{-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} module Numeric.LAPACK.Matrix.Banded ( Banded, General, Square, Upper, Lower, Diagonal, Hermitian, height, width, fromList, squareFromList, lowerFromList, upperFromList, mapExtent, diagonal, takeDiagonal, toFull, toLowerTriangular, toUpperTriangular, transpose, adjoint, multiplyVector, multiply, multiplyFull, solve, determinant, ) where import qualified Numeric.LAPACK.Matrix.Banded.Linear as Linear import qualified Numeric.LAPACK.Matrix.Banded.Basic as Basic import qualified Numeric.LAPACK.Matrix.Array.Triangular as Tri import qualified Numeric.LAPACK.Matrix.Array as ArrMatrix import qualified Numeric.LAPACK.Matrix.Shape.Private as MatrixShape import qualified Numeric.LAPACK.Matrix.Extent.Private as Extent import Numeric.LAPACK.Matrix.Array.Banded (Banded, General, Square, Lower, Upper, Diagonal, Hermitian) import Numeric.LAPACK.Matrix.Array (Full) import Numeric.LAPACK.Matrix.Shape.Private (Order, UnaryProxy) import Numeric.LAPACK.Vector (Vector) import qualified Numeric.Netlib.Class as Class import qualified Type.Data.Num.Unary as Unary import Type.Data.Num.Unary ((:+:)) import qualified Data.Array.Comfort.Shape as Shape import Foreign.Storable (Storable) height :: (Extent.C vert, Extent.C horiz) => Banded sub super vert horiz height width a -> height height = MatrixShape.bandedHeight . ArrMatrix.shape width :: (Extent.C vert, Extent.C horiz) => Banded sub super vert horiz height width a -> width width = MatrixShape.bandedWidth . ArrMatrix.shape fromList :: (Unary.Natural sub, Unary.Natural super, Shape.C height, Shape.C width, Storable a) => (UnaryProxy sub, UnaryProxy super) -> Order -> height -> width -> [a] -> General sub super height width a fromList offDiag order height_ width_ = ArrMatrix.lift0 . Basic.fromList offDiag order height_ width_ squareFromList :: (Unary.Natural sub, Unary.Natural super, Shape.C size, Storable a) => (UnaryProxy sub, UnaryProxy super) -> Order -> size -> [a] -> Square sub super size a squareFromList offDiag order size = ArrMatrix.lift0 . Basic.squareFromList offDiag order size lowerFromList :: (Unary.Natural sub, Shape.C size, Storable a) => UnaryProxy sub -> Order -> size -> [a] -> Lower sub size a lowerFromList numOff order size = ArrMatrix.lift0 . Basic.lowerFromList numOff order size upperFromList :: (Unary.Natural super, Shape.C size, Storable a) => UnaryProxy super -> Order -> size -> [a] -> Upper super size a upperFromList numOff order size = ArrMatrix.lift0 . Basic.upperFromList numOff order size mapExtent :: (Extent.C vertA, Extent.C horizA) => (Extent.C vertB, Extent.C horizB) => Extent.Map vertA horizA vertB horizB height width -> Banded super sub vertA horizA height width a -> Banded super sub vertB horizB height width a mapExtent = ArrMatrix.lift1 . Basic.mapExtent transpose :: (Extent.C vert, Extent.C horiz) => Banded sub super vert horiz height width a -> Banded super sub horiz vert width height a transpose = ArrMatrix.lift1 Basic.transpose adjoint :: (Unary.Natural super, Unary.Natural sub, Extent.C vert, Extent.C horiz, Shape.C width, Shape.C height, Class.Floating a) => Banded sub super vert horiz height width a -> Banded super sub horiz vert width height a adjoint = ArrMatrix.lift1 Basic.adjoint diagonal :: (Shape.C sh, Class.Floating a) => Order -> Vector sh a -> Diagonal sh a diagonal order = ArrMatrix.lift0 . Basic.diagonal order takeDiagonal :: (Unary.Natural sub, Unary.Natural super, Shape.C sh, Class.Floating a) => Square sub super sh a -> Vector sh a takeDiagonal = Basic.takeDiagonal . ArrMatrix.toVector multiplyVector :: (Unary.Natural sub, Unary.Natural super, Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width, Eq width, Class.Floating a) => Banded sub super vert horiz height width a -> Vector width a -> Vector height a multiplyVector = Basic.multiplyVector . ArrMatrix.toVector multiply :: (Unary.Natural subA, Unary.Natural superA, Unary.Natural subB, Unary.Natural superB, (subA :+: subB) ~ subC, (superA :+: superB) ~ superC, Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width, Shape.C fuse, Eq fuse, Class.Floating a) => Banded subA superA vert horiz height fuse a -> Banded subB superB vert horiz fuse width a -> Banded subC superC vert horiz height width a multiply = ArrMatrix.lift2 Basic.multiply multiplyFull :: (Unary.Natural sub, Unary.Natural super, Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width, Shape.C fuse, Eq fuse, Class.Floating a) => Banded sub super vert horiz height fuse a -> Full vert horiz fuse width a -> Full vert horiz height width a multiplyFull = ArrMatrix.lift2 Basic.multiplyFull toLowerTriangular :: (Unary.Natural sub, Shape.C sh, Class.Floating a) => Lower sub sh a -> Tri.Lower sh a toLowerTriangular = ArrMatrix.lift1 Basic.toLowerTriangular toUpperTriangular :: (Unary.Natural super, Shape.C sh, Class.Floating a) => Upper super sh a -> Tri.Upper sh a toUpperTriangular = ArrMatrix.lift1 Basic.toUpperTriangular toFull :: (Unary.Natural sub, Unary.Natural super, Extent.C vert, Extent.C horiz, Shape.C height, Shape.C width, Class.Floating a) => Banded sub super vert horiz height width a -> Full vert horiz height width a toFull = ArrMatrix.lift1 Basic.toFull solve :: (Unary.Natural sub, Unary.Natural super, Extent.C vert, Extent.C horiz, Shape.C sh, Eq sh, Shape.C nrhs, Class.Floating a) => Square sub super sh a -> Full vert horiz sh nrhs a -> Full vert horiz sh nrhs a solve = ArrMatrix.lift2 Linear.solve determinant :: (Unary.Natural sub, Unary.Natural super, Shape.C sh, Class.Floating a) => Square sub super sh a -> a determinant = Linear.determinant . ArrMatrix.toVector