lapack-0.2.3.1: Numerical Linear Algebra using LAPACK

Safe HaskellNone
LanguageHaskell98

Numeric.LAPACK.Orthogonal.Householder

Synopsis

Documentation

data Householder vert horiz height width a Source #

Instances
(Storable a, C vert, C horiz, C height, C width, Show a, Show height, Show width) => Show (Householder vert horiz height width a) Source # 
Instance details

Defined in Numeric.LAPACK.Orthogonal.Private

Methods

showsPrec :: Int -> Householder vert horiz height width a -> ShowS #

show :: Householder vert horiz height width a -> String #

showList :: [Householder vert horiz height width a] -> ShowS #

(C vert, C horiz, C height, C width, Floating a) => Format (Householder vert horiz height width a) Source # 
Instance details

Defined in Numeric.LAPACK.Orthogonal.Private

Methods

format :: String -> Householder vert horiz height width a -> Box Source #

mapExtent :: (C vertA, C horizA) => (C vertB, C horizB) => Map vertA horizA vertB horizB height width -> Householder vertA horizA height width a -> Householder vertB horizB height width a Source #

fromMatrix :: (C vert, C horiz, C height, C width, Floating a) => Full vert horiz height width a -> Householder vert horiz height width a Source #

determinant :: (C sh, Floating a) => Square sh a -> a Source #

determinantAbsolute :: (C vert, C horiz, C height, C width, Floating a) => Householder vert horiz height width a -> RealOf a Source #

leastSquares :: (C vert, C horiz, C height, Eq height, C width, Eq width, C nrhs, Floating a) => Householder horiz Small height width a -> Full vert horiz height nrhs a -> Full vert horiz width nrhs a Source #

minimumNorm :: (C vert, C horiz, C height, Eq height, C width, Eq width, C nrhs, Floating a) => Householder vert Small width height a -> Full vert horiz height nrhs a -> Full vert horiz width nrhs a Source #

HH.minimumNorm (HH.fromMatrix a) b
==
Ortho.minimumNorm (adjoint a) b

extractQ :: (C vert, C horiz, C height, C width, Floating a) => Householder vert horiz height width a -> Square height a Source #

extractR :: (C vert, C horiz, C height, C width, Floating a) => Householder vert horiz height width a -> Full vert horiz height width a Source #

multiplyQ :: (C vertA, C horizA, C widthA, C vertB, C horizB, C widthB, C height, Eq height, Floating a) => Inversion -> Householder vertA horizA height widthA a -> Full vertB horizB height widthB a -> Full vertB horizB height widthB a Source #

tallExtractQ :: (C vert, C height, C width, Floating a) => Householder vert Small height width a -> Full vert Small height width a Source #

tallExtractR :: (C vert, C height, C width, Floating a) => Householder vert Small height width a -> Upper width a Source #

tallMultiplyQ :: (C vert, C horiz, C height, Eq height, C width, C fuse, Eq fuse, Floating a) => Householder vert Small height fuse a -> Full vert horiz fuse width a -> Full vert horiz height width a Source #

tallMultiplyQAdjoint :: (C vert, C horiz, C height, C width, C fuse, Eq fuse, Floating a) => Householder horiz Small fuse height a -> Full vert horiz fuse width a -> Full vert horiz height width a Source #

tallMultiplyR :: (C vertA, C vert, C horiz, C height, Eq height, C heightA, C widthB, Floating a) => Transposition -> Householder vertA Small heightA height a -> Full vert horiz height widthB a -> Full vert horiz height widthB a Source #

tallSolveR :: (C vertA, C vert, C horiz, C height, C width, Eq width, C nrhs, Floating a) => Transposition -> Conjugation -> Householder vertA Small height width a -> Full vert horiz width nrhs a -> Full vert horiz width nrhs a Source #