Portability | Rank2Types |
---|---|
Stability | provisional |
Maintainer | Edward Kmett <ekmett@gmail.com> |
Safe Haskell | Trustworthy |
A
is a purely functional reference.
Lens
s t a b
While a Traversal
could be used for
Getting
like a valid Fold
,
it wasn't a valid Getter
as Applicative
wasn't a superclass of
Gettable
.
Functor
, however is the superclass of both.
typeLens
s t a b = forall f.Functor
f => (a -> f b) -> s -> f t
Every Lens
can be used for Getting
like a
Fold
that doesn't use the Applicative
or
Gettable
.
Every Lens
is a valid Traversal
that only uses
the Functor
part of the Applicative
it is supplied.
Every Lens
can be used for Getting
like a valid
Getter
, since Functor
is a superclass of Gettable
.
Since every Lens
can be used for Getting
like a
valid Getter
it follows that it must view exactly one element in the
structure.
The Lens
laws follow from this property and the desire for it to act like
a Traversable
when used as a
Traversal
.
In the examples below, getter
and setter
are supplied as example getters
and setters, and are not actual functions supplied by this package.
- type Lens s t a b = forall f. Functor f => (a -> f b) -> s -> f t
- type Lens' s a = Lens s s a a
- type IndexedLens i s t a b = forall f p. (Indexable i p, Functor f) => p a (f b) -> s -> f t
- type IndexedLens' i s a = IndexedLens i s s a a
- type ALens s t a b = LensLike (Pretext (->) a b) s t a b
- type ALens' s a = ALens s s a a
- type AnIndexedLens i s t a b = Optical (Indexed i) (->) (Pretext (Indexed i) a b) s t a b
- type AnIndexedLens' i s a = AnIndexedLens i s s a a
- lens :: (s -> a) -> (s -> b -> t) -> Lens s t a b
- ilens :: (s -> (i, a)) -> (s -> b -> t) -> IndexedLens i s t a b
- iplens :: (s -> a) -> (s -> b -> t) -> IndexPreservingLens s t a b
- (%%~) :: Optical p q f s t a b -> p a (f b) -> q s (f t)
- (%%=) :: MonadState s m => Over p ((,) r) s s a b -> p a (r, b) -> m r
- (%%@~) :: IndexedLensLike i f s t a b -> (i -> a -> f b) -> s -> f t
- (%%@=) :: MonadState s m => IndexedLensLike i ((,) r) s s a b -> (i -> a -> (r, b)) -> m r
- (<%@~) :: Optical (Indexed i) q ((,) b) s t a b -> (i -> a -> b) -> q s (b, t)
- (<%@=) :: MonadState s m => IndexedLensLike i ((,) b) s s a b -> (i -> a -> b) -> m b
- (<<%@~) :: Optical (Indexed i) q ((,) a) s t a b -> (i -> a -> b) -> q s (a, t)
- (<<%@=) :: MonadState s m => IndexedLensLike i ((,) a) s s a b -> (i -> a -> b) -> m a
- (&) :: a -> (a -> b) -> b
- (<&>) :: Functor f => f a -> (a -> b) -> f b
- (??) :: Functor f => f (a -> b) -> a -> f b
- (&~) :: s -> State s a -> s
- choosing :: Functor f => LensLike f s t a b -> LensLike f s' t' a b -> LensLike f (Either s s') (Either t t') a b
- chosen :: IndexPreservingLens (Either a a) (Either b b) a b
- alongside :: LensLike (AlongsideLeft f b') s t a b -> LensLike (AlongsideRight f t) s' t' a' b' -> LensLike f (s, s') (t, t') (a, a') (b, b')
- inside :: Corepresentable p => ALens s t a b -> Lens (p e s) (p e t) (p e a) (p e b)
- (<%~) :: Profunctor p => Optical p q ((,) b) s t a b -> p a b -> q s (b, t)
- (<+~) :: Num a => Optical (->) q ((,) a) s t a a -> a -> q s (a, t)
- (<-~) :: Num a => Optical (->) q ((,) a) s t a a -> a -> q s (a, t)
- (<*~) :: Num a => Optical (->) q ((,) a) s t a a -> a -> q s (a, t)
- (<//~) :: Fractional a => Optical (->) q ((,) a) s t a a -> a -> q s (a, t)
- (<^~) :: (Num a, Integral e) => Optical (->) q ((,) a) s t a a -> e -> q s (a, t)
- (<^^~) :: (Fractional a, Integral e) => Optical (->) q ((,) a) s t a a -> e -> q s (a, t)
- (<**~) :: Floating a => Optical (->) q ((,) a) s t a a -> a -> q s (a, t)
- (<||~) :: Optical (->) q ((,) Bool) s t Bool Bool -> Bool -> q s (Bool, t)
- (<&&~) :: Optical (->) q ((,) Bool) s t Bool Bool -> Bool -> q s (Bool, t)
- (<<>~) :: Monoid m => Optical (->) q ((,) m) s t m m -> m -> q s (m, t)
- (<<%~) :: Strong p => Optical p q ((,) a) s t a b -> p a b -> q s (a, t)
- (<<.~) :: Optical (->) q ((,) a) s t a b -> b -> q s (a, t)
- (<<+~) :: Num a => Optical' (->) q ((,) a) s a -> a -> q s (a, s)
- (<<-~) :: Num a => Optical' (->) q ((,) a) s a -> a -> q s (a, s)
- (<<*~) :: Num a => Optical' (->) q ((,) a) s a -> a -> q s (a, s)
- (<<//~) :: Fractional a => Optical' (->) q ((,) a) s a -> a -> q s (a, s)
- (<<^~) :: (Num a, Integral e) => Optical' (->) q ((,) a) s a -> e -> q s (a, s)
- (<<^^~) :: (Fractional a, Integral e) => Optical' (->) q ((,) a) s a -> e -> q s (a, s)
- (<<**~) :: Floating a => Optical' (->) q ((,) a) s a -> a -> q s (a, s)
- (<<||~) :: Optical' (->) q ((,) Bool) s Bool -> Bool -> q s (Bool, s)
- (<<&&~) :: Optical' (->) q ((,) Bool) s Bool -> Bool -> q s (Bool, s)
- (<<<>~) :: Monoid r => Optical' (->) q ((,) r) s r -> r -> q s (r, s)
- (<%=) :: (Profunctor p, MonadState s m) => Over p ((,) b) s s a b -> p a b -> m b
- (<+=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<-=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<*=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<//=) :: (MonadState s m, Fractional a) => LensLike' ((,) a) s a -> a -> m a
- (<^=) :: (MonadState s m, Num a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<^^=) :: (MonadState s m, Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<**=) :: (MonadState s m, Floating a) => LensLike' ((,) a) s a -> a -> m a
- (<||=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<&&=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<<>=) :: (MonadState s m, Monoid r) => LensLike' ((,) r) s r -> r -> m r
- (<<%=) :: (Strong p, MonadState s m) => Over p ((,) a) s s a b -> p a b -> m a
- (<<.=) :: MonadState s m => LensLike ((,) a) s s a b -> b -> m a
- (<<+=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<<-=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<<*=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m a
- (<<//=) :: (MonadState s m, Fractional a) => LensLike' ((,) a) s a -> a -> m a
- (<<^=) :: (MonadState s m, Num a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<<^^=) :: (MonadState s m, Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> m a
- (<<**=) :: (MonadState s m, Floating a) => LensLike' ((,) a) s a -> a -> m a
- (<<||=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<<&&=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m Bool
- (<<<>=) :: (MonadState s m, Monoid r) => LensLike' ((,) r) s r -> r -> m r
- (<<~) :: MonadState s m => ALens s s a b -> m b -> m b
- cloneLens :: ALens s t a b -> Lens s t a b
- cloneIndexPreservingLens :: ALens s t a b -> IndexPreservingLens s t a b
- cloneIndexedLens :: AnIndexedLens i s t a b -> IndexedLens i s t a b
- overA :: Arrow ar => LensLike (Context a b) s t a b -> ar a b -> ar s t
- storing :: ALens s t a b -> b -> s -> t
- (^#) :: s -> ALens s t a b -> a
- (#~) :: ALens s t a b -> b -> s -> t
- (#%~) :: ALens s t a b -> (a -> b) -> s -> t
- (#%%~) :: Functor f => ALens s t a b -> (a -> f b) -> s -> f t
- (<#~) :: ALens s t a b -> b -> s -> (b, t)
- (<#%~) :: ALens s t a b -> (a -> b) -> s -> (b, t)
- (#=) :: MonadState s m => ALens s s a b -> b -> m ()
- (#%=) :: MonadState s m => ALens s s a b -> (a -> b) -> m ()
- (#%%=) :: MonadState s m => ALens s s a b -> (a -> (r, b)) -> m r
- (<#=) :: MonadState s m => ALens s s a b -> b -> m b
- (<#%=) :: MonadState s m => ALens s s a b -> (a -> b) -> m b
- devoid :: Over p f Void Void a b
- united :: Lens' a ()
- data Context a b t = Context (b -> t) a
- type Context' a = Context a a
- locus :: IndexedComonadStore p => Lens (p a c s) (p b c s) a b
Lenses
type Lens s t a b = forall f. Functor f => (a -> f b) -> s -> f tSource
A Lens
is actually a lens family as described in
http://comonad.com/reader/2012/mirrored-lenses/.
With great power comes great responsibility and a Lens
is subject to the
three common sense Lens
laws:
1) You get back what you put in:
view
l (set
l v s) ≡ v
2) Putting back what you got doesn't change anything:
set
l (view
l s) s ≡ s
3) Setting twice is the same as setting once:
set
l v' (set
l v s) ≡set
l v' s
These laws are strong enough that the 4 type parameters of a Lens
cannot
vary fully independently. For more on how they interact, read the "Why is
it a Lens Family?" section of
http://comonad.com/reader/2012/mirrored-lenses/.
There are some emergent properties of these laws:
1)
must be injective for every set
l ss
This is a consequence of law #1
2)
must be surjective, because of law #2, which indicates that it is possible to obtain any set
lv
from some s
such that set
s v = s
3) Given just the first two laws you can prove a weaker form of law #3 where the values v
that you are setting match:
set
l v (set
l v s) ≡set
l v s
Every Lens
can be used directly as a Setter
or Traversal
.
You can also use a Lens
for Getting
as if it were a
Fold
or Getter
.
Since every Lens
is a valid Traversal
, the
Traversal
laws are required of any Lens
you create:
lpure
≡pure
fmap
(l f).
l g ≡getCompose
.
l (Compose
.
fmap
f.
g)
typeLens
s t a b = forall f.Functor
f =>LensLike
f s t a b
type IndexedLens i s t a b = forall f p. (Indexable i p, Functor f) => p a (f b) -> s -> f tSource
Every IndexedLens
is a valid Lens
and a valid IndexedTraversal
.
type IndexedLens' i s a = IndexedLens i s s a aSource
typeIndexedLens'
i =Simple
(IndexedLens
i)
Concrete Lenses
type AnIndexedLens i s t a b = Optical (Indexed i) (->) (Pretext (Indexed i) a b) s t a bSource
When you see this as an argument to a function, it expects an IndexedLens
type AnIndexedLens' i s a = AnIndexedLens i s s a aSource
typeAnIndexedLens'
=Simple
(AnIndexedLens
i)
Combinators
ilens :: (s -> (i, a)) -> (s -> b -> t) -> IndexedLens i s t a bSource
Build an IndexedLens
from a Getter
and
a Setter
.
iplens :: (s -> a) -> (s -> b -> t) -> IndexPreservingLens s t a bSource
(%%~) :: Optical p q f s t a b -> p a (f b) -> q s (f t)Source
(%%~
) can be used in one of two scenarios:
When applied to a Lens
, it can edit the target of the Lens
in a
structure, extracting a functorial result.
When applied to a Traversal
, it can edit the
targets of the traversals, extracting an applicative summary of its
actions.
For all that the definition of this combinator is just:
(%%~
) ≡id
It may be beneficial to think about it as if it had these even more restricted types, however:
(%%~
) ::Functor
f =>Iso
s t a b -> (a -> f b) -> s -> f t (%%~
) ::Functor
f =>Lens
s t a b -> (a -> f b) -> s -> f t (%%~
) ::Applicative
f =>Traversal
s t a b -> (a -> f b) -> s -> f t
When applied to a Traversal
, it can edit the
targets of the traversals, extracting a supplemental monoidal summary
of its actions, by choosing f = ((,) m)
(%%~
) ::Iso
s t a b -> (a -> (r, b)) -> s -> (r, t) (%%~
) ::Lens
s t a b -> (a -> (r, b)) -> s -> (r, t) (%%~
) ::Monoid
m =>Traversal
s t a b -> (a -> (m, b)) -> s -> (m, t)
(%%=) :: MonadState s m => Over p ((,) r) s s a b -> p a (r, b) -> m rSource
Modify the target of a Lens
in the current state returning some extra
information of type r
or modify all targets of a
Traversal
in the current state, extracting extra
information of type r
and return a monoidal summary of the changes.
>>>
runState (_1 %%= \x -> (f x, g x)) (a,b)
(f a,(g a,b))
(%%=
) ≡ (state
.
)
It may be useful to think of (%%=
), instead, as having either of the
following more restricted type signatures:
(%%=
) ::MonadState
s m =>Iso
s s a b -> (a -> (r, b)) -> m r (%%=
) ::MonadState
s m =>Lens
s s a b -> (a -> (r, b)) -> m r (%%=
) :: (MonadState
s m,Monoid
r) =>Traversal
s s a b -> (a -> (r, b)) -> m r
(%%@~) :: IndexedLensLike i f s t a b -> (i -> a -> f b) -> s -> f tSource
Adjust the target of an IndexedLens
returning a supplementary result, or
adjust all of the targets of an IndexedTraversal
and return a monoidal summary
of the supplementary results and the answer.
(%%@~
) ≡withIndex
(%%@~
) ::Functor
f =>IndexedLens
i s t a b -> (i -> a -> f b) -> s -> f t (%%@~
) ::Applicative
f =>IndexedTraversal
i s t a b -> (i -> a -> f b) -> s -> f t
In particular, it is often useful to think of this function as having one of these even more restricted type signatures:
(%%@~
) ::IndexedLens
i s t a b -> (i -> a -> (r, b)) -> s -> (r, t) (%%@~
) ::Monoid
r =>IndexedTraversal
i s t a b -> (i -> a -> (r, b)) -> s -> (r, t)
(%%@=) :: MonadState s m => IndexedLensLike i ((,) r) s s a b -> (i -> a -> (r, b)) -> m rSource
Adjust the target of an IndexedLens
returning a supplementary result, or
adjust all of the targets of an IndexedTraversal
within the current state, and
return a monoidal summary of the supplementary results.
l%%@=
f ≡state
(l%%@~
f)
(%%@=
) ::MonadState
s m =>IndexedLens
i s s a b -> (i -> a -> (r, b)) -> s -> m r (%%@=
) :: (MonadState
s m,Monoid
r) =>IndexedTraversal
i s s a b -> (i -> a -> (r, b)) -> s -> m r
(<%@~) :: Optical (Indexed i) q ((,) b) s t a b -> (i -> a -> b) -> q s (b, t)Source
Adjust the target of an IndexedLens
returning the intermediate result, or
adjust all of the targets of an IndexedTraversal
and return a monoidal summary
along with the answer.
l<%~
f ≡ l<%@~
const
f
When you do not need access to the index then (<%~
) is more liberal in what it can accept.
If you do not need the intermediate result, you can use (%@~
) or even (%~
).
(<%@~
) ::IndexedLens
i s t a b -> (i -> a -> b) -> s -> (b, t) (<%@~
) ::Monoid
b =>IndexedTraversal
i s t a b -> (i -> a -> b) -> s -> (b, t)
(<%@=) :: MonadState s m => IndexedLensLike i ((,) b) s s a b -> (i -> a -> b) -> m bSource
Adjust the target of an IndexedLens
returning the intermediate result, or
adjust all of the targets of an IndexedTraversal
within the current state, and
return a monoidal summary of the intermediate results.
(<%@=
) ::MonadState
s m =>IndexedLens
i s s a b -> (i -> a -> b) -> m b (<%@=
) :: (MonadState
s m,Monoid
b) =>IndexedTraversal
i s s a b -> (i -> a -> b) -> m b
(<<%@~) :: Optical (Indexed i) q ((,) a) s t a b -> (i -> a -> b) -> q s (a, t)Source
Adjust the target of an IndexedLens
returning the old value, or
adjust all of the targets of an IndexedTraversal
and return a monoidal summary
of the old values along with the answer.
(<<%@~
) ::IndexedLens
i s t a b -> (i -> a -> b) -> s -> (a, t) (<<%@~
) ::Monoid
a =>IndexedTraversal
i s t a b -> (i -> a -> b) -> s -> (a, t)
(<<%@=) :: MonadState s m => IndexedLensLike i ((,) a) s s a b -> (i -> a -> b) -> m aSource
Adjust the target of an IndexedLens
returning the old value, or
adjust all of the targets of an IndexedTraversal
within the current state, and
return a monoidal summary of the old values.
(<<%@=
) ::MonadState
s m =>IndexedLens
i s s a b -> (i -> a -> b) -> m a (<<%@=
) :: (MonadState
s m,Monoid
b) =>IndexedTraversal
i s s a b -> (i -> a -> b) -> m a
General Purpose Combinators
(&) :: a -> (a -> b) -> bSource
Passes the result of the left side to the function on the right side (forward pipe operator).
This is the flipped version of ($
), which is more common in languages like F# as (|>
) where it is needed
for inference. Here it is supplied for notational convenience and given a precedence that allows it
to be nested inside uses of ($
).
>>>
a & f
f a
>>>
"hello" & length & succ
6
This combinator is commonly used when applying multiple Lens
operations in sequence.
>>>
("hello","world") & _1.element 0 .~ 'j' & _1.element 4 .~ 'y'
("jelly","world")
This reads somewhat similar to:
>>>
flip execState ("hello","world") $ do _1.element 0 .= 'j'; _1.element 4 .= 'y'
("jelly","world")
(??) :: Functor f => f (a -> b) -> a -> f bSource
This is convenient to flip
argument order of composite functions.
>>>
over _2 ?? ("hello","world") $ length
("hello",5)
>>>
over ?? length ?? ("hello","world") $ _2
("hello",5)
(&~) :: s -> State s a -> sSource
This can be used to chain lens operations using op=
syntax
rather than op~
syntax for simple non-type-changing cases.
>>>
(10,20) & _1 .~ 30 & _2 .~ 40
(30,40)
>>>
(10,20) &~ do _1 .= 30; _2 .= 40
(30,40)
This does not support type-changing assignment, e.g.
>>>
(10,20) & _1 .~ "hello"
("hello",20)
Lateral Composition
choosing :: Functor f => LensLike f s t a b -> LensLike f s' t' a b -> LensLike f (Either s s') (Either t t') a bSource
Merge two lenses, getters, setters, folds or traversals.
chosen
≡choosing
id
id
choosing
::Getter
s a ->Getter
s' a ->Getter
(Either
s s') achoosing
::Fold
s a ->Fold
s' a ->Fold
(Either
s s') achoosing
::Lens'
s a ->Lens'
s' a ->Lens'
(Either
s s') achoosing
::Traversal'
s a ->Traversal'
s' a ->Traversal'
(Either
s s') achoosing
::Setter'
s a ->Setter'
s' a ->Setter'
(Either
s s') a
chosen :: IndexPreservingLens (Either a a) (Either b b) a bSource
This is a Lens
that updates either side of an Either
, where both sides have the same type.
chosen
≡choosing
id
id
>>>
Left a^.chosen
a
>>>
Right a^.chosen
a
>>>
Right "hello"^.chosen
"hello"
>>>
Right a & chosen *~ b
Right (a * b)
chosen
::Lens
(Either
a a) (Either
b b) a bchosen
f (Left
a) =Left
<$>
f achosen
f (Right
a) =Right
<$>
f a
alongside :: LensLike (AlongsideLeft f b') s t a b -> LensLike (AlongsideRight f t) s' t' a' b' -> LensLike f (s, s') (t, t') (a, a') (b, b')Source
alongside
makes a Lens
from two other lenses or a Getter
from two other getters
by executing them on their respective halves of a product.
>>>
(Left a, Right b)^.alongside chosen chosen
(a,b)
>>>
(Left a, Right b) & alongside chosen chosen .~ (c,d)
(Left c,Right d)
alongside
::Lens
s t a b ->Lens
s' t' a' b' ->Lens
(s,s') (t,t') (a,a') (b,b')alongside
::Getter
s t a b ->Getter
s' t' a' b' ->Getter
(s,s') (t,t') (a,a') (b,b')
inside :: Corepresentable p => ALens s t a b -> Lens (p e s) (p e t) (p e a) (p e b)Source
Setting Functionally with Passthrough
(<%~) :: Profunctor p => Optical p q ((,) b) s t a b -> p a b -> q s (b, t)Source
(<^^~) :: (Fractional a, Integral e) => Optical (->) q ((,) a) s t a a -> e -> q s (a, t)Source
Raise the target of a fractionally valued Lens
to an Integral
power
and return the result.
When you do not need the result of the operation, (^^~
) is more flexible.
(<^^~
) :: (Fractional
a,Integral
e) =>Lens'
s a -> e -> s -> (a, s) (<^^~
) :: (Fractional
a,Integral
e) =>Iso'
s a -> e -> s -> (a, s)
(<<+~) :: Num a => Optical' (->) q ((,) a) s a -> a -> q s (a, s)Source
Increment the target of a numerically valued Lens
and return the old value.
When you do not need the old value, (+~
) is more flexible.
>>>
(a,b) & _1 <<+~ c
(a,(a + c,b))
>>>
(a,b) & _2 <<+~ c
(b,(a,b + c))
(<<+~
) ::Num
a =>Lens'
s a -> a -> s -> (a, s) (<<+~
) ::Num
a =>Iso'
s a -> a -> s -> (a, s)
(<<-~) :: Num a => Optical' (->) q ((,) a) s a -> a -> q s (a, s)Source
Decrement the target of a numerically valued Lens
and return the old value.
When you do not need the old value, (-~
) is more flexible.
>>>
(a,b) & _1 <<-~ c
(a,(a - c,b))
>>>
(a,b) & _2 <<-~ c
(b,(a,b - c))
(<<-~
) ::Num
a =>Lens'
s a -> a -> s -> (a, s) (<<-~
) ::Num
a =>Iso'
s a -> a -> s -> (a, s)
(<<*~) :: Num a => Optical' (->) q ((,) a) s a -> a -> q s (a, s)Source
Multiply the target of a numerically valued Lens
and return the old value.
When you do not need the old value, (-~
) is more flexible.
>>>
(a,b) & _1 <<*~ c
(a,(a * c,b))
>>>
(a,b) & _2 <<*~ c
(b,(a,b * c))
(<<*~
) ::Num
a =>Lens'
s a -> a -> s -> (a, s) (<<*~
) ::Num
a =>Iso'
s a -> a -> s -> (a, s)
(<<//~) :: Fractional a => Optical' (->) q ((,) a) s a -> a -> q s (a, s)Source
Divide the target of a numerically valued Lens
and return the old value.
When you do not need the old value, (//~
) is more flexible.
>>>
(a,b) & _1 <<//~ c
(a,(a / c,b))
>>>
("Hawaii",10) & _2 <<//~ 2
(10.0,("Hawaii",5.0))
(<<//~
) :: Fractional a =>Lens'
s a -> a -> s -> (a, s) (<<//~
) :: Fractional a =>Iso'
s a -> a -> s -> (a, s)
(<<**~) :: Floating a => Optical' (->) q ((,) a) s a -> a -> q s (a, s)Source
Raise the target of a floating-point valued Lens
to an arbitrary power and return the old value.
When you do not need the old value, (**~
) is more flexible.
>>>
(a,b) & _1 <<**~ c
(a,(a**c,b))
>>>
(a,b) & _2 <<**~ c
(b,(a,b**c))
(<<**~
) ::Floating
a =>Lens'
s a -> a -> s -> (a, s) (<<**~
) ::Floating
a =>Iso'
s a -> a -> s -> (a, s)
(<<||~) :: Optical' (->) q ((,) Bool) s Bool -> Bool -> q s (Bool, s)Source
Logically ||
the target of a Bool
-valued Lens
and return the old value.
When you do not need the old value, (||~
) is more flexible.
>>>
(False,6) & _1 <<||~ True
(False,(True,6))
>>>
("hello",True) & _2 <<||~ False
(True,("hello",True))
(<<||~
) ::Lens'
sBool
->Bool
-> s -> (Bool
, s) (<<||~
) ::Iso'
sBool
->Bool
-> s -> (Bool
, s)
(<<&&~) :: Optical' (->) q ((,) Bool) s Bool -> Bool -> q s (Bool, s)Source
Logically &&
the target of a Bool
-valued Lens
and return the old value.
When you do not need the old value, (&&~
) is more flexible.
>>>
(False,6) & _1 <<&&~ True
(False,(False,6))
>>>
("hello",True) & _2 <<&&~ False
(True,("hello",False))
(<<&&~
) ::Lens'
s Bool -> Bool -> s -> (Bool, s) (<<&&~
) ::Iso'
s Bool -> Bool -> s -> (Bool, s)
(<<<>~) :: Monoid r => Optical' (->) q ((,) r) s r -> r -> q s (r, s)Source
Modify the target of a monoidally valued Lens
by mappend
ing a new value and return the old value.
When you do not need the old value, (<>~
) is more flexible.
>>>
(Sum a,b) & _1 <<<>~ Sum c
(Sum {getSum = a},(Sum {getSum = a + c},b))
>>>
_2 <<<>~ ", 007" $ ("James", "Bond")
("Bond",("James","Bond, 007"))
(<<<>~
) ::Monoid
r =>Lens'
s r -> r -> s -> (r, s) (<<<>~
) ::Monoid
r =>Iso'
s r -> r -> s -> (r, s)
Setting State with Passthrough
(<%=) :: (Profunctor p, MonadState s m) => Over p ((,) b) s s a b -> p a b -> m bSource
Modify the target of a Lens
into your 'Monad'\'s state by a user supplied
function and return the result.
When applied to a Traversal
, it this will return a monoidal summary of all of the intermediate
results.
When you do not need the result of the operation, (%=
) is more flexible.
(<%=
) ::MonadState
s m =>Lens'
s a -> (a -> a) -> m a (<%=
) ::MonadState
s m =>Iso'
s a -> (a -> a) -> m a (<%=
) :: (MonadState
s m,Monoid
a) =>Traversal'
s a -> (a -> a) -> m a
(<+=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m aSource
Add to the target of a numerically valued Lens
into your 'Monad'\'s state
and return the result.
When you do not need the result of the addition, (+=
) is more
flexible.
(<+=
) :: (MonadState
s m,Num
a) =>Lens'
s a -> a -> m a (<+=
) :: (MonadState
s m,Num
a) =>Iso'
s a -> a -> m a
(<-=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m aSource
Subtract from the target of a numerically valued Lens
into your 'Monad'\'s
state and return the result.
When you do not need the result of the subtraction, (-=
) is more
flexible.
(<-=
) :: (MonadState
s m,Num
a) =>Lens'
s a -> a -> m a (<-=
) :: (MonadState
s m,Num
a) =>Iso'
s a -> a -> m a
(<*=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m aSource
Multiply the target of a numerically valued Lens
into your 'Monad'\'s
state and return the result.
When you do not need the result of the multiplication, (*=
) is more
flexible.
(<*=
) :: (MonadState
s m,Num
a) =>Lens'
s a -> a -> m a (<*=
) :: (MonadState
s m,Num
a) =>Iso'
s a -> a -> m a
(<//=) :: (MonadState s m, Fractional a) => LensLike' ((,) a) s a -> a -> m aSource
Divide the target of a fractionally valued Lens
into your 'Monad'\'s state
and return the result.
When you do not need the result of the division, (//=
) is more flexible.
(<//=
) :: (MonadState
s m,Fractional
a) =>Lens'
s a -> a -> m a (<//=
) :: (MonadState
s m,Fractional
a) =>Iso'
s a -> a -> m a
(<^=) :: (MonadState s m, Num a, Integral e) => LensLike' ((,) a) s a -> e -> m aSource
Raise the target of a numerically valued Lens
into your 'Monad'\'s state
to a non-negative Integral
power and return the result.
When you do not need the result of the operation, (^=
) is more flexible.
(<^=
) :: (MonadState
s m,Num
a,Integral
e) =>Lens'
s a -> e -> m a (<^=
) :: (MonadState
s m,Num
a,Integral
e) =>Iso'
s a -> e -> m a
(<^^=) :: (MonadState s m, Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> m aSource
Raise the target of a fractionally valued Lens
into your 'Monad'\'s state
to an Integral
power and return the result.
When you do not need the result of the operation, (^^=
) is more flexible.
(<^^=
) :: (MonadState
s m,Fractional
b,Integral
e) =>Lens'
s a -> e -> m a (<^^=
) :: (MonadState
s m,Fractional
b,Integral
e) =>Iso'
s a -> e -> m a
(<**=) :: (MonadState s m, Floating a) => LensLike' ((,) a) s a -> a -> m aSource
Raise the target of a floating-point valued Lens
into your 'Monad'\'s
state to an arbitrary power and return the result.
When you do not need the result of the operation, (**=
) is more flexible.
(<**=
) :: (MonadState
s m,Floating
a) =>Lens'
s a -> a -> m a (<**=
) :: (MonadState
s m,Floating
a) =>Iso'
s a -> a -> m a
(<||=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m BoolSource
Logically ||
a Boolean valued Lens
into your 'Monad'\'s state and return
the result.
When you do not need the result of the operation, (||=
) is more flexible.
(<||=
) ::MonadState
s m =>Lens'
sBool
->Bool
-> mBool
(<||=
) ::MonadState
s m =>Iso'
sBool
->Bool
-> mBool
(<&&=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m BoolSource
Logically &&
a Boolean valued Lens
into your 'Monad'\'s state and return
the result.
When you do not need the result of the operation, (&&=
) is more flexible.
(<&&=
) ::MonadState
s m =>Lens'
sBool
->Bool
-> mBool
(<&&=
) ::MonadState
s m =>Iso'
sBool
->Bool
-> mBool
(<<>=) :: (MonadState s m, Monoid r) => LensLike' ((,) r) s r -> r -> m rSource
(<<%=) :: (Strong p, MonadState s m) => Over p ((,) a) s s a b -> p a b -> m aSource
Modify the target of a Lens
into your 'Monad'\'s state by a user supplied
function and return the old value that was replaced.
When applied to a Traversal
, it this will return a monoidal summary of all of the old values
present.
When you do not need the result of the operation, (%=
) is more flexible.
(<<%=
) ::MonadState
s m =>Lens'
s a -> (a -> a) -> m a (<<%=
) ::MonadState
s m =>Iso'
s a -> (a -> a) -> m a (<<%=
) :: (MonadState
s m,Monoid
b) =>Traversal'
s a -> (a -> a) -> m a
(<<%=
) ::MonadState
s m =>LensLike
((,)a) s s a b -> (a -> b) -> m a
(<<.=) :: MonadState s m => LensLike ((,) a) s s a b -> b -> m aSource
Replace the target of a Lens
into your 'Monad'\'s state with a user supplied
value and return the old value that was replaced.
When applied to a Traversal
, it this will return a monoidal summary of all of the old values
present.
When you do not need the result of the operation, (.=
) is more flexible.
(<<.=
) ::MonadState
s m =>Lens'
s a -> a -> m a (<<.=
) ::MonadState
s m =>Iso'
s a -> a -> m a (<<.=
) :: (MonadState
s m,Monoid
t) =>Traversal'
s a -> a -> m a
(<<+=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m aSource
Modify the target of a Lens
into your 'Monad'\'s state by adding a value
and return the old value that was replaced.
When you do not need the result of the operation, (+=
) is more flexible.
(<<+=
) :: (MonadState
s m,Num
a) =>Lens'
s a -> a -> m a (<<+=
) :: (MonadState
s m,Num
a) =>Iso'
s a -> a -> m a
(<<-=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m aSource
Modify the target of a Lens
into your 'Monad'\'s state by subtracting a value
and return the old value that was replaced.
When you do not need the result of the operation, (-=
) is more flexible.
(<<-=
) :: (MonadState
s m,Num
a) =>Lens'
s a -> a -> m a (<<-=
) :: (MonadState
s m,Num
a) =>Iso'
s a -> a -> m a
(<<*=) :: (MonadState s m, Num a) => LensLike' ((,) a) s a -> a -> m aSource
Modify the target of a Lens
into your 'Monad'\'s state by multipling a value
and return the old value that was replaced.
When you do not need the result of the operation, (*=
) is more flexible.
(<<*=
) :: (MonadState
s m,Num
a) =>Lens'
s a -> a -> m a (<<*=
) :: (MonadState
s m,Num
a) =>Iso'
s a -> a -> m a
(<<//=) :: (MonadState s m, Fractional a) => LensLike' ((,) a) s a -> a -> m aSource
Modify the target of a Lens
into your Monad
s state by dividing by a value
and return the old value that was replaced.
When you do not need the result of the operation, (//=
) is more flexible.
(<<//=
) :: (MonadState
s m,Fractional
a) =>Lens'
s a -> a -> m a (<<//=
) :: (MonadState
s m,Fractional
a) =>Iso'
s a -> a -> m a
(<<^=) :: (MonadState s m, Num a, Integral e) => LensLike' ((,) a) s a -> e -> m aSource
Modify the target of a Lens
into your 'Monad'\'s state by raising it by a non-negative power
and return the old value that was replaced.
When you do not need the result of the operation, (^=
) is more flexible.
(<<^=
) :: (MonadState
s m,Num
a,Integral
e) =>Lens'
s a -> e -> m a (<<^=
) :: (MonadState
s m,Num
a,Integral
e) =>Iso'
s a -> a -> m a
(<<^^=) :: (MonadState s m, Fractional a, Integral e) => LensLike' ((,) a) s a -> e -> m aSource
Modify the target of a Lens
into your 'Monad'\'s state by raising it by an integral power
and return the old value that was replaced.
When you do not need the result of the operation, (^^=
) is more flexible.
(<<^^=
) :: (MonadState
s m,Fractional
a,Integral
e) =>Lens'
s a -> e -> m a (<<^^=
) :: (MonadState
s m,Fractional
a,Integral
e) =>Iso'
s a -> e -> m a
(<<**=) :: (MonadState s m, Floating a) => LensLike' ((,) a) s a -> a -> m aSource
Modify the target of a Lens
into your 'Monad'\'s state by raising it by an arbitrary power
and return the old value that was replaced.
When you do not need the result of the operation, (**=
) is more flexible.
(<<**=
) :: (MonadState
s m,Floating
a) =>Lens'
s a -> a -> m a (<<**=
) :: (MonadState
s m,Floating
a) =>Iso'
s a -> a -> m a
(<<||=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m BoolSource
Modify the target of a Lens
into your 'Monad'\'s state by taking its logical ||
with a value
and return the old value that was replaced.
When you do not need the result of the operation, (||=
) is more flexible.
(<<||=
) ::MonadState
s m =>Lens'
sBool
->Bool
-> mBool
(<<||=
) ::MonadState
s m =>Iso'
sBool
->Bool
-> mBool
(<<&&=) :: MonadState s m => LensLike' ((,) Bool) s Bool -> Bool -> m BoolSource
Modify the target of a Lens
into your 'Monad'\'s state by taking its logical &&
with a value
and return the old value that was replaced.
When you do not need the result of the operation, (&&=
) is more flexible.
(<<&&=
) ::MonadState
s m =>Lens'
sBool
->Bool
-> mBool
(<<&&=
) ::MonadState
s m =>Iso'
sBool
->Bool
-> mBool
(<<<>=) :: (MonadState s m, Monoid r) => LensLike' ((,) r) s r -> r -> m rSource
Modify the target of a Lens
into your 'Monad'\'s state by mappend
ing a value
and return the old value that was replaced.
When you do not need the result of the operation, (<>=
) is more flexible.
(<<<>=
) :: (MonadState
s m,Monoid
r) =>Lens'
s r -> r -> m r (<<<>=
) :: (MonadState
s m,Monoid
r) =>Iso'
s r -> r -> m r
(<<~) :: MonadState s m => ALens s s a b -> m b -> m bSource
Run a monadic action, and set the target of Lens
to its result.
(<<~
) ::MonadState
s m =>Iso
s s a b -> m b -> m b (<<~
) ::MonadState
s m =>Lens
s s a b -> m b -> m b
NB: This is limited to taking an actual Lens
than admitting a Traversal
because
there are potential loss of state issues otherwise.
Cloning Lenses
cloneLens :: ALens s t a b -> Lens s t a bSource
Cloning a Lens
is one way to make sure you aren't given
something weaker, such as a Traversal
and can be
used as a way to pass around lenses that have to be monomorphic in f
.
Note: This only accepts a proper Lens
.
>>>
let example l x = set (cloneLens l) (x^.cloneLens l + 1) x in example _2 ("hello",1,"you")
("hello",2,"you")
cloneIndexPreservingLens :: ALens s t a b -> IndexPreservingLens s t a bSource
Clone a Lens
as an IndexedPreservingLens
that just passes through whatever
index is on any IndexedLens
, IndexedFold
, IndexedGetter
or IndexedTraversal
it is composed with.
cloneIndexedLens :: AnIndexedLens i s t a b -> IndexedLens i s t a bSource
Clone an IndexedLens
as an IndexedLens
with the same index.
Arrow operators
ALens Combinators
(#%=) :: MonadState s m => ALens s s a b -> (a -> b) -> m ()Source
(#%%=) :: MonadState s m => ALens s s a b -> (a -> (r, b)) -> m rSource
(<#%=) :: MonadState s m => ALens s s a b -> (a -> b) -> m bSource
Common Lenses
We can always retrieve a ()
from any type.
>>>
"hello"^.united
()
>>>
"hello" & united .~ ()
"hello"
Context
The indexed store can be used to characterize a Lens
and is used by clone
.
is isomorphic to
Context
a b tnewtype
,
and to Context
a b t = Context
{ runContext :: forall f. Functor
f => (a -> f b) -> f t }exists s. (s,
.
Lens
s t a b)
A Context
is like a Lens
that has already been applied to a some structure.
Context (b -> t) a |
IndexedComonadStore Context | |
IndexedComonad Context | |
IndexedFunctor Context | |
Sellable (->) Context | |
~ * a b => ComonadStore a (Context a b) | |
Functor (Context a b) | |
~ * a b => Comonad (Context a b) |
locus :: IndexedComonadStore p => Lens (p a c s) (p b c s) a bSource
This Lens
lets you view
the current pos
of any indexed
store comonad and seek
to a new position. This reduces the API
for working these instances to a single Lens
.
ipos
w ≡ w^.
locus
iseek
s w ≡ w&
locus
.~
siseeks
f w ≡ w&
locus
%~
f
locus
::Lens'
(Context'
a s) alocus
::Conjoined
p =>Lens'
(Pretext'
p a s) alocus
::Conjoined
p =>Lens'
(PretextT'
p g a s) a