap :: (Int -> a -> m) -> V n a -> m
ifoldMap Int -> a -> m
f (V Vector a
as) = (Int -> a -> m) -> Vector a -> m
forall i (f :: * -> *) m a.
(FoldableWithIndex i f, Monoid m) =>
(i -> a -> m) -> f a -> m
ifoldMap Int -> a -> m
f Vector a
as
  {-# INLINE ifoldMap #-}

instance Traversable (V n) where
  traverse :: (a -> f b) -> V n a -> f (V n b)
traverse a -> f b
f (V Vector a
as) = Vector b -> V n b
forall k (n :: k) a. Vector a -> V n a
V (Vector b -> V n b) -> f (Vector b) -> f (V n b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (a -> f b) -> Vector a -> f (Vector b)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse a -> f b
f Vector a
as
  {-# INLINE traverse #-}

instance WithIndex.TraversableWithIndex Int (V n) where
  itraverse :: (Int -> a -> f b) -> V n a -> f (V n b)
itraverse Int -> a -> f b
f (V Vector a
as) = Vector b -> V n b
forall k (n :: k) a. Vector a -> V n a
V (Vector b -> V n b) -> f (Vector b) -> f (V n b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Int -> a -> f b) -> Vector a -> f (Vector b)
forall i (t :: * -> *) (f :: * -> *) a b.
(TraversableWithIndex i t, Applicative f) =>
(i -> a -> f b) -> t a -> f (t b)
itraverse Int -> a -> f b
f Vector a
as
  {-# INLINE itraverse #-}

#if !MIN_VERSION_lens(5,0,0)
instance Lens.FunctorWithIndex     Int (V n) where imap      = WithIndex.imap
instance Lens.FoldableWithIndex    Int (V n) where ifoldMap  = WithIndex.ifoldMap
instance Lens.TraversableWithIndex Int (V n) where itraverse = WithIndex.itraverse
#endif

instance Apply (V n) where
  V Vector (a -> b)
as <.> :: V n (a -> b) -> V n a -> V n b
<.> V Vector a
bs = Vector b -> V n b
forall k (n :: k) a. Vector a -> V n a
V (((a -> b) -> a -> b) -> Vector (a -> b) -> Vector a -> Vector b
forall a b c. (a -> b -> c) -> Vector a -> Vector b -> Vector c
V.zipWith (a -> b) -> a -> b
forall a. a -> a
id Vector (a -> b)
as Vector a
bs)
  {-# INLINE (<.>) #-}

instance Dim n => Applicative (V n) where
  pure :: a -> V n a
pure = Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V (Vector a -> V n a) -> (a -> Vector a) -> a -> V n a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> a -> Vector a
forall a. Int -> a -> Vector a
V.replicate (Proxy n -> Int
forall k (n :: k) (p :: k -> *). Dim n => p n -> Int
reflectDim (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n))
  {-# INLINE pure #-}

  V Vector (a -> b)
as <*> :: V n (a -> b) -> V n a -> V n b
<*> V Vector a
bs = Vector b -> V n b
forall k (n :: k) a. Vector a -> V n a
V (((a -> b) -> a -> b) -> Vector (a -> b) -> Vector a -> Vector b
forall a b c. (a -> b -> c) -> Vector a -> Vector b -> Vector c
V.zipWith (a -> b) -> a -> b
forall a. a -> a
id Vector (a -> b)
as Vector a
bs)
  {-# INLINE (<*>) #-}

instance Bind (V n) where
  V Vector a
as >>- :: V n a -> (a -> V n b) -> V n b
>>- a -> V n b
f = Vector b -> V n b
forall k (n :: k) a. Vector a -> V n a
V (Vector b -> V n b) -> Vector b -> V n b
forall a b. (a -> b) -> a -> b
$ Int -> (Int -> b) -> Vector b
forall a. Int -> (Int -> a) -> Vector a
V.generate (Vector a -> Int
forall a. Vector a -> Int
V.length Vector a
as) ((Int -> b) -> Vector b) -> (Int -> b) -> Vector b
forall a b. (a -> b) -> a -> b
$ \Int
i ->
    V n b -> Vector b
forall k (n :: k) a. V n a -> Vector a
toVector (a -> V n b
f (Vector a
as Vector a -> Int -> a
forall a. Vector a -> Int -> a
`V.unsafeIndex` Int
i)) Vector b -> Int -> b
forall a. Vector a -> Int -> a
`V.unsafeIndex` Int
i
  {-# INLINE (>>-) #-}

instance Dim n => Monad (V n) where
#if !(MIN_VERSION_base(4,11,0))
  return = V . V.replicate (reflectDim (Proxy :: Proxy n))
  {-# INLINE return #-}
#endif
  V Vector a
as >>= :: V n a -> (a -> V n b) -> V n b
>>= a -> V n b
f = Vector b -> V n b
forall k (n :: k) a. Vector a -> V n a
V (Vector b -> V n b) -> Vector b -> V n b
forall a b. (a -> b) -> a -> b
$ Int -> (Int -> b) -> Vector b
forall a. Int -> (Int -> a) -> Vector a
V.generate (Proxy n -> Int
forall k (n :: k) (p :: k -> *). Dim n => p n -> Int
reflectDim (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n)) ((Int -> b) -> Vector b) -> (Int -> b) -> Vector b
forall a b. (a -> b) -> a -> b
$ \Int
i ->
    V n b -> Vector b
forall k (n :: k) a. V n a -> Vector a
toVector (a -> V n b
f (Vector a
as Vector a -> Int -> a
forall a. Vector a -> Int -> a
`V.unsafeIndex` Int
i)) Vector b -> Int -> b
forall a. Vector a -> Int -> a
`V.unsafeIndex` Int
i
  {-# INLINE (>>=) #-}

instance Dim n => Additive (V n) where
  zero :: V n a
zero = a -> V n a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
0
  {-# INLINE zero #-}
  liftU2 :: (a -> a -> a) -> V n a -> V n a -> V n a
liftU2 a -> a -> a
f (V Vector a
as) (V Vector a
bs) = Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V ((a -> a -> a) -> Vector a -> Vector a -> Vector a
forall a b c. (a -> b -> c) -> Vector a -> Vector b -> Vector c
V.zipWith a -> a -> a
f Vector a
as Vector a
bs)
  {-# INLINE liftU2 #-}
  liftI2 :: (a -> b -> c) -> V n a -> V n b -> V n c
liftI2 a -> b -> c
f (V Vector a
as) (V Vector b
bs) = Vector c -> V n c
forall k (n :: k) a. Vector a -> V n a
V ((a -> b -> c) -> Vector a -> Vector b -> Vector c
forall a b c. (a -> b -> c) -> Vector a -> Vector b -> Vector c
V.zipWith a -> b -> c
f Vector a
as Vector b
bs)
  {-# INLINE liftI2 #-}

instance (Dim n, Num a) => Num (V n a) where
  V Vector a
as + :: V n a -> V n a -> V n a
+ V Vector a
bs = Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V (Vector a -> V n a) -> Vector a -> V n a
forall a b. (a -> b) -> a -> b
$ (a -> a -> a) -> Vector a -> Vector a -> Vector a
forall a b c. (a -> b -> c) -> Vector a -> Vector b -> Vector c
V.zipWith a -> a -> a
forall a. Num a => a -> a -> a
(+) Vector a
as Vector a
bs
  {-# INLINE (+) #-}
  V Vector a
as - :: V n a -> V n a -> V n a
- V Vector a
bs = Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V (Vector a -> V n a) -> Vector a -> V n a
forall a b. (a -> b) -> a -> b
$ (a -> a -> a) -> Vector a -> Vector a -> Vector a
forall a b c. (a -> b -> c) -> Vector a -> Vector b -> Vector c
V.zipWith (-) Vector a
as Vector a
bs
  {-# INLINE (-) #-}
  V Vector a
as * :: V n a -> V n a -> V n a
* V Vector a
bs = Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V (Vector a -> V n a) -> Vector a -> V n a
forall a b. (a -> b) -> a -> b
$ (a -> a -> a) -> Vector a -> Vector a -> Vector a
forall a b c. (a -> b -> c) -> Vector a -> Vector b -> Vector c
V.zipWith a -> a -> a
forall a. Num a => a -> a -> a
(*) Vector a
as Vector a
bs
  {-# INLINE (*) #-}
  negate :: V n a -> V n a
negate = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Num a => a -> a
negate
  {-# INLINE negate #-}
  abs :: V n a -> V n a
abs = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Num a => a -> a
abs
  {-# INLINE abs #-}
  signum :: V n a -> V n a
signum = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Num a => a -> a
signum
  {-# INLINE signum #-}
  fromInteger :: Integer -> V n a
fromInteger = a -> V n a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (a -> V n a) -> (Integer -> a) -> Integer -> V n a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> a
forall a. Num a => Integer -> a
fromInteger
  {-# INLINE fromInteger #-}

instance (Dim n, Fractional a) => Fractional (V n a) where
  recip :: V n a -> V n a
recip = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Fractional a => a -> a
recip
  {-# INLINE recip #-}
  V Vector a
as / :: V n a -> V n a -> V n a
/ V Vector a
bs = Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V (Vector a -> V n a) -> Vector a -> V n a
forall a b. (a -> b) -> a -> b
$ (a -> a -> a) -> Vector a -> Vector a -> Vector a
forall a b c. (a -> b -> c) -> Vector a -> Vector b -> Vector c
V.zipWith a -> a -> a
forall a. Fractional a => a -> a -> a
(/) Vector a
as Vector a
bs
  {-# INLINE (/) #-}
  fromRational :: Rational -> V n a
fromRational = a -> V n a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (a -> V n a) -> (Rational -> a) -> Rational -> V n a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Rational -> a
forall a. Fractional a => Rational -> a
fromRational
  {-# INLINE fromRational #-}

instance (Dim n, Floating a) => Floating (V n a) where
    pi :: V n a
pi = a -> V n a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
forall a. Floating a => a
pi
    {-# INLINE pi #-}
    exp :: V n a -> V n a
exp = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Floating a => a -> a
exp
    {-# INLINE exp #-}
    sqrt :: V n a -> V n a
sqrt = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Floating a => a -> a
sqrt
    {-# INLINE sqrt #-}
    log :: V n a -> V n a
log = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Floating a => a -> a
log
    {-# INLINE log #-}
    V Vector a
as ** :: V n a -> V n a -> V n a
** V Vector a
bs = Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V (Vector a -> V n a) -> Vector a -> V n a
forall a b. (a -> b) -> a -> b
$ (a -> a -> a) -> Vector a -> Vector a -> Vector a
forall a b c. (a -> b -> c) -> Vector a -> Vector b -> Vector c
V.zipWith a -> a -> a
forall a. Floating a => a -> a -> a
(**) Vector a
as Vector a
bs
    {-# INLINE (**) #-}
    logBase :: V n a -> V n a -> V n a
logBase (V Vector a
as) (V Vector a
bs) = Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V (Vector a -> V n a) -> Vector a -> V n a
forall a b. (a -> b) -> a -> b
$ (a -> a -> a) -> Vector a -> Vector a -> Vector a
forall a b c. (a -> b -> c) -> Vector a -> Vector b -> Vector c
V.zipWith a -> a -> a
forall a. Floating a => a -> a -> a
logBase Vector a
as Vector a
bs
    {-# INLINE logBase #-}
    sin :: V n a -> V n a
sin = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Floating a => a -> a
sin
    {-# INLINE sin #-}
    tan :: V n a -> V n a
tan = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Floating a => a -> a
tan
    {-# INLINE tan #-}
    cos :: V n a -> V n a
cos = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Floating a => a -> a
cos
    {-# INLINE cos #-}
    asin :: V n a -> V n a
asin = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Floating a => a -> a
asin
    {-# INLINE asin #-}
    atan :: V n a -> V n a
atan = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Floating a => a -> a
atan
    {-# INLINE atan #-}
    acos :: V n a -> V n a
acos = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Floating a => a -> a
acos
    {-# INLINE acos #-}
    sinh :: V n a -> V n a
sinh = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Floating a => a -> a
sinh
    {-# INLINE sinh #-}
    tanh :: V n a -> V n a
tanh = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Floating a => a -> a
tanh
    {-# INLINE tanh #-}
    cosh :: V n a -> V n a
cosh = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Floating a => a -> a
cosh
    {-# INLINE cosh #-}
    asinh :: V n a -> V n a
asinh = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Floating a => a -> a
asinh
    {-# INLINE asinh #-}
    atanh :: V n a -> V n a
atanh = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Floating a => a -> a
atanh
    {-# INLINE atanh #-}
    acosh :: V n a -> V n a
acosh = (a -> a) -> V n a -> V n a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> a
forall a. Floating a => a -> a
acosh
    {-# INLINE acosh #-}

instance Dim n => Distributive (V n) where
  distribute :: f (V n a) -> V n (f a)
distribute f (V n a)
f = Vector (f a) -> V n (f a)
forall k (n :: k) a. Vector a -> V n a
V (Vector (f a) -> V n (f a)) -> Vector (f a) -> V n (f a)
forall a b. (a -> b) -> a -> b
$ Int -> (Int -> f a) -> Vector (f a)
forall a. Int -> (Int -> a) -> Vector a
V.generate (Proxy n -> Int
forall k (n :: k) (p :: k -> *). Dim n => p n -> Int
reflectDim (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n)) ((Int -> f a) -> Vector (f a)) -> (Int -> f a) -> Vector (f a)
forall a b. (a -> b) -> a -> b
$ \Int
i -> (V n a -> a) -> f (V n a) -> f a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\(V Vector a
v) -> Vector a -> Int -> a
forall a. Vector a -> Int -> a
V.unsafeIndex Vector a
v Int
i) f (V n a)
f
  {-# INLINE distribute #-}

instance Hashable a => Hashable (V n a) where
  hashWithSalt :: Int -> V n a -> Int
hashWithSalt Int
s0 (V Vector a
v) =
    (Int -> a -> Int) -> Int -> Vector a -> Int
forall a b. (a -> b -> a) -> a -> Vector b -> a
V.foldl' (\Int
s a
a -> Int
s Int -> a -> Int
forall a. Hashable a => Int -> a -> Int
`hashWithSalt` a
a) Int
s0 Vector a
v
      Int -> Int -> Int
forall a. Hashable a => Int -> a -> Int
`hashWithSalt` Vector a -> Int
forall a. Vector a -> Int
V.length Vector a
v

instance Dim n => Hashable1 (V n) where
  liftHashWithSalt :: (Int -> a -> Int) -> Int -> V n a -> Int
liftHashWithSalt Int -> a -> Int
h Int
s0 (V Vector a
v) =
    (Int -> a -> Int) -> Int -> Vector a -> Int
forall a b. (a -> b -> a) -> a -> Vector b -> a
V.foldl' (\Int
s a
a -> Int -> a -> Int
h Int
s a
a) Int
s0 Vector a
v
      Int -> Int -> Int
forall a. Hashable a => Int -> a -> Int
`hashWithSalt` Vector a -> Int
forall a. Vector a -> Int
V.length Vector a
v
  {-# INLINE liftHashWithSalt #-}

instance (Dim n, Storable a) => Storable (V n a) where
  sizeOf :: V n a -> Int
sizeOf V n a
_ = Proxy n -> Int
forall k (n :: k) (p :: k -> *). Dim n => p n -> Int
reflectDim (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n) Int -> Int -> Int
forall a. Num a => a -> a -> a
* a -> Int
forall a. Storable a => a -> Int
sizeOf (a
forall a. HasCallStack => a
undefined:: a)
  {-# INLINE sizeOf #-}
  alignment :: V n a -> Int
alignment V n a
_ = a -> Int
forall a. Storable a => a -> Int
alignment (a
forall a. HasCallStack => a
undefined :: a)
  {-# INLINE alignment #-}
  poke :: Ptr (V n a) -> V n a -> IO ()
poke Ptr (V n a)
ptr (V Vector a
xs) = [Int] -> (Int -> IO ()) -> IO ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
Foldable.forM_ [Int
0..Proxy n -> Int
forall k (n :: k) (p :: k -> *). Dim n => p n -> Int
reflectDim (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n)Int -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1] ((Int -> IO ()) -> IO ()) -> (Int -> IO ()) -> IO ()
forall a b. (a -> b) -> a -> b
$ \Int
i ->
    Ptr a -> Int -> a -> IO ()
forall a. Storable a => Ptr a -> Int -> a -> IO ()
pokeElemOff Ptr a
ptr' Int
i (Vector a -> Int -> a
forall a. Vector a -> Int -> a
V.unsafeIndex Vector a
xs Int
i)
    where ptr' :: Ptr a
ptr' = Ptr (V n a) -> Ptr a
forall a b. Ptr a -> Ptr b
castPtr Ptr (V n a)
ptr
  {-# INLINE poke #-}
  peek :: Ptr (V n a) -> IO (V n a)
peek Ptr (V n a)
ptr = Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V (Vector a -> V n a) -> IO (Vector a) -> IO (V n a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> (Int -> IO a) -> IO (Vector a)
forall (m :: * -> *) a.
Monad m =>
Int -> (Int -> m a) -> m (Vector a)
V.generateM (Proxy n -> Int
forall k (n :: k) (p :: k -> *). Dim n => p n -> Int
reflectDim (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n)) (Ptr a -> Int -> IO a
forall a. Storable a => Ptr a -> Int -> IO a
peekElemOff Ptr a
ptr')
    where ptr' :: Ptr a
ptr' = Ptr (V n a) -> Ptr a
forall a b. Ptr a -> Ptr b
castPtr Ptr (V n a)
ptr
  {-# INLINE peek #-}

instance (Dim n, Epsilon a) => Epsilon (V n a) where
  nearZero :: V n a -> Bool
nearZero = a -> Bool
forall a. Epsilon a => a -> Bool
nearZero (a -> Bool) -> (V n a -> a) -> V n a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. V n a -> a
forall (f :: * -> *) a. (Metric f, Num a) => f a -> a
quadrance
  {-# INLINE nearZero #-}

instance Dim n => Metric (V n) where
  dot :: V n a -> V n a -> a
dot (V Vector a
a) (V Vector a
b) = Vector a -> a
forall a. Num a => Vector a -> a
V.sum (Vector a -> a) -> Vector a -> a
forall a b. (a -> b) -> a -> b
$ (a -> a -> a) -> Vector a -> Vector a -> Vector a
forall a b c. (a -> b -> c) -> Vector a -> Vector b -> Vector c
V.zipWith a -> a -> a
forall a. Num a => a -> a -> a
(*) Vector a
a Vector a
b
  {-# INLINE dot #-}

-- TODO: instance (Dim n, Ix a) => Ix (V n a)

fromVector :: forall n a. Dim n => Vector a -> Maybe (V n a)
fromVector :: Vector a -> Maybe (V n a)
fromVector Vector a
v
  | Vector a -> Int
forall a. Vector a -> Int
V.length Vector a
v Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Proxy n -> Int
forall k (n :: k) (p :: k -> *). Dim n => p n -> Int
reflectDim (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n) = V n a -> Maybe (V n a)
forall a. a -> Maybe a
Just (Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V Vector a
v)
  | Bool
otherwise                                   = Maybe (V n a)
forall a. Maybe a
Nothing

#if !(MIN_VERSION_reflection(1,3,0)) && defined(MIN_VERSION_template_haskell)
data Z  -- 0
data D  (n :: *) -- 2n
data SD (n :: *) -- 2n+1
data PD (n :: *) -- 2n-1

instance Reifies Z Int where
  reflect _ = 0
  {-# INLINE reflect #-}

retagD :: (Proxy n -> a) -> proxy (D n) -> a
retagD f _ = f Proxy
{-# INLINE retagD #-}

retagSD :: (Proxy n -> a) -> proxy (SD n) -> a
retagSD f _ = f Proxy
{-# INLINE retagSD #-}

retagPD :: (Proxy n -> a) -> proxy (PD n) -> a
retagPD f _ = f Proxy
{-# INLINE retagPD #-}

instance Reifies n Int => Reifies (D n) Int where
  reflect = (\n -> n+n) <$> retagD reflect
  {-# INLINE reflect #-}

instance Reifies n Int => Reifies (SD n) Int where
  reflect = (\n -> n+n+1) <$> retagSD reflect
  {-# INLINE reflect #-}

instance Reifies n Int => Reifies (PD n) Int where
  reflect = (\n -> n+n-1) <$> retagPD reflect
  {-# INLINE reflect #-}

-- | This can be used to generate a template haskell splice for a type level version of a given 'int'.
--
-- This does not use GHC TypeLits, instead it generates a numeric type by hand similar to the ones used
-- in the \"Functional Pearl: Implicit Dimurations\" paper by Oleg Kiselyov and Chung-Chieh Shan.
int :: Int -> TypeQ
int n = case quotRem n 2 of
  (0, 0) -> conT ''Z
  (q,-1) -> conT ''PD `appT` int q
  (q, 0) -> conT ''D  `appT` int q
  (q, 1) -> conT ''SD `appT` int q
  _     -> error "ghc is bad at math"
#endif

instance Dim n => Representable (V n) where
  type Rep (V n) = Int
  tabulate :: (Rep (V n) -> a) -> V n a
tabulate = Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V (Vector a -> V n a)
-> ((Int -> a) -> Vector a) -> (Int -> a) -> V n a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> (Int -> a) -> Vector a
forall a. Int -> (Int -> a) -> Vector a
V.generate (Proxy n -> Int
forall k (n :: k) (p :: k -> *). Dim n => p n -> Int
reflectDim (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n))
  {-# INLINE tabulate #-}
  index :: V n a -> Rep (V n) -> a
index (V Vector a
xs) Rep (V n)
i = Vector a
xs Vector a -> Int -> a
forall a. Vector a -> Int -> a
V.! Int
Rep (V n)
i
  {-# INLINE index #-}

type instance Index (V n a) = Int
type instance IxValue (V n a) = a

instance Ixed (V n a) where
  ix :: Index (V n a) -> Traversal' (V n a) (IxValue (V n a))
ix Index (V n a)
i IxValue (V n a) -> f (IxValue (V n a))
f v :: V n a
v@(V Vector a
as)
     | Int
Index (V n a)
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 Bool -> Bool -> Bool
|| Int
Index (V n a)
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Vector a -> Int
forall a. Vector a -> Int
V.length Vector a
as = V n a -> f (V n a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure V n a
v
     | Bool
otherwise = Int -> (a -> f a) -> V n a -> f (V n a)
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens Int
Index (V n a)
i a -> f a
IxValue (V n a) -> f (IxValue (V n a))
f V n a
v
  {-# INLINE ix #-}

instance Dim n => MonadZip (V n) where
  mzip :: V n a -> V n b -> V n (a, b)
mzip (V Vector a
as) (V Vector b
bs) = Vector (a, b) -> V n (a, b)
forall k (n :: k) a. Vector a -> V n a
V (Vector (a, b) -> V n (a, b)) -> Vector (a, b) -> V n (a, b)
forall a b. (a -> b) -> a -> b
$ Vector a -> Vector b -> Vector (a, b)
forall a b. Vector a -> Vector b -> Vector (a, b)
V.zip Vector a
as Vector b
bs
  mzipWith :: (a -> b -> c) -> V n a -> V n b -> V n c
mzipWith a -> b -> c
f (V Vector a
as) (V Vector b
bs) = Vector c -> V n c
forall k (n :: k) a. Vector a -> V n a
V (Vector c -> V n c) -> Vector c -> V n c
forall a b. (a -> b) -> a -> b
$ (a -> b -> c) -> Vector a -> Vector b -> Vector c
forall a b c. (a -> b -> c) -> Vector a -> Vector b -> Vector c
V.zipWith a -> b -> c
f Vector a
as Vector b
bs

instance Dim n => MonadFix (V n) where
  mfix :: (a -> V n a) -> V n a
mfix a -> V n a
f = (Rep (V n) -> a) -> V n a
forall (f :: * -> *) a. Representable f => (Rep f -> a) -> f a
tabulate ((Rep (V n) -> a) -> V n a) -> (Rep (V n) -> a) -> V n a
forall a b. (a -> b) -> a -> b
$ \Rep (V n)
r -> let a :: a
a = V n a -> Rep (V n) -> a
forall (f :: * -> *) a. Representable f => f a -> Rep f -> a
Rep.index (a -> V n a
f a
a) Rep (V n)
r in a
a

instance Each (V n a) (V n b) a b where
  each :: (a -> f b) -> V n a -> f (V n b)
each = (a -> f b) -> V n a -> f (V n b)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse
  {-# INLINE each #-}

instance (Bounded a, Dim n) => Bounded (V n a) where
  minBound :: V n a
minBound = a -> V n a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
forall a. Bounded a => a
minBound
  {-# INLINE minBound #-}
  maxBound :: V n a
maxBound = a -> V n a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
forall a. Bounded a => a
maxBound
  {-# INLINE maxBound #-}

vConstr :: Constr
vConstr :: Constr
vConstr = DataType -> String -> [String] -> Fixity -> Constr
mkConstr DataType
vDataType String
"variadic" [] Fixity
Prefix
{-# NOINLINE vConstr #-}

vDataType :: DataType
vDataType :: DataType
vDataType = String -> [Constr] -> DataType
mkDataType String
"Linear.V.V" [Constr
vConstr]
{-# NOINLINE vDataType #-}

instance (Typeable (V n), Typeable (V n a), Dim n, Data a) => Data (V n a) where
  gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> V n a -> c (V n a)
gfoldl forall d b. Data d => c (d -> b) -> d -> c b
f forall g. g -> c g
z (V Vector a
as) = ([a] -> V n a) -> c ([a] -> V n a)
forall g. g -> c g
z (Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V (Vector a -> V n a) -> ([a] -> Vector a) -> [a] -> V n a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> Vector a
forall a. [a] -> Vector a
V.fromList) c ([a] -> V n a) -> [a] -> c (V n a)
forall d b. Data d => c (d -> b) -> d -> c b
`f` Vector a -> [a]
forall a. Vector a -> [a]
V.toList Vector a
as
  toConstr :: V n a -> Constr
toConstr V n a
_ = Constr
vConstr
  gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (V n a)
gunfold forall b r. Data b => c (b -> r) -> c r
k forall r. r -> c r
z Constr
c = case Constr -> Int
constrIndex Constr
c of
    Int
1 -> c ([a] -> V n a) -> c (V n a)
forall b r. Data b => c (b -> r) -> c r
k (([a] -> V n a) -> c ([a] -> V n a)
forall r. r -> c r
z (Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V (Vector a -> V n a) -> ([a] -> Vector a) -> [a] -> V n a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> Vector a
forall a. [a] -> Vector a
V.fromList))
    Int
_ -> String -> c (V n a)
forall a. HasCallStack => String -> a
error String
"gunfold"
  dataTypeOf :: V n a -> DataType
dataTypeOf V n a
_ = DataType
vDataType
  dataCast1 :: (forall d. Data d => c (t d)) -> Maybe (c (V n a))
dataCast1 forall d. Data d => c (t d)
f = c (t a) -> Maybe (c (V n a))
forall k1 k2 (c :: k1 -> *) (t :: k2 -> k1) (t' :: k2 -> k1)
       (a :: k2).
(Typeable t, Typeable t') =>
c (t a) -> Maybe (c (t' a))
gcast1 c (t a)
forall d. Data d => c (t d)
f

instance Dim n => Serial1 (V n) where
  serializeWith :: (a -> m ()) -> V n a -> m ()
serializeWith = (a -> m ()) -> V n a -> m ()
forall (t :: * -> *) (f :: * -> *) a b.
(Foldable t, Applicative f) =>
(a -> f b) -> t a -> f ()
traverse_
  deserializeWith :: m a -> m (V n a)
deserializeWith m a
f = V n (m a) -> m (V n a)
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
sequenceA (V n (m a) -> m (V n a)) -> V n (m a) -> m (V n a)
forall a b. (a -> b) -> a -> b
$ m a -> V n (m a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure m a
f

instance (Dim n, Serial a) => Serial (V n a) where
  serialize :: V n a -> m ()
serialize = (a -> m ()) -> V n a -> m ()
forall (t :: * -> *) (f :: * -> *) a b.
(Foldable t, Applicative f) =>
(a -> f b) -> t a -> f ()
traverse_ a -> m ()
forall a (m :: * -> *). (Serial a, MonadPut m) => a -> m ()
serialize
  deserialize :: m (V n a)
deserialize = V n (m a) -> m (V n a)
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
sequenceA (V n (m a) -> m (V n a)) -> V n (m a) -> m (V n a)
forall a b. (a -> b) -> a -> b
$ m a -> V n (m a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure m a
forall a (m :: * -> *). (Serial a, MonadGet m) => m a
deserialize

instance (Dim n, Binary a) => Binary (V n a) where
  put :: V n a -> Put
put = (a -> Put) -> V n a -> Put
forall (f :: * -> *) (m :: * -> *) a.
(Serial1 f, MonadPut m) =>
(a -> m ()) -> f a -> m ()
serializeWith a -> Put
forall t. Binary t => t -> Put
Binary.put
  get :: Get (V n a)
get = Get a -> Get (V n a)
forall (f :: * -> *) (m :: * -> *) a.
(Serial1 f, MonadGet m) =>
m a -> m (f a)
deserializeWith Get a
forall t. Binary t => Get t
Binary.get

instance (Dim n, Serialize a) => Serialize (V n a) where
  put :: Putter (V n a)
put = (a -> PutM ()) -> Putter (V n a)
forall (f :: * -> *) (m :: * -> *) a.
(Serial1 f, MonadPut m) =>
(a -> m ()) -> f a -> m ()
serializeWith a -> PutM ()
forall t. Serialize t => Putter t
Cereal.put
  get :: Get (V n a)
get = Get a -> Get (V n a)
forall (f :: * -> *) (m :: * -> *) a.
(Serial1 f, MonadGet m) =>
m a -> m (f a)
deserializeWith Get a
forall t. Serialize t => Get t
Cereal.get

instance Eq1 (V n) where
  liftEq :: (a -> b -> Bool) -> V n a -> V n b -> Bool
liftEq a -> b -> Bool
f0 (V Vector a
as0) (V Vector b
bs0) = (a -> b -> Bool) -> [a] -> [b] -> Bool
forall t t. (t -> t -> Bool) -> [t] -> [t] -> Bool
go a -> b -> Bool
f0 (Vector a -> [a]
forall a. Vector a -> [a]
V.toList Vector a
as0) (Vector b -> [b]
forall a. Vector a -> [a]
V.toList Vector b
bs0) where
    go :: (t -> t -> Bool) -> [t] -> [t] -> Bool
go t -> t -> Bool
_ [] [] = Bool
True
    go t -> t -> Bool
f (t
a:[t]
as) (t
b:[t]
bs) = t -> t -> Bool
f t
a t
b Bool -> Bool -> Bool
&& (t -> t -> Bool) -> [t] -> [t] -> Bool
go t -> t -> Bool
f [t]
as [t]
bs
    go t -> t -> Bool
_ [t]
_ [t]
_ = Bool
False

instance Ord1 (V n) where
  liftCompare :: (a -> b -> Ordering) -> V n a -> V n b -> Ordering
liftCompare a -> b -> Ordering
f0 (V Vector a
as0) (V Vector b
bs0) = (a -> b -> Ordering) -> [a] -> [b] -> Ordering
forall t t. (t -> t -> Ordering) -> [t] -> [t] -> Ordering
go a -> b -> Ordering
f0 (Vector a -> [a]
forall a. Vector a -> [a]
V.toList Vector a
as0) (Vector b -> [b]
forall a. Vector a -> [a]
V.toList Vector b
bs0) where
    go :: (t -> t -> Ordering) -> [t] -> [t] -> Ordering
go t -> t -> Ordering
f (t
a:[t]
as) (t
b:[t]
bs) = t -> t -> Ordering
f t
a t
b Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend` (t -> t -> Ordering) -> [t] -> [t] -> Ordering
go t -> t -> Ordering
f [t]
as [t]
bs
    go t -> t -> Ordering
_ [] [] = Ordering
EQ
    go t -> t -> Ordering
_ [t]
_  [] = Ordering
GT
    go t -> t -> Ordering
_ [] [t]
_  = Ordering
LT

instance Show1 (V n) where
  liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> V n a -> ShowS
liftShowsPrec Int -> a -> ShowS
_ [a] -> ShowS
g Int
d (V Vector a
as) = Bool -> ShowS -> ShowS
showParen (Int
d Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
10) (ShowS -> ShowS) -> ShowS -> ShowS
forall a b. (a -> b) -> a -> b
$ String -> ShowS
showString String
"V " ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> ShowS
g (Vector a -> [a]
forall a. Vector a -> [a]
V.toList Vector a
as)

instance Dim n => Read1 (V n) where
  liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (V n a)
liftReadsPrec Int -> ReadS a
_ ReadS [a]
g Int
d = Bool -> ReadS (V n a) -> ReadS (V n a)
forall a. Bool -> ReadS a -> ReadS a
readParen (Int
d Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
10) (ReadS (V n a) -> ReadS (V n a)) -> ReadS (V n a) -> ReadS (V n a)
forall a b. (a -> b) -> a -> b
$ \String
r ->
    [ (Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V ([a] -> Vector a
forall a. [a] -> Vector a
V.fromList [a]
as), String
r2)
    | (String
"V",String
r1) <- ReadS String
lex String
r
    , ([a]
as, String
r2) <- ReadS [a]
g String
r1
    , [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
P.length [a]
as Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Proxy n -> Int
forall k (n :: k) (p :: k -> *). Dim n => p n -> Int
reflectDim (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n)
    ]

data instance U.Vector    (V n a) =  V_VN {-# UNPACK #-} !Int !(U.Vector    a)
data instance U.MVector s (V n a) = MV_VN {-# UNPACK #-} !Int !(U.MVector s a)
instance (Dim n, U.Unbox a) => U.Unbox (V n a)

instance (Dim n, U.Unbox a) => M.MVector U.MVector (V n a) where
  {-# INLINE basicLength #-}
  {-# INLINE basicUnsafeSlice #-}
  {-# INLINE basicOverlaps #-}
  {-# INLINE basicUnsafeNew #-}
  {-# INLINE basicUnsafeRead #-}
  {-# INLINE basicUnsafeWrite #-}
  basicLength :: MVector s (V n a) -> Int
basicLength (MV_VN n _) = Int
n
  basicUnsafeSlice :: Int -> Int -> MVector s (V n a) -> MVector s (V n a)
basicUnsafeSlice Int
m Int
n (MV_VN _ v) = Int -> MVector s a -> MVector s (V n a)
forall k s (n :: k) a. Int -> MVector s a -> MVector s (V n a)
MV_VN Int
n (Int -> Int -> MVector s a -> MVector s a
forall (v :: * -> * -> *) a s.
MVector v a =>
Int -> Int -> v s a -> v s a
M.basicUnsafeSlice (Int
dInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
m) (Int
dInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
n) MVector s a
v)
    where d :: Int
d = Proxy n -> Int
forall k (n :: k) (p :: k -> *). Dim n => p n -> Int
reflectDim (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n)
  basicOverlaps :: MVector s (V n a) -> MVector s (V n a) -> Bool
basicOverlaps (MV_VN _ v) (MV_VN _ u) = MVector s a -> MVector s a -> Bool
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> v s a -> Bool
M.basicOverlaps MVector s a
v MVector s a
u
  basicUnsafeNew :: Int -> ST s (MVector s (V n a))
basicUnsafeNew Int
n = (MVector s a -> MVector s (V n a))
-> ST s (MVector s a) -> ST s (MVector s (V n a))
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM (Int -> MVector s a -> MVector s (V n a)
forall k s (n :: k) a. Int -> MVector s a -> MVector s (V n a)
MV_VN Int
n) (Int -> ST s (MVector s a)
forall (v :: * -> * -> *) a s. MVector v a => Int -> ST s (v s a)
M.basicUnsafeNew (Int
dInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
n))
    where d :: Int
d = Proxy n -> Int
forall k (n :: k) (p :: k -> *). Dim n => p n -> Int
reflectDim (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n)
  basicUnsafeRead :: MVector s (V n a) -> Int -> ST s (V n a)
basicUnsafeRead (MV_VN _ v) Int
i =
    (Vector a -> V n a) -> ST s (Vector a) -> ST s (V n a)
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V (ST s (Vector a) -> ST s (V n a))
-> ST s (Vector a) -> ST s (V n a)
forall a b. (a -> b) -> a -> b
$ Int -> (Int -> ST s a) -> ST s (Vector a)
forall (m :: * -> *) a.
Monad m =>
Int -> (Int -> m a) -> m (Vector a)
V.generateM Int
d (\Int
j -> MVector s a -> Int -> ST s a
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> Int -> ST s a
M.basicUnsafeRead MVector s a
v (Int
dInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
j))
    where d :: Int
d = Proxy n -> Int
forall k (n :: k) (p :: k -> *). Dim n => p n -> Int
reflectDim (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n)
  basicUnsafeWrite :: MVector s (V n a) -> Int -> V n a -> ST s ()
basicUnsafeWrite (MV_VN _ v0) Int
i (V Vector a
vn0) = let d0 :: Int
d0 = Vector a -> Int
forall a. Vector a -> Int
V.length Vector a
vn0 in MVector s a -> Vector a -> Int -> Int -> Int -> ST s ()
forall (v :: * -> *) a (v :: * -> * -> *) s.
(Vector v a, MVector v a) =>
v s a -> v a -> Int -> Int -> Int -> ST s ()
go MVector s a
v0 Vector a
vn0 Int
d0 (Int
d0Int -> Int -> Int
forall a. Num a => a -> a -> a
*Int
i) Int
0
   where
    go :: v s a -> v a -> Int -> Int -> Int -> ST s ()
go v s a
v v a
vn Int
d Int
o Int
j
      | Int
j Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
d = () -> ST s ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
      | Bool
otherwise = do
        a
a <- Box a -> ST s a
forall (m :: * -> *) a. Monad m => Box a -> m a
liftBox (Box a -> ST s a) -> Box a -> ST s a
forall a b. (a -> b) -> a -> b
$ v a -> Int -> Box a
forall (v :: * -> *) a. Vector v a => v a -> Int -> Box a
G.basicUnsafeIndexM v a
vn Int
j
        v s a -> Int -> a -> ST s ()
forall (v :: * -> * -> *) a s.
MVector v a =>
v s a -> Int -> a -> ST s ()
M.basicUnsafeWrite v s a
v Int
o a
a
        v s a -> v a -> Int -> Int -> Int -> ST s ()
go v s a
v v a
vn Int
d (Int
oInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (Int
jInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)
  basicInitialize :: MVector s (V n a) -> ST s ()
basicInitialize (MV_VN _ v) = MVector s a -> ST s ()
forall (v :: * -> * -> *) a s. MVector v a => v s a -> ST s ()
M.basicInitialize MVector s a
v
  {-# INLINE basicInitialize #-}

liftBox :: Monad m => Box a -> m a
liftBox :: Box a -> m a
liftBox (Box a
a) = a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return a
a
{-# INLINE liftBox #-}

instance (Dim n, U.Unbox a) => G.Vector U.Vector (V n a) where
  {-# INLINE basicUnsafeFreeze #-}
  {-# INLINE basicUnsafeThaw   #-}
  {-# INLINE basicLength       #-}
  {-# INLINE basicUnsafeSlice  #-}
  {-# INLINE basicUnsafeIndexM #-}
  basicUnsafeFreeze :: Mutable Vector s (V n a) -> ST s (Vector (V n a))
basicUnsafeFreeze (MV_VN n v) = (Vector a -> Vector (V n a))
-> ST s (Vector a) -> ST s (Vector (V n a))
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM ( Int -> Vector a -> Vector (V n a)
forall k (n :: k) a. Int -> Vector a -> Vector (V n a)
V_VN Int
n) (Mutable Vector s a -> ST s (Vector a)
forall (v :: * -> *) a s. Vector v a => Mutable v s a -> ST s (v a)
G.basicUnsafeFreeze MVector s a
Mutable Vector s a
v)
  basicUnsafeThaw :: Vector (V n a) -> ST s (Mutable Vector s (V n a))
basicUnsafeThaw   ( V_VN n v) = (MVector s a -> MVector s (V n a))
-> ST s (MVector s a) -> ST s (MVector s (V n a))
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM (Int -> MVector s a -> MVector s (V n a)
forall k s (n :: k) a. Int -> MVector s a -> MVector s (V n a)
MV_VN Int
n) (Vector a -> ST s (Mutable Vector s a)
forall (v :: * -> *) a s. Vector v a => v a -> ST s (Mutable v s a)
G.basicUnsafeThaw   Vector a
v)
  basicLength :: Vector (V n a) -> Int
basicLength       ( V_VN n _) = Int
n
  basicUnsafeSlice :: Int -> Int -> Vector (V n a) -> Vector (V n a)
basicUnsafeSlice Int
m Int
n (V_VN _ v) = Int -> Vector a -> Vector (V n a)
forall k (n :: k) a. Int -> Vector a -> Vector (V n a)
V_VN Int
n (Int -> Int -> Vector a -> Vector a
forall (v :: * -> *) a. Vector v a => Int -> Int -> v a -> v a
G.basicUnsafeSlice (Int
dInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
m) (Int
dInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
n) Vector a
v)
    where d :: Int
d = Proxy n -> Int
forall k (n :: k) (p :: k -> *). Dim n => p n -> Int
reflectDim (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n)
  basicUnsafeIndexM :: Vector (V n a) -> Int -> Box (V n a)
basicUnsafeIndexM (V_VN _ v) Int
i =
    (Vector a -> V n a) -> Box (Vector a) -> Box (V n a)
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V (Box (Vector a) -> Box (V n a)) -> Box (Vector a) -> Box (V n a)
forall a b. (a -> b) -> a -> b
$ Int -> (Int -> Box a) -> Box (Vector a)
forall (m :: * -> *) a.
Monad m =>
Int -> (Int -> m a) -> m (Vector a)
V.generateM Int
d (\Int
j -> Vector a -> Int -> Box a
forall (v :: * -> *) a. Vector v a => v a -> Int -> Box a
G.basicUnsafeIndexM Vector a
v (Int
dInt -> Int -> Int
forall a. Num a => a -> a -> a
*Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
j))
    where d :: Int
d = Proxy n -> Int
forall k (n :: k) (p :: k -> *). Dim n => p n -> Int
reflectDim (Proxy n
forall k (t :: k). Proxy t
Proxy :: Proxy n)

vLens :: Int -> Lens' (V n a) a
vLens :: Int -> Lens' (V n a) a
vLens Int
i = \a -> f a
f (V Vector a
v) -> a -> f a
f (Vector a
v Vector a -> Int -> a
forall a. Vector a -> Int -> a
V.! Int
i) f a -> (a -> V n a) -> f (V n a)
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a
a -> Vector a -> V n a
forall k (n :: k) a. Vector a -> V n a
V (Vector a
v Vector a -> [(Int, a)] -> Vector a
forall a. Vector a -> [(Int, a)] -> Vector a
V.// [(Int
i, a
a)])
{-# INLINE vLens #-}

instance ( 1 <= n) => Field1  (V n a) (V n a) a a where _1 :: (a -> f a) -> V n a -> f (V n a)
_1  = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens  Int
0
instance ( 2 <= n) => Field2  (V n a) (V n a) a a where _2 :: (a -> f a) -> V n a -> f (V n a)
_2  = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens  Int
1
instance ( 3 <= n) => Field3  (V n a) (V n a) a a where _3 :: (a -> f a) -> V n a -> f (V n a)
_3  = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens  Int
2
instance ( 4 <= n) => Field4  (V n a) (V n a) a a where _4 :: (a -> f a) -> V n a -> f (V n a)
_4  = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens  Int
3
instance ( 5 <= n) => Field5  (V n a) (V n a) a a where _5 :: (a -> f a) -> V n a -> f (V n a)
_5  = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens  Int
4
instance ( 6 <= n) => Field6  (V n a) (V n a) a a where _6 :: (a -> f a) -> V n a -> f (V n a)
_6  = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens  Int
5
instance ( 7 <= n) => Field7  (V n a) (V n a) a a where _7 :: (a -> f a) -> V n a -> f (V n a)
_7  = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens  Int
6
instance ( 8 <= n) => Field8  (V n a) (V n a) a a where _8 :: (a -> f a) -> V n a -> f (V n a)
_8  = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens  Int
7
instance ( 9 <= n) => Field9  (V n a) (V n a) a a where _9 :: (a -> f a) -> V n a -> f (V n a)
_9  = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens  Int
8
instance (10 <= n) => Field10 (V n a) (V n a) a a where _10 :: (a -> f a) -> V n a -> f (V n a)
_10 = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens  Int
9
instance (11 <= n) => Field11 (V n a) (V n a) a a where _11 :: (a -> f a) -> V n a -> f (V n a)
_11 = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens Int
10
instance (12 <= n) => Field12 (V n a) (V n a) a a where _12 :: (a -> f a) -> V n a -> f (V n a)
_12 = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens Int
11
instance (13 <= n) => Field13 (V n a) (V n a) a a where _13 :: (a -> f a) -> V n a -> f (V n a)
_13 = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens Int
12
instance (14 <= n) => Field14 (V n a) (V n a) a a where _14 :: (a -> f a) -> V n a -> f (V n a)
_14 = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens Int
13
instance (15 <= n) => Field15 (V n a) (V n a) a a where _15 :: (a -> f a) -> V n a -> f (V n a)
_15 = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens Int
14
instance (16 <= n) => Field16 (V n a) (V n a) a a where _16 :: (a -> f a) -> V n a -> f (V n a)
_16 = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens Int
15
instance (17 <= n) => Field17 (V n a) (V n a) a a where _17 :: (a -> f a) -> V n a -> f (V n a)
_17 = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens Int
16
instance (18 <= n) => Field18 (V n a) (V n a) a a where _18 :: (a -> f a) -> V n a -> f (V n a)
_18 = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens Int
17
instance (19 <= n) => Field19 (V n a) (V n a) a a where _19 :: (a -> f a) -> V n a -> f (V n a)
_19 = Int -> Lens (V n a) (V n a) a a
forall k (n :: k) a. Int -> Lens' (V n a) a
vLens Int
18