{-# OPTIONS_GHC -w #-}
{-# OPTIONS -XMagicHash -XBangPatterns -XTypeSynonymInstances -XFlexibleInstances -cpp #-}
#if __GLASGOW_HASKELL__ >= 710
{-# OPTIONS_GHC -XPartialTypeSignatures #-}
#endif
module Language.C.Parser.Parser (
  -- * Parse a C translation unit
  parseC,
  -- * Exposed Parsers
  translUnitP, extDeclP, statementP, expressionP
) where

-- Relevant C99 sections:
--
-- 6.5 Expressions .1 - .17 and 6.6 (almost literally)
--  Supported GNU extensions:
--     - Allow a compound statement as an expression
--     - Various __builtin_* forms that take type parameters
--     - `alignof' expression or type
--     - `__extension__' to suppress warnings about extensions
--     - Allow taking address of a label with: && label
--     - Omitting the `then' part of conditional expressions
--     - complex numbers
--
-- 6.7 C Declarations .1 -.8
--  Supported GNU extensions:
--     - '__thread' thread local storage (6.7.1)
--
-- 6.8 Statements .1 - .8
--  Supported GNU extensions:
--    - case ranges (C99 6.8.1)
--    - '__label__ ident;' declarations (C99 6.8.2)
--    - computed gotos (C99 6.8.6)
--
-- 6.9 Translation unit
--  Supported GNU extensions:
--     - allow empty translation_unit
--     - allow redundant ';'
--     - allow extension keyword before external declaration
--     - asm definitions
--
--  Since some of the grammar productions are quite difficult to read,
--  (especially those involved with the decleration syntax) we document them
--  with an extended syntax that allows a more consise representation:
--
--  Ordinary rules
--
--   foo      named terminal or non-terminal
--
--   'c'      terminal, literal character token
--
--   A B      concatenation
--
--   A | B    alternation
--
--   (A)      grouping
--
--  Extended rules
--
--   A?       optional, short hand for (A|) or [A]{ 0==A || 1==A }
--
--   ...      stands for some part of the grammar omitted for clarity
--
--   {A}      represents sequences, 0 or more.
--
--   <permute> modifier which states that any permutation of the immediate subterms is valid
--
--
--- TODO ----------------------------------------------------------------------
--
--  !* We ignore C11 _Atomic type annotations
--  !* We ignore the C99 static keyword (see C99 6.7.5.3)
--  !* We do not distinguish in the AST between incomplete array types and
--      complete variable length arrays ([ '*' ] means the latter). (see C99 6.7.5.2)
--  !* The AST doesn't allow recording __attribute__ of unnamed struct field
--     (see , struct_default_declaring_list, struct_identifier_declarator)
--  !* see `We're being far to liberal here' (... struct definition within structs)
--  * Documentation isn't complete and consistent yet.

import Prelude    hiding (reverse)
import qualified Data.List as List
import Control.Monad (mplus)
import Language.C.Parser.Builtin   (builtinTypeNames)
import Language.C.Parser.Lexer     (lexC, parseError)
import Language.C.Parser.Tokens    (CToken(..), GnuCTok(..), ClangCTok (..), posLenOfTok)
import Language.C.Parser.ParserMonad (P, failP, execParser, getNewName, addTypedef, shadowTypedef, getCurrentPosition,
                                      enterScope, leaveScope, getLastToken, getSavedToken, ParseError(..))

import Language.C.Data.RList
import Language.C.Data.InputStream
import Language.C.Data.Ident
import Language.C.Data.Name
import Language.C.Data.Node
import Language.C.Data.Position
import Language.C.Syntax
import qualified Data.Array as Happy_Data_Array
import qualified Data.Bits as Bits
import qualified GHC.Exts as Happy_GHC_Exts
import Control.Applicative(Applicative(..))
import Control.Monad (ap)

-- parser produced by Happy Version 1.19.12

newtype HappyAbsSyn  = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
newtype HappyWrap7 = HappyWrap7 (CTranslUnit)
happyIn7 :: (CTranslUnit) -> (HappyAbsSyn )
happyIn7 :: CTranslUnit -> HappyAbsSyn
happyIn7 x :: CTranslUnit
x = HappyWrap7 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CTranslUnit -> HappyWrap7
HappyWrap7 CTranslUnit
x)
{-# INLINE happyIn7 #-}
happyOut7 :: (HappyAbsSyn ) -> HappyWrap7
happyOut7 :: HappyAbsSyn -> HappyWrap7
happyOut7 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap7
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut7 #-}
newtype HappyWrap8 = HappyWrap8 (Reversed [CExtDecl])
happyIn8 :: (Reversed [CExtDecl]) -> (HappyAbsSyn )
happyIn8 :: Reversed [CExtDecl] -> HappyAbsSyn
happyIn8 x :: Reversed [CExtDecl]
x = HappyWrap8 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CExtDecl] -> HappyWrap8
HappyWrap8 Reversed [CExtDecl]
x)
{-# INLINE happyIn8 #-}
happyOut8 :: (HappyAbsSyn ) -> HappyWrap8
happyOut8 :: HappyAbsSyn -> HappyWrap8
happyOut8 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap8
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut8 #-}
newtype HappyWrap9 = HappyWrap9 (CExtDecl)
happyIn9 :: (CExtDecl) -> (HappyAbsSyn )
happyIn9 :: CExtDecl -> HappyAbsSyn
happyIn9 x :: CExtDecl
x = HappyWrap9 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExtDecl -> HappyWrap9
HappyWrap9 CExtDecl
x)
{-# INLINE happyIn9 #-}
happyOut9 :: (HappyAbsSyn ) -> HappyWrap9
happyOut9 :: HappyAbsSyn -> HappyWrap9
happyOut9 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap9
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut9 #-}
newtype HappyWrap10 = HappyWrap10 (CFunDef)
happyIn10 :: (CFunDef) -> (HappyAbsSyn )
happyIn10 :: CFunDef -> HappyAbsSyn
happyIn10 x :: CFunDef
x = HappyWrap10 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CFunDef -> HappyWrap10
HappyWrap10 CFunDef
x)
{-# INLINE happyIn10 #-}
happyOut10 :: (HappyAbsSyn ) -> HappyWrap10
happyOut10 :: HappyAbsSyn -> HappyWrap10
happyOut10 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap10
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut10 #-}
newtype HappyWrap11 = HappyWrap11 (CDeclr)
happyIn11 :: (CDeclr) -> (HappyAbsSyn )
happyIn11 :: CDeclr -> HappyAbsSyn
happyIn11 x :: CDeclr
x = HappyWrap11 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap11
HappyWrap11 CDeclr
x)
{-# INLINE happyIn11 #-}
happyOut11 :: (HappyAbsSyn ) -> HappyWrap11
happyOut11 :: HappyAbsSyn -> HappyWrap11
happyOut11 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap11
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut11 #-}
newtype HappyWrap12 = HappyWrap12 (CStat)
happyIn12 :: (CStat) -> (HappyAbsSyn )
happyIn12 :: CStat -> HappyAbsSyn
happyIn12 x :: CStat
x = HappyWrap12 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap12
HappyWrap12 CStat
x)
{-# INLINE happyIn12 #-}
happyOut12 :: (HappyAbsSyn ) -> HappyWrap12
happyOut12 :: HappyAbsSyn -> HappyWrap12
happyOut12 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap12
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut12 #-}
newtype HappyWrap13 = HappyWrap13 (CStat)
happyIn13 :: (CStat) -> (HappyAbsSyn )
happyIn13 :: CStat -> HappyAbsSyn
happyIn13 x :: CStat
x = HappyWrap13 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap13
HappyWrap13 CStat
x)
{-# INLINE happyIn13 #-}
happyOut13 :: (HappyAbsSyn ) -> HappyWrap13
happyOut13 :: HappyAbsSyn -> HappyWrap13
happyOut13 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap13
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut13 #-}
newtype HappyWrap14 = HappyWrap14 (CStat)
happyIn14 :: (CStat) -> (HappyAbsSyn )
happyIn14 :: CStat -> HappyAbsSyn
happyIn14 x :: CStat
x = HappyWrap14 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap14
HappyWrap14 CStat
x)
{-# INLINE happyIn14 #-}
happyOut14 :: (HappyAbsSyn ) -> HappyWrap14
happyOut14 :: HappyAbsSyn -> HappyWrap14
happyOut14 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap14
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut14 #-}
newtype HappyWrap15 = HappyWrap15 (())
happyIn15 :: (()) -> (HappyAbsSyn )
happyIn15 :: () -> HappyAbsSyn
happyIn15 x :: ()
x = HappyWrap15 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap15
HappyWrap15 ()
x)
{-# INLINE happyIn15 #-}
happyOut15 :: (HappyAbsSyn ) -> HappyWrap15
happyOut15 :: HappyAbsSyn -> HappyWrap15
happyOut15 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap15
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut15 #-}
newtype HappyWrap16 = HappyWrap16 (())
happyIn16 :: (()) -> (HappyAbsSyn )
happyIn16 :: () -> HappyAbsSyn
happyIn16 x :: ()
x = HappyWrap16 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap16
HappyWrap16 ()
x)
{-# INLINE happyIn16 #-}
happyOut16 :: (HappyAbsSyn ) -> HappyWrap16
happyOut16 :: HappyAbsSyn -> HappyWrap16
happyOut16 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap16
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut16 #-}
newtype HappyWrap17 = HappyWrap17 (Reversed [CBlockItem])
happyIn17 :: (Reversed [CBlockItem]) -> (HappyAbsSyn )
happyIn17 :: Reversed [CBlockItem] -> HappyAbsSyn
happyIn17 x :: Reversed [CBlockItem]
x = HappyWrap17 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CBlockItem] -> HappyWrap17
HappyWrap17 Reversed [CBlockItem]
x)
{-# INLINE happyIn17 #-}
happyOut17 :: (HappyAbsSyn ) -> HappyWrap17
happyOut17 :: HappyAbsSyn -> HappyWrap17
happyOut17 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap17
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut17 #-}
newtype HappyWrap18 = HappyWrap18 (CBlockItem)
happyIn18 :: (CBlockItem) -> (HappyAbsSyn )
happyIn18 :: CBlockItem -> HappyAbsSyn
happyIn18 x :: CBlockItem
x = HappyWrap18 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CBlockItem -> HappyWrap18
HappyWrap18 CBlockItem
x)
{-# INLINE happyIn18 #-}
happyOut18 :: (HappyAbsSyn ) -> HappyWrap18
happyOut18 :: HappyAbsSyn -> HappyWrap18
happyOut18 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap18
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut18 #-}
newtype HappyWrap19 = HappyWrap19 (CBlockItem)
happyIn19 :: (CBlockItem) -> (HappyAbsSyn )
happyIn19 :: CBlockItem -> HappyAbsSyn
happyIn19 x :: CBlockItem
x = HappyWrap19 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CBlockItem -> HappyWrap19
HappyWrap19 CBlockItem
x)
{-# INLINE happyIn19 #-}
happyOut19 :: (HappyAbsSyn ) -> HappyWrap19
happyOut19 :: HappyAbsSyn -> HappyWrap19
happyOut19 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap19
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut19 #-}
newtype HappyWrap20 = HappyWrap20 (CFunDef)
happyIn20 :: (CFunDef) -> (HappyAbsSyn )
happyIn20 :: CFunDef -> HappyAbsSyn
happyIn20 x :: CFunDef
x = HappyWrap20 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CFunDef -> HappyWrap20
HappyWrap20 CFunDef
x)
{-# INLINE happyIn20 #-}
happyOut20 :: (HappyAbsSyn ) -> HappyWrap20
happyOut20 :: HappyAbsSyn -> HappyWrap20
happyOut20 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap20
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut20 #-}
newtype HappyWrap21 = HappyWrap21 (Reversed [Ident])
happyIn21 :: (Reversed [Ident]) -> (HappyAbsSyn )
happyIn21 :: Reversed [Ident] -> HappyAbsSyn
happyIn21 x :: Reversed [Ident]
x = HappyWrap21 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [Ident] -> HappyWrap21
HappyWrap21 Reversed [Ident]
x)
{-# INLINE happyIn21 #-}
happyOut21 :: (HappyAbsSyn ) -> HappyWrap21
happyOut21 :: HappyAbsSyn -> HappyWrap21
happyOut21 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap21
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut21 #-}
newtype HappyWrap22 = HappyWrap22 (CStat)
happyIn22 :: (CStat) -> (HappyAbsSyn )
happyIn22 :: CStat -> HappyAbsSyn
happyIn22 x :: CStat
x = HappyWrap22 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap22
HappyWrap22 CStat
x)
{-# INLINE happyIn22 #-}
happyOut22 :: (HappyAbsSyn ) -> HappyWrap22
happyOut22 :: HappyAbsSyn -> HappyWrap22
happyOut22 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap22
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut22 #-}
newtype HappyWrap23 = HappyWrap23 (CStat)
happyIn23 :: (CStat) -> (HappyAbsSyn )
happyIn23 :: CStat -> HappyAbsSyn
happyIn23 x :: CStat
x = HappyWrap23 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap23
HappyWrap23 CStat
x)
{-# INLINE happyIn23 #-}
happyOut23 :: (HappyAbsSyn ) -> HappyWrap23
happyOut23 :: HappyAbsSyn -> HappyWrap23
happyOut23 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap23
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut23 #-}
newtype HappyWrap24 = HappyWrap24 (CStat)
happyIn24 :: (CStat) -> (HappyAbsSyn )
happyIn24 :: CStat -> HappyAbsSyn
happyIn24 x :: CStat
x = HappyWrap24 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap24
HappyWrap24 CStat
x)
{-# INLINE happyIn24 #-}
happyOut24 :: (HappyAbsSyn ) -> HappyWrap24
happyOut24 :: HappyAbsSyn -> HappyWrap24
happyOut24 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap24
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut24 #-}
newtype HappyWrap25 = HappyWrap25 (CStat)
happyIn25 :: (CStat) -> (HappyAbsSyn )
happyIn25 :: CStat -> HappyAbsSyn
happyIn25 x :: CStat
x = HappyWrap25 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap25
HappyWrap25 CStat
x)
{-# INLINE happyIn25 #-}
happyOut25 :: (HappyAbsSyn ) -> HappyWrap25
happyOut25 :: HappyAbsSyn -> HappyWrap25
happyOut25 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap25
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut25 #-}
newtype HappyWrap26 = HappyWrap26 (CAsmStmt)
happyIn26 :: (CAsmStmt) -> (HappyAbsSyn )
happyIn26 :: CAsmStmt -> HappyAbsSyn
happyIn26 x :: CAsmStmt
x = HappyWrap26 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CAsmStmt -> HappyWrap26
HappyWrap26 CAsmStmt
x)
{-# INLINE happyIn26 #-}
happyOut26 :: (HappyAbsSyn ) -> HappyWrap26
happyOut26 :: HappyAbsSyn -> HappyWrap26
happyOut26 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap26
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut26 #-}
newtype HappyWrap27 = HappyWrap27 (Maybe CTypeQual)
happyIn27 :: (Maybe CTypeQual) -> (HappyAbsSyn )
happyIn27 :: Maybe CTypeQual -> HappyAbsSyn
happyIn27 x :: Maybe CTypeQual
x = HappyWrap27 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Maybe CTypeQual -> HappyWrap27
HappyWrap27 Maybe CTypeQual
x)
{-# INLINE happyIn27 #-}
happyOut27 :: (HappyAbsSyn ) -> HappyWrap27
happyOut27 :: HappyAbsSyn -> HappyWrap27
happyOut27 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap27
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut27 #-}
newtype HappyWrap28 = HappyWrap28 ([CAsmOperand])
happyIn28 :: ([CAsmOperand]) -> (HappyAbsSyn )
happyIn28 :: [CAsmOperand] -> HappyAbsSyn
happyIn28 x :: [CAsmOperand]
x = HappyWrap28 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ([CAsmOperand] -> HappyWrap28
HappyWrap28 [CAsmOperand]
x)
{-# INLINE happyIn28 #-}
happyOut28 :: (HappyAbsSyn ) -> HappyWrap28
happyOut28 :: HappyAbsSyn -> HappyWrap28
happyOut28 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap28
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut28 #-}
newtype HappyWrap29 = HappyWrap29 (Reversed [CAsmOperand])
happyIn29 :: (Reversed [CAsmOperand]) -> (HappyAbsSyn )
happyIn29 :: Reversed [CAsmOperand] -> HappyAbsSyn
happyIn29 x :: Reversed [CAsmOperand]
x = HappyWrap29 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CAsmOperand] -> HappyWrap29
HappyWrap29 Reversed [CAsmOperand]
x)
{-# INLINE happyIn29 #-}
happyOut29 :: (HappyAbsSyn ) -> HappyWrap29
happyOut29 :: HappyAbsSyn -> HappyWrap29
happyOut29 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap29
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut29 #-}
newtype HappyWrap30 = HappyWrap30 (CAsmOperand)
happyIn30 :: (CAsmOperand) -> (HappyAbsSyn )
happyIn30 :: CAsmOperand -> HappyAbsSyn
happyIn30 x :: CAsmOperand
x = HappyWrap30 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CAsmOperand -> HappyWrap30
HappyWrap30 CAsmOperand
x)
{-# INLINE happyIn30 #-}
happyOut30 :: (HappyAbsSyn ) -> HappyWrap30
happyOut30 :: HappyAbsSyn -> HappyWrap30
happyOut30 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap30
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut30 #-}
newtype HappyWrap31 = HappyWrap31 (Reversed [CStrLit])
happyIn31 :: (Reversed [CStrLit]) -> (HappyAbsSyn )
happyIn31 :: Reversed [CStrLit] -> HappyAbsSyn
happyIn31 x :: Reversed [CStrLit]
x = HappyWrap31 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CStrLit] -> HappyWrap31
HappyWrap31 Reversed [CStrLit]
x)
{-# INLINE happyIn31 #-}
happyOut31 :: (HappyAbsSyn ) -> HappyWrap31
happyOut31 :: HappyAbsSyn -> HappyWrap31
happyOut31 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap31
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut31 #-}
newtype HappyWrap32 = HappyWrap32 (CDecl)
happyIn32 :: (CDecl) -> (HappyAbsSyn )
happyIn32 :: CDecl -> HappyAbsSyn
happyIn32 x :: CDecl
x = HappyWrap32 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap32
HappyWrap32 CDecl
x)
{-# INLINE happyIn32 #-}
happyOut32 :: (HappyAbsSyn ) -> HappyWrap32
happyOut32 :: HappyAbsSyn -> HappyWrap32
happyOut32 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap32
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut32 #-}
newtype HappyWrap33 = HappyWrap33 (Reversed [CDecl])
happyIn33 :: (Reversed [CDecl]) -> (HappyAbsSyn )
happyIn33 :: Reversed [CDecl] -> HappyAbsSyn
happyIn33 x :: Reversed [CDecl]
x = HappyWrap33 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDecl] -> HappyWrap33
HappyWrap33 Reversed [CDecl]
x)
{-# INLINE happyIn33 #-}
happyOut33 :: (HappyAbsSyn ) -> HappyWrap33
happyOut33 :: HappyAbsSyn -> HappyWrap33
happyOut33 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap33
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut33 #-}
newtype HappyWrap34 = HappyWrap34 (CDecl)
happyIn34 :: (CDecl) -> (HappyAbsSyn )
happyIn34 :: CDecl -> HappyAbsSyn
happyIn34 x :: CDecl
x = HappyWrap34 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap34
HappyWrap34 CDecl
x)
{-# INLINE happyIn34 #-}
happyOut34 :: (HappyAbsSyn ) -> HappyWrap34
happyOut34 :: HappyAbsSyn -> HappyWrap34
happyOut34 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap34
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut34 #-}
newtype HappyWrap35 = HappyWrap35 ((Maybe CStrLit, [CAttr]))
happyIn35 :: ((Maybe CStrLit, [CAttr])) -> (HappyAbsSyn )
happyIn35 :: (Maybe CStrLit, [CAttr]) -> HappyAbsSyn
happyIn35 x :: (Maybe CStrLit, [CAttr])
x = HappyWrap35 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ((Maybe CStrLit, [CAttr]) -> HappyWrap35
HappyWrap35 (Maybe CStrLit, [CAttr])
x)
{-# INLINE happyIn35 #-}
happyOut35 :: (HappyAbsSyn ) -> HappyWrap35
happyOut35 :: HappyAbsSyn -> HappyWrap35
happyOut35 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap35
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut35 #-}
newtype HappyWrap36 = HappyWrap36 (CDecl)
happyIn36 :: (CDecl) -> (HappyAbsSyn )
happyIn36 :: CDecl -> HappyAbsSyn
happyIn36 x :: CDecl
x = HappyWrap36 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap36
HappyWrap36 CDecl
x)
{-# INLINE happyIn36 #-}
happyOut36 :: (HappyAbsSyn ) -> HappyWrap36
happyOut36 :: HappyAbsSyn -> HappyWrap36
happyOut36 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap36
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut36 #-}
newtype HappyWrap37 = HappyWrap37 ([CDeclSpec])
happyIn37 :: ([CDeclSpec]) -> (HappyAbsSyn )
happyIn37 :: [CDeclSpec] -> HappyAbsSyn
happyIn37 x :: [CDeclSpec]
x = HappyWrap37 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ([CDeclSpec] -> HappyWrap37
HappyWrap37 [CDeclSpec]
x)
{-# INLINE happyIn37 #-}
happyOut37 :: (HappyAbsSyn ) -> HappyWrap37
happyOut37 :: HappyAbsSyn -> HappyWrap37
happyOut37 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap37
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut37 #-}
newtype HappyWrap38 = HappyWrap38 (Reversed [CDeclSpec])
happyIn38 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn38 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn38 x :: Reversed [CDeclSpec]
x = HappyWrap38 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap38
HappyWrap38 Reversed [CDeclSpec]
x)
{-# INLINE happyIn38 #-}
happyOut38 :: (HappyAbsSyn ) -> HappyWrap38
happyOut38 :: HappyAbsSyn -> HappyWrap38
happyOut38 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap38
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut38 #-}
newtype HappyWrap39 = HappyWrap39 (CDeclSpec)
happyIn39 :: (CDeclSpec) -> (HappyAbsSyn )
happyIn39 :: CDeclSpec -> HappyAbsSyn
happyIn39 x :: CDeclSpec
x = HappyWrap39 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclSpec -> HappyWrap39
HappyWrap39 CDeclSpec
x)
{-# INLINE happyIn39 #-}
happyOut39 :: (HappyAbsSyn ) -> HappyWrap39
happyOut39 :: HappyAbsSyn -> HappyWrap39
happyOut39 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap39
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut39 #-}
newtype HappyWrap40 = HappyWrap40 (CDeclSpec)
happyIn40 :: (CDeclSpec) -> (HappyAbsSyn )
happyIn40 :: CDeclSpec -> HappyAbsSyn
happyIn40 x :: CDeclSpec
x = HappyWrap40 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclSpec -> HappyWrap40
HappyWrap40 CDeclSpec
x)
{-# INLINE happyIn40 #-}
happyOut40 :: (HappyAbsSyn ) -> HappyWrap40
happyOut40 :: HappyAbsSyn -> HappyWrap40
happyOut40 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap40
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut40 #-}
newtype HappyWrap41 = HappyWrap41 (CStorageSpec)
happyIn41 :: (CStorageSpec) -> (HappyAbsSyn )
happyIn41 :: CStorageSpec -> HappyAbsSyn
happyIn41 x :: CStorageSpec
x = HappyWrap41 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStorageSpec -> HappyWrap41
HappyWrap41 CStorageSpec
x)
{-# INLINE happyIn41 #-}
happyOut41 :: (HappyAbsSyn ) -> HappyWrap41
happyOut41 :: HappyAbsSyn -> HappyWrap41
happyOut41 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap41
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut41 #-}
newtype HappyWrap42 = HappyWrap42 (CFunSpec)
happyIn42 :: (CFunSpec) -> (HappyAbsSyn )
happyIn42 :: CFunSpec -> HappyAbsSyn
happyIn42 x :: CFunSpec
x = HappyWrap42 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CFunSpec -> HappyWrap42
HappyWrap42 CFunSpec
x)
{-# INLINE happyIn42 #-}
happyOut42 :: (HappyAbsSyn ) -> HappyWrap42
happyOut42 :: HappyAbsSyn -> HappyWrap42
happyOut42 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap42
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut42 #-}
newtype HappyWrap43 = HappyWrap43 (CAlignSpec)
happyIn43 :: (CAlignSpec) -> (HappyAbsSyn )
happyIn43 :: CAlignSpec -> HappyAbsSyn
happyIn43 x :: CAlignSpec
x = HappyWrap43 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CAlignSpec -> HappyWrap43
HappyWrap43 CAlignSpec
x)
{-# INLINE happyIn43 #-}
happyOut43 :: (HappyAbsSyn ) -> HappyWrap43
happyOut43 :: HappyAbsSyn -> HappyWrap43
happyOut43 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap43
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut43 #-}
newtype HappyWrap44 = HappyWrap44 ([CDeclSpec])
happyIn44 :: ([CDeclSpec]) -> (HappyAbsSyn )
happyIn44 :: [CDeclSpec] -> HappyAbsSyn
happyIn44 x :: [CDeclSpec]
x = HappyWrap44 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ([CDeclSpec] -> HappyWrap44
HappyWrap44 [CDeclSpec]
x)
{-# INLINE happyIn44 #-}
happyOut44 :: (HappyAbsSyn ) -> HappyWrap44
happyOut44 :: HappyAbsSyn -> HappyWrap44
happyOut44 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap44
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut44 #-}
newtype HappyWrap45 = HappyWrap45 (CTypeSpec)
happyIn45 :: (CTypeSpec) -> (HappyAbsSyn )
happyIn45 :: CTypeSpec -> HappyAbsSyn
happyIn45 x :: CTypeSpec
x = HappyWrap45 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CTypeSpec -> HappyWrap45
HappyWrap45 CTypeSpec
x)
{-# INLINE happyIn45 #-}
happyOut45 :: (HappyAbsSyn ) -> HappyWrap45
happyOut45 :: HappyAbsSyn -> HappyWrap45
happyOut45 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap45
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut45 #-}
newtype HappyWrap46 = HappyWrap46 (Reversed [CDeclSpec])
happyIn46 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn46 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn46 x :: Reversed [CDeclSpec]
x = HappyWrap46 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap46
HappyWrap46 Reversed [CDeclSpec]
x)
{-# INLINE happyIn46 #-}
happyOut46 :: (HappyAbsSyn ) -> HappyWrap46
happyOut46 :: HappyAbsSyn -> HappyWrap46
happyOut46 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap46
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut46 #-}
newtype HappyWrap47 = HappyWrap47 (Reversed [CDeclSpec])
happyIn47 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn47 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47 x :: Reversed [CDeclSpec]
x = HappyWrap47 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap47
HappyWrap47 Reversed [CDeclSpec]
x)
{-# INLINE happyIn47 #-}
happyOut47 :: (HappyAbsSyn ) -> HappyWrap47
happyOut47 :: HappyAbsSyn -> HappyWrap47
happyOut47 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap47
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut47 #-}
newtype HappyWrap48 = HappyWrap48 (Reversed [CDeclSpec])
happyIn48 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn48 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn48 x :: Reversed [CDeclSpec]
x = HappyWrap48 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap48
HappyWrap48 Reversed [CDeclSpec]
x)
{-# INLINE happyIn48 #-}
happyOut48 :: (HappyAbsSyn ) -> HappyWrap48
happyOut48 :: HappyAbsSyn -> HappyWrap48
happyOut48 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap48
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut48 #-}
newtype HappyWrap49 = HappyWrap49 (Reversed [CDeclSpec])
happyIn49 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn49 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49 x :: Reversed [CDeclSpec]
x = HappyWrap49 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap49
HappyWrap49 Reversed [CDeclSpec]
x)
{-# INLINE happyIn49 #-}
happyOut49 :: (HappyAbsSyn ) -> HappyWrap49
happyOut49 :: HappyAbsSyn -> HappyWrap49
happyOut49 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap49
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut49 #-}
newtype HappyWrap50 = HappyWrap50 (Reversed [CDeclSpec])
happyIn50 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn50 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50 x :: Reversed [CDeclSpec]
x = HappyWrap50 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap50
HappyWrap50 Reversed [CDeclSpec]
x)
{-# INLINE happyIn50 #-}
happyOut50 :: (HappyAbsSyn ) -> HappyWrap50
happyOut50 :: HappyAbsSyn -> HappyWrap50
happyOut50 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap50
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut50 #-}
newtype HappyWrap51 = HappyWrap51 (Reversed [CDeclSpec])
happyIn51 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn51 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 x :: Reversed [CDeclSpec]
x = HappyWrap51 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap51
HappyWrap51 Reversed [CDeclSpec]
x)
{-# INLINE happyIn51 #-}
happyOut51 :: (HappyAbsSyn ) -> HappyWrap51
happyOut51 :: HappyAbsSyn -> HappyWrap51
happyOut51 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap51
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut51 #-}
newtype HappyWrap52 = HappyWrap52 (CTypeSpec)
happyIn52 :: (CTypeSpec) -> (HappyAbsSyn )
happyIn52 :: CTypeSpec -> HappyAbsSyn
happyIn52 x :: CTypeSpec
x = HappyWrap52 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CTypeSpec -> HappyWrap52
HappyWrap52 CTypeSpec
x)
{-# INLINE happyIn52 #-}
happyOut52 :: (HappyAbsSyn ) -> HappyWrap52
happyOut52 :: HappyAbsSyn -> HappyWrap52
happyOut52 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap52
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut52 #-}
newtype HappyWrap53 = HappyWrap53 (CStructUnion)
happyIn53 :: (CStructUnion) -> (HappyAbsSyn )
happyIn53 :: CStructUnion -> HappyAbsSyn
happyIn53 x :: CStructUnion
x = HappyWrap53 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStructUnion -> HappyWrap53
HappyWrap53 CStructUnion
x)
{-# INLINE happyIn53 #-}
happyOut53 :: (HappyAbsSyn ) -> HappyWrap53
happyOut53 :: HappyAbsSyn -> HappyWrap53
happyOut53 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap53
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut53 #-}
newtype HappyWrap54 = HappyWrap54 (Located CStructTag)
happyIn54 :: (Located CStructTag) -> (HappyAbsSyn )
happyIn54 :: Located CStructTag -> HappyAbsSyn
happyIn54 x :: Located CStructTag
x = HappyWrap54 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Located CStructTag -> HappyWrap54
HappyWrap54 Located CStructTag
x)
{-# INLINE happyIn54 #-}
happyOut54 :: (HappyAbsSyn ) -> HappyWrap54
happyOut54 :: HappyAbsSyn -> HappyWrap54
happyOut54 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap54
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut54 #-}
newtype HappyWrap55 = HappyWrap55 (Reversed [CDecl])
happyIn55 :: (Reversed [CDecl]) -> (HappyAbsSyn )
happyIn55 :: Reversed [CDecl] -> HappyAbsSyn
happyIn55 x :: Reversed [CDecl]
x = HappyWrap55 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDecl] -> HappyWrap55
HappyWrap55 Reversed [CDecl]
x)
{-# INLINE happyIn55 #-}
happyOut55 :: (HappyAbsSyn ) -> HappyWrap55
happyOut55 :: HappyAbsSyn -> HappyWrap55
happyOut55 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap55
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut55 #-}
newtype HappyWrap56 = HappyWrap56 (CDecl)
happyIn56 :: (CDecl) -> (HappyAbsSyn )
happyIn56 :: CDecl -> HappyAbsSyn
happyIn56 x :: CDecl
x = HappyWrap56 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap56
HappyWrap56 CDecl
x)
{-# INLINE happyIn56 #-}
happyOut56 :: (HappyAbsSyn ) -> HappyWrap56
happyOut56 :: HappyAbsSyn -> HappyWrap56
happyOut56 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap56
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut56 #-}
newtype HappyWrap57 = HappyWrap57 (CDecl)
happyIn57 :: (CDecl) -> (HappyAbsSyn )
happyIn57 :: CDecl -> HappyAbsSyn
happyIn57 x :: CDecl
x = HappyWrap57 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap57
HappyWrap57 CDecl
x)
{-# INLINE happyIn57 #-}
happyOut57 :: (HappyAbsSyn ) -> HappyWrap57
happyOut57 :: HappyAbsSyn -> HappyWrap57
happyOut57 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap57
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut57 #-}
newtype HappyWrap58 = HappyWrap58 (CDecl)
happyIn58 :: (CDecl) -> (HappyAbsSyn )
happyIn58 :: CDecl -> HappyAbsSyn
happyIn58 x :: CDecl
x = HappyWrap58 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap58
HappyWrap58 CDecl
x)
{-# INLINE happyIn58 #-}
happyOut58 :: (HappyAbsSyn ) -> HappyWrap58
happyOut58 :: HappyAbsSyn -> HappyWrap58
happyOut58 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap58
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut58 #-}
newtype HappyWrap59 = HappyWrap59 ((Maybe CDeclr, Maybe CExpr))
happyIn59 :: ((Maybe CDeclr, Maybe CExpr)) -> (HappyAbsSyn )
happyIn59 :: (Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn59 x :: (Maybe CDeclr, Maybe CExpr)
x = HappyWrap59 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ((Maybe CDeclr, Maybe CExpr) -> HappyWrap59
HappyWrap59 (Maybe CDeclr, Maybe CExpr)
x)
{-# INLINE happyIn59 #-}
happyOut59 :: (HappyAbsSyn ) -> HappyWrap59
happyOut59 :: HappyAbsSyn -> HappyWrap59
happyOut59 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap59
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut59 #-}
newtype HappyWrap60 = HappyWrap60 ((Maybe CDeclr, Maybe CExpr))
happyIn60 :: ((Maybe CDeclr, Maybe CExpr)) -> (HappyAbsSyn )
happyIn60 :: (Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn60 x :: (Maybe CDeclr, Maybe CExpr)
x = HappyWrap60 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ((Maybe CDeclr, Maybe CExpr) -> HappyWrap60
HappyWrap60 (Maybe CDeclr, Maybe CExpr)
x)
{-# INLINE happyIn60 #-}
happyOut60 :: (HappyAbsSyn ) -> HappyWrap60
happyOut60 :: HappyAbsSyn -> HappyWrap60
happyOut60 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap60
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut60 #-}
newtype HappyWrap61 = HappyWrap61 (CEnum)
happyIn61 :: (CEnum) -> (HappyAbsSyn )
happyIn61 :: CEnum -> HappyAbsSyn
happyIn61 x :: CEnum
x = HappyWrap61 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CEnum -> HappyWrap61
HappyWrap61 CEnum
x)
{-# INLINE happyIn61 #-}
happyOut61 :: (HappyAbsSyn ) -> HappyWrap61
happyOut61 :: HappyAbsSyn -> HappyWrap61
happyOut61 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap61
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut61 #-}
newtype HappyWrap62 = HappyWrap62 (Reversed [(Ident, Maybe CExpr)])
happyIn62 :: (Reversed [(Ident, Maybe CExpr)]) -> (HappyAbsSyn )
happyIn62 :: Reversed [(Ident, Maybe CExpr)] -> HappyAbsSyn
happyIn62 x :: Reversed [(Ident, Maybe CExpr)]
x = HappyWrap62 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [(Ident, Maybe CExpr)] -> HappyWrap62
HappyWrap62 Reversed [(Ident, Maybe CExpr)]
x)
{-# INLINE happyIn62 #-}
happyOut62 :: (HappyAbsSyn ) -> HappyWrap62
happyOut62 :: HappyAbsSyn -> HappyWrap62
happyOut62 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap62
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut62 #-}
newtype HappyWrap63 = HappyWrap63 ((Ident, Maybe CExpr))
happyIn63 :: ((Ident, Maybe CExpr)) -> (HappyAbsSyn )
happyIn63 :: (Ident, Maybe CExpr) -> HappyAbsSyn
happyIn63 x :: (Ident, Maybe CExpr)
x = HappyWrap63 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ((Ident, Maybe CExpr) -> HappyWrap63
HappyWrap63 (Ident, Maybe CExpr)
x)
{-# INLINE happyIn63 #-}
happyOut63 :: (HappyAbsSyn ) -> HappyWrap63
happyOut63 :: HappyAbsSyn -> HappyWrap63
happyOut63 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap63
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut63 #-}
newtype HappyWrap64 = HappyWrap64 (CTypeQual)
happyIn64 :: (CTypeQual) -> (HappyAbsSyn )
happyIn64 :: CTypeQual -> HappyAbsSyn
happyIn64 x :: CTypeQual
x = HappyWrap64 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CTypeQual -> HappyWrap64
HappyWrap64 CTypeQual
x)
{-# INLINE happyIn64 #-}
happyOut64 :: (HappyAbsSyn ) -> HappyWrap64
happyOut64 :: HappyAbsSyn -> HappyWrap64
happyOut64 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap64
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut64 #-}
newtype HappyWrap65 = HappyWrap65 (Reversed [CTypeQual])
happyIn65 :: (Reversed [CTypeQual]) -> (HappyAbsSyn )
happyIn65 :: Reversed [CTypeQual] -> HappyAbsSyn
happyIn65 x :: Reversed [CTypeQual]
x = HappyWrap65 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CTypeQual] -> HappyWrap65
HappyWrap65 Reversed [CTypeQual]
x)
{-# INLINE happyIn65 #-}
happyOut65 :: (HappyAbsSyn ) -> HappyWrap65
happyOut65 :: HappyAbsSyn -> HappyWrap65
happyOut65 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap65
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut65 #-}
newtype HappyWrap66 = HappyWrap66 (CDeclrR)
happyIn66 :: (CDeclrR) -> (HappyAbsSyn )
happyIn66 :: CDeclrR -> HappyAbsSyn
happyIn66 x :: CDeclrR
x = HappyWrap66 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap66
HappyWrap66 CDeclrR
x)
{-# INLINE happyIn66 #-}
happyOut66 :: (HappyAbsSyn ) -> HappyWrap66
happyOut66 :: HappyAbsSyn -> HappyWrap66
happyOut66 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap66
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut66 #-}
newtype HappyWrap67 = HappyWrap67 (Maybe CStrLit)
happyIn67 :: (Maybe CStrLit) -> (HappyAbsSyn )
happyIn67 :: Maybe CStrLit -> HappyAbsSyn
happyIn67 x :: Maybe CStrLit
x = HappyWrap67 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Maybe CStrLit -> HappyWrap67
HappyWrap67 Maybe CStrLit
x)
{-# INLINE happyIn67 #-}
happyOut67 :: (HappyAbsSyn ) -> HappyWrap67
happyOut67 :: HappyAbsSyn -> HappyWrap67
happyOut67 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap67
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut67 #-}
newtype HappyWrap68 = HappyWrap68 (CDeclrR)
happyIn68 :: (CDeclrR) -> (HappyAbsSyn )
happyIn68 :: CDeclrR -> HappyAbsSyn
happyIn68 x :: CDeclrR
x = HappyWrap68 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap68
HappyWrap68 CDeclrR
x)
{-# INLINE happyIn68 #-}
happyOut68 :: (HappyAbsSyn ) -> HappyWrap68
happyOut68 :: HappyAbsSyn -> HappyWrap68
happyOut68 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap68
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut68 #-}
newtype HappyWrap69 = HappyWrap69 (CDeclrR)
happyIn69 :: (CDeclrR) -> (HappyAbsSyn )
happyIn69 :: CDeclrR -> HappyAbsSyn
happyIn69 x :: CDeclrR
x = HappyWrap69 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap69
HappyWrap69 CDeclrR
x)
{-# INLINE happyIn69 #-}
happyOut69 :: (HappyAbsSyn ) -> HappyWrap69
happyOut69 :: HappyAbsSyn -> HappyWrap69
happyOut69 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap69
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut69 #-}
newtype HappyWrap70 = HappyWrap70 (CDeclrR)
happyIn70 :: (CDeclrR) -> (HappyAbsSyn )
happyIn70 :: CDeclrR -> HappyAbsSyn
happyIn70 x :: CDeclrR
x = HappyWrap70 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap70
HappyWrap70 CDeclrR
x)
{-# INLINE happyIn70 #-}
happyOut70 :: (HappyAbsSyn ) -> HappyWrap70
happyOut70 :: HappyAbsSyn -> HappyWrap70
happyOut70 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap70
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut70 #-}
newtype HappyWrap71 = HappyWrap71 (CDeclrR)
happyIn71 :: (CDeclrR) -> (HappyAbsSyn )
happyIn71 :: CDeclrR -> HappyAbsSyn
happyIn71 x :: CDeclrR
x = HappyWrap71 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap71
HappyWrap71 CDeclrR
x)
{-# INLINE happyIn71 #-}
happyOut71 :: (HappyAbsSyn ) -> HappyWrap71
happyOut71 :: HappyAbsSyn -> HappyWrap71
happyOut71 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap71
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut71 #-}
newtype HappyWrap72 = HappyWrap72 (CDeclrR)
happyIn72 :: (CDeclrR) -> (HappyAbsSyn )
happyIn72 :: CDeclrR -> HappyAbsSyn
happyIn72 x :: CDeclrR
x = HappyWrap72 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap72
HappyWrap72 CDeclrR
x)
{-# INLINE happyIn72 #-}
happyOut72 :: (HappyAbsSyn ) -> HappyWrap72
happyOut72 :: HappyAbsSyn -> HappyWrap72
happyOut72 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap72
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut72 #-}
newtype HappyWrap73 = HappyWrap73 (CDeclrR)
happyIn73 :: (CDeclrR) -> (HappyAbsSyn )
happyIn73 :: CDeclrR -> HappyAbsSyn
happyIn73 x :: CDeclrR
x = HappyWrap73 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap73
HappyWrap73 CDeclrR
x)
{-# INLINE happyIn73 #-}
happyOut73 :: (HappyAbsSyn ) -> HappyWrap73
happyOut73 :: HappyAbsSyn -> HappyWrap73
happyOut73 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap73
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut73 #-}
newtype HappyWrap74 = HappyWrap74 (CDeclrR)
happyIn74 :: (CDeclrR) -> (HappyAbsSyn )
happyIn74 :: CDeclrR -> HappyAbsSyn
happyIn74 x :: CDeclrR
x = HappyWrap74 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap74
HappyWrap74 CDeclrR
x)
{-# INLINE happyIn74 #-}
happyOut74 :: (HappyAbsSyn ) -> HappyWrap74
happyOut74 :: HappyAbsSyn -> HappyWrap74
happyOut74 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap74
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut74 #-}
newtype HappyWrap75 = HappyWrap75 (CDeclrR)
happyIn75 :: (CDeclrR) -> (HappyAbsSyn )
happyIn75 :: CDeclrR -> HappyAbsSyn
happyIn75 x :: CDeclrR
x = HappyWrap75 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap75
HappyWrap75 CDeclrR
x)
{-# INLINE happyIn75 #-}
happyOut75 :: (HappyAbsSyn ) -> HappyWrap75
happyOut75 :: HappyAbsSyn -> HappyWrap75
happyOut75 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap75
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut75 #-}
newtype HappyWrap76 = HappyWrap76 (CDeclrR)
happyIn76 :: (CDeclrR) -> (HappyAbsSyn )
happyIn76 :: CDeclrR -> HappyAbsSyn
happyIn76 x :: CDeclrR
x = HappyWrap76 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap76
HappyWrap76 CDeclrR
x)
{-# INLINE happyIn76 #-}
happyOut76 :: (HappyAbsSyn ) -> HappyWrap76
happyOut76 :: HappyAbsSyn -> HappyWrap76
happyOut76 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap76
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut76 #-}
newtype HappyWrap77 = HappyWrap77 (CDeclrR)
happyIn77 :: (CDeclrR) -> (HappyAbsSyn )
happyIn77 :: CDeclrR -> HappyAbsSyn
happyIn77 x :: CDeclrR
x = HappyWrap77 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap77
HappyWrap77 CDeclrR
x)
{-# INLINE happyIn77 #-}
happyOut77 :: (HappyAbsSyn ) -> HappyWrap77
happyOut77 :: HappyAbsSyn -> HappyWrap77
happyOut77 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap77
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut77 #-}
newtype HappyWrap78 = HappyWrap78 (CDeclrR)
happyIn78 :: (CDeclrR) -> (HappyAbsSyn )
happyIn78 :: CDeclrR -> HappyAbsSyn
happyIn78 x :: CDeclrR
x = HappyWrap78 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap78
HappyWrap78 CDeclrR
x)
{-# INLINE happyIn78 #-}
happyOut78 :: (HappyAbsSyn ) -> HappyWrap78
happyOut78 :: HappyAbsSyn -> HappyWrap78
happyOut78 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap78
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut78 #-}
newtype HappyWrap79 = HappyWrap79 (CDeclr)
happyIn79 :: (CDeclr) -> (HappyAbsSyn )
happyIn79 :: CDeclr -> HappyAbsSyn
happyIn79 x :: CDeclr
x = HappyWrap79 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap79
HappyWrap79 CDeclr
x)
{-# INLINE happyIn79 #-}
happyOut79 :: (HappyAbsSyn ) -> HappyWrap79
happyOut79 :: HappyAbsSyn -> HappyWrap79
happyOut79 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap79
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut79 #-}
newtype HappyWrap80 = HappyWrap80 (CDeclrR)
happyIn80 :: (CDeclrR) -> (HappyAbsSyn )
happyIn80 :: CDeclrR -> HappyAbsSyn
happyIn80 x :: CDeclrR
x = HappyWrap80 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap80
HappyWrap80 CDeclrR
x)
{-# INLINE happyIn80 #-}
happyOut80 :: (HappyAbsSyn ) -> HappyWrap80
happyOut80 :: HappyAbsSyn -> HappyWrap80
happyOut80 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap80
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut80 #-}
newtype HappyWrap81 = HappyWrap81 (CDeclrR)
happyIn81 :: (CDeclrR) -> (HappyAbsSyn )
happyIn81 :: CDeclrR -> HappyAbsSyn
happyIn81 x :: CDeclrR
x = HappyWrap81 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap81
HappyWrap81 CDeclrR
x)
{-# INLINE happyIn81 #-}
happyOut81 :: (HappyAbsSyn ) -> HappyWrap81
happyOut81 :: HappyAbsSyn -> HappyWrap81
happyOut81 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap81
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut81 #-}
newtype HappyWrap82 = HappyWrap82 (([CDecl], Bool))
happyIn82 :: (([CDecl], Bool)) -> (HappyAbsSyn )
happyIn82 :: ([CDecl], Bool) -> HappyAbsSyn
happyIn82 x :: ([CDecl], Bool)
x = HappyWrap82 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (([CDecl], Bool) -> HappyWrap82
HappyWrap82 ([CDecl], Bool)
x)
{-# INLINE happyIn82 #-}
happyOut82 :: (HappyAbsSyn ) -> HappyWrap82
happyOut82 :: HappyAbsSyn -> HappyWrap82
happyOut82 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap82
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut82 #-}
newtype HappyWrap83 = HappyWrap83 (Reversed [CDecl])
happyIn83 :: (Reversed [CDecl]) -> (HappyAbsSyn )
happyIn83 :: Reversed [CDecl] -> HappyAbsSyn
happyIn83 x :: Reversed [CDecl]
x = HappyWrap83 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDecl] -> HappyWrap83
HappyWrap83 Reversed [CDecl]
x)
{-# INLINE happyIn83 #-}
happyOut83 :: (HappyAbsSyn ) -> HappyWrap83
happyOut83 :: HappyAbsSyn -> HappyWrap83
happyOut83 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap83
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut83 #-}
newtype HappyWrap84 = HappyWrap84 (CDecl)
happyIn84 :: (CDecl) -> (HappyAbsSyn )
happyIn84 :: CDecl -> HappyAbsSyn
happyIn84 x :: CDecl
x = HappyWrap84 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap84
HappyWrap84 CDecl
x)
{-# INLINE happyIn84 #-}
happyOut84 :: (HappyAbsSyn ) -> HappyWrap84
happyOut84 :: HappyAbsSyn -> HappyWrap84
happyOut84 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap84
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut84 #-}
newtype HappyWrap85 = HappyWrap85 (Reversed [Ident])
happyIn85 :: (Reversed [Ident]) -> (HappyAbsSyn )
happyIn85 :: Reversed [Ident] -> HappyAbsSyn
happyIn85 x :: Reversed [Ident]
x = HappyWrap85 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [Ident] -> HappyWrap85
HappyWrap85 Reversed [Ident]
x)
{-# INLINE happyIn85 #-}
happyOut85 :: (HappyAbsSyn ) -> HappyWrap85
happyOut85 :: HappyAbsSyn -> HappyWrap85
happyOut85 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap85
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut85 #-}
newtype HappyWrap86 = HappyWrap86 (CDecl)
happyIn86 :: (CDecl) -> (HappyAbsSyn )
happyIn86 :: CDecl -> HappyAbsSyn
happyIn86 x :: CDecl
x = HappyWrap86 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap86
HappyWrap86 CDecl
x)
{-# INLINE happyIn86 #-}
happyOut86 :: (HappyAbsSyn ) -> HappyWrap86
happyOut86 :: HappyAbsSyn -> HappyWrap86
happyOut86 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap86
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut86 #-}
newtype HappyWrap87 = HappyWrap87 (CDeclrR)
happyIn87 :: (CDeclrR) -> (HappyAbsSyn )
happyIn87 :: CDeclrR -> HappyAbsSyn
happyIn87 x :: CDeclrR
x = HappyWrap87 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap87
HappyWrap87 CDeclrR
x)
{-# INLINE happyIn87 #-}
happyOut87 :: (HappyAbsSyn ) -> HappyWrap87
happyOut87 :: HappyAbsSyn -> HappyWrap87
happyOut87 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap87
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut87 #-}
newtype HappyWrap88 = HappyWrap88 (CDeclrR -> CDeclrR)
happyIn88 :: (CDeclrR -> CDeclrR) -> (HappyAbsSyn )
happyIn88 :: (CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn88 x :: CDeclrR -> CDeclrR
x = HappyWrap88 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ((CDeclrR -> CDeclrR) -> HappyWrap88
HappyWrap88 CDeclrR -> CDeclrR
x)
{-# INLINE happyIn88 #-}
happyOut88 :: (HappyAbsSyn ) -> HappyWrap88
happyOut88 :: HappyAbsSyn -> HappyWrap88
happyOut88 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap88
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut88 #-}
newtype HappyWrap89 = HappyWrap89 (CDeclrR -> CDeclrR)
happyIn89 :: (CDeclrR -> CDeclrR) -> (HappyAbsSyn )
happyIn89 :: (CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn89 x :: CDeclrR -> CDeclrR
x = HappyWrap89 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ((CDeclrR -> CDeclrR) -> HappyWrap89
HappyWrap89 CDeclrR -> CDeclrR
x)
{-# INLINE happyIn89 #-}
happyOut89 :: (HappyAbsSyn ) -> HappyWrap89
happyOut89 :: HappyAbsSyn -> HappyWrap89
happyOut89 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap89
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut89 #-}
newtype HappyWrap90 = HappyWrap90 (CDeclrR -> CDeclrR)
happyIn90 :: (CDeclrR -> CDeclrR) -> (HappyAbsSyn )
happyIn90 :: (CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 x :: CDeclrR -> CDeclrR
x = HappyWrap90 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ((CDeclrR -> CDeclrR) -> HappyWrap90
HappyWrap90 CDeclrR -> CDeclrR
x)
{-# INLINE happyIn90 #-}
happyOut90 :: (HappyAbsSyn ) -> HappyWrap90
happyOut90 :: HappyAbsSyn -> HappyWrap90
happyOut90 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap90
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut90 #-}
newtype HappyWrap91 = HappyWrap91 (CDeclrR)
happyIn91 :: (CDeclrR) -> (HappyAbsSyn )
happyIn91 :: CDeclrR -> HappyAbsSyn
happyIn91 x :: CDeclrR
x = HappyWrap91 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap91
HappyWrap91 CDeclrR
x)
{-# INLINE happyIn91 #-}
happyOut91 :: (HappyAbsSyn ) -> HappyWrap91
happyOut91 :: HappyAbsSyn -> HappyWrap91
happyOut91 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap91
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut91 #-}
newtype HappyWrap92 = HappyWrap92 (CDeclrR)
happyIn92 :: (CDeclrR) -> (HappyAbsSyn )
happyIn92 :: CDeclrR -> HappyAbsSyn
happyIn92 x :: CDeclrR
x = HappyWrap92 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap92
HappyWrap92 CDeclrR
x)
{-# INLINE happyIn92 #-}
happyOut92 :: (HappyAbsSyn ) -> HappyWrap92
happyOut92 :: HappyAbsSyn -> HappyWrap92
happyOut92 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap92
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut92 #-}
newtype HappyWrap93 = HappyWrap93 (CInit)
happyIn93 :: (CInit) -> (HappyAbsSyn )
happyIn93 :: CInit -> HappyAbsSyn
happyIn93 x :: CInit
x = HappyWrap93 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CInit -> HappyWrap93
HappyWrap93 CInit
x)
{-# INLINE happyIn93 #-}
happyOut93 :: (HappyAbsSyn ) -> HappyWrap93
happyOut93 :: HappyAbsSyn -> HappyWrap93
happyOut93 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap93
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut93 #-}
newtype HappyWrap94 = HappyWrap94 (Maybe CInit)
happyIn94 :: (Maybe CInit) -> (HappyAbsSyn )
happyIn94 :: Maybe CInit -> HappyAbsSyn
happyIn94 x :: Maybe CInit
x = HappyWrap94 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Maybe CInit -> HappyWrap94
HappyWrap94 Maybe CInit
x)
{-# INLINE happyIn94 #-}
happyOut94 :: (HappyAbsSyn ) -> HappyWrap94
happyOut94 :: HappyAbsSyn -> HappyWrap94
happyOut94 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap94
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut94 #-}
newtype HappyWrap95 = HappyWrap95 (Reversed CInitList)
happyIn95 :: (Reversed CInitList) -> (HappyAbsSyn )
happyIn95 :: Reversed CInitList -> HappyAbsSyn
happyIn95 x :: Reversed CInitList
x = HappyWrap95 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed CInitList -> HappyWrap95
HappyWrap95 Reversed CInitList
x)
{-# INLINE happyIn95 #-}
happyOut95 :: (HappyAbsSyn ) -> HappyWrap95
happyOut95 :: HappyAbsSyn -> HappyWrap95
happyOut95 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap95
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut95 #-}
newtype HappyWrap96 = HappyWrap96 ([CDesignator])
happyIn96 :: ([CDesignator]) -> (HappyAbsSyn )
happyIn96 :: [CDesignator] -> HappyAbsSyn
happyIn96 x :: [CDesignator]
x = HappyWrap96 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ([CDesignator] -> HappyWrap96
HappyWrap96 [CDesignator]
x)
{-# INLINE happyIn96 #-}
happyOut96 :: (HappyAbsSyn ) -> HappyWrap96
happyOut96 :: HappyAbsSyn -> HappyWrap96
happyOut96 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap96
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut96 #-}
newtype HappyWrap97 = HappyWrap97 (Reversed [CDesignator])
happyIn97 :: (Reversed [CDesignator]) -> (HappyAbsSyn )
happyIn97 :: Reversed [CDesignator] -> HappyAbsSyn
happyIn97 x :: Reversed [CDesignator]
x = HappyWrap97 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDesignator] -> HappyWrap97
HappyWrap97 Reversed [CDesignator]
x)
{-# INLINE happyIn97 #-}
happyOut97 :: (HappyAbsSyn ) -> HappyWrap97
happyOut97 :: HappyAbsSyn -> HappyWrap97
happyOut97 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap97
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut97 #-}
newtype HappyWrap98 = HappyWrap98 (CDesignator)
happyIn98 :: (CDesignator) -> (HappyAbsSyn )
happyIn98 :: CDesignator -> HappyAbsSyn
happyIn98 x :: CDesignator
x = HappyWrap98 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDesignator -> HappyWrap98
HappyWrap98 CDesignator
x)
{-# INLINE happyIn98 #-}
happyOut98 :: (HappyAbsSyn ) -> HappyWrap98
happyOut98 :: HappyAbsSyn -> HappyWrap98
happyOut98 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap98
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut98 #-}
newtype HappyWrap99 = HappyWrap99 (CDesignator)
happyIn99 :: (CDesignator) -> (HappyAbsSyn )
happyIn99 :: CDesignator -> HappyAbsSyn
happyIn99 x :: CDesignator
x = HappyWrap99 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDesignator -> HappyWrap99
HappyWrap99 CDesignator
x)
{-# INLINE happyIn99 #-}
happyOut99 :: (HappyAbsSyn ) -> HappyWrap99
happyOut99 :: HappyAbsSyn -> HappyWrap99
happyOut99 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap99
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut99 #-}
newtype HappyWrap100 = HappyWrap100 (CExpr)
happyIn100 :: (CExpr) -> (HappyAbsSyn )
happyIn100 :: CExpr -> HappyAbsSyn
happyIn100 x :: CExpr
x = HappyWrap100 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap100
HappyWrap100 CExpr
x)
{-# INLINE happyIn100 #-}
happyOut100 :: (HappyAbsSyn ) -> HappyWrap100
happyOut100 :: HappyAbsSyn -> HappyWrap100
happyOut100 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap100
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut100 #-}
newtype HappyWrap101 = HappyWrap101 (Reversed [(Maybe CDecl, CExpr)])
happyIn101 :: (Reversed [(Maybe CDecl, CExpr)]) -> (HappyAbsSyn )
happyIn101 :: Reversed [(Maybe CDecl, CExpr)] -> HappyAbsSyn
happyIn101 x :: Reversed [(Maybe CDecl, CExpr)]
x = HappyWrap101 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [(Maybe CDecl, CExpr)] -> HappyWrap101
HappyWrap101 Reversed [(Maybe CDecl, CExpr)]
x)
{-# INLINE happyIn101 #-}
happyOut101 :: (HappyAbsSyn ) -> HappyWrap101
happyOut101 :: HappyAbsSyn -> HappyWrap101
happyOut101 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap101
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut101 #-}
newtype HappyWrap102 = HappyWrap102 ((Maybe CDecl, CExpr))
happyIn102 :: ((Maybe CDecl, CExpr)) -> (HappyAbsSyn )
happyIn102 :: (Maybe CDecl, CExpr) -> HappyAbsSyn
happyIn102 x :: (Maybe CDecl, CExpr)
x = HappyWrap102 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ((Maybe CDecl, CExpr) -> HappyWrap102
HappyWrap102 (Maybe CDecl, CExpr)
x)
{-# INLINE happyIn102 #-}
happyOut102 :: (HappyAbsSyn ) -> HappyWrap102
happyOut102 :: HappyAbsSyn -> HappyWrap102
happyOut102 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap102
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut102 #-}
newtype HappyWrap103 = HappyWrap103 (Reversed [CDesignator])
happyIn103 :: (Reversed [CDesignator]) -> (HappyAbsSyn )
happyIn103 :: Reversed [CDesignator] -> HappyAbsSyn
happyIn103 x :: Reversed [CDesignator]
x = HappyWrap103 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDesignator] -> HappyWrap103
HappyWrap103 Reversed [CDesignator]
x)
{-# INLINE happyIn103 #-}
happyOut103 :: (HappyAbsSyn ) -> HappyWrap103
happyOut103 :: HappyAbsSyn -> HappyWrap103
happyOut103 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap103
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut103 #-}
newtype HappyWrap104 = HappyWrap104 (CExpr)
happyIn104 :: (CExpr) -> (HappyAbsSyn )
happyIn104 :: CExpr -> HappyAbsSyn
happyIn104 x :: CExpr
x = HappyWrap104 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap104
HappyWrap104 CExpr
x)
{-# INLINE happyIn104 #-}
happyOut104 :: (HappyAbsSyn ) -> HappyWrap104
happyOut104 :: HappyAbsSyn -> HappyWrap104
happyOut104 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap104
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut104 #-}
newtype HappyWrap105 = HappyWrap105 (Reversed [CExpr])
happyIn105 :: (Reversed [CExpr]) -> (HappyAbsSyn )
happyIn105 :: Reversed [CExpr] -> HappyAbsSyn
happyIn105 x :: Reversed [CExpr]
x = HappyWrap105 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CExpr] -> HappyWrap105
HappyWrap105 Reversed [CExpr]
x)
{-# INLINE happyIn105 #-}
happyOut105 :: (HappyAbsSyn ) -> HappyWrap105
happyOut105 :: HappyAbsSyn -> HappyWrap105
happyOut105 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap105
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut105 #-}
newtype HappyWrap106 = HappyWrap106 (CExpr)
happyIn106 :: (CExpr) -> (HappyAbsSyn )
happyIn106 :: CExpr -> HappyAbsSyn
happyIn106 x :: CExpr
x = HappyWrap106 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap106
HappyWrap106 CExpr
x)
{-# INLINE happyIn106 #-}
happyOut106 :: (HappyAbsSyn ) -> HappyWrap106
happyOut106 :: HappyAbsSyn -> HappyWrap106
happyOut106 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap106
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut106 #-}
newtype HappyWrap107 = HappyWrap107 (Located CUnaryOp)
happyIn107 :: (Located CUnaryOp) -> (HappyAbsSyn )
happyIn107 :: Located CUnaryOp -> HappyAbsSyn
happyIn107 x :: Located CUnaryOp
x = HappyWrap107 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Located CUnaryOp -> HappyWrap107
HappyWrap107 Located CUnaryOp
x)
{-# INLINE happyIn107 #-}
happyOut107 :: (HappyAbsSyn ) -> HappyWrap107
happyOut107 :: HappyAbsSyn -> HappyWrap107
happyOut107 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap107
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut107 #-}
newtype HappyWrap108 = HappyWrap108 (CExpr)
happyIn108 :: (CExpr) -> (HappyAbsSyn )
happyIn108 :: CExpr -> HappyAbsSyn
happyIn108 x :: CExpr
x = HappyWrap108 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap108
HappyWrap108 CExpr
x)
{-# INLINE happyIn108 #-}
happyOut108 :: (HappyAbsSyn ) -> HappyWrap108
happyOut108 :: HappyAbsSyn -> HappyWrap108
happyOut108 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap108
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut108 #-}
newtype HappyWrap109 = HappyWrap109 (CExpr)
happyIn109 :: (CExpr) -> (HappyAbsSyn )
happyIn109 :: CExpr -> HappyAbsSyn
happyIn109 x :: CExpr
x = HappyWrap109 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap109
HappyWrap109 CExpr
x)
{-# INLINE happyIn109 #-}
happyOut109 :: (HappyAbsSyn ) -> HappyWrap109
happyOut109 :: HappyAbsSyn -> HappyWrap109
happyOut109 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap109
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut109 #-}
newtype HappyWrap110 = HappyWrap110 (CExpr)
happyIn110 :: (CExpr) -> (HappyAbsSyn )
happyIn110 :: CExpr -> HappyAbsSyn
happyIn110 x :: CExpr
x = HappyWrap110 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap110
HappyWrap110 CExpr
x)
{-# INLINE happyIn110 #-}
happyOut110 :: (HappyAbsSyn ) -> HappyWrap110
happyOut110 :: HappyAbsSyn -> HappyWrap110
happyOut110 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap110
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut110 #-}
newtype HappyWrap111 = HappyWrap111 (CExpr)
happyIn111 :: (CExpr) -> (HappyAbsSyn )
happyIn111 :: CExpr -> HappyAbsSyn
happyIn111 x :: CExpr
x = HappyWrap111 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap111
HappyWrap111 CExpr
x)
{-# INLINE happyIn111 #-}
happyOut111 :: (HappyAbsSyn ) -> HappyWrap111
happyOut111 :: HappyAbsSyn -> HappyWrap111
happyOut111 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap111
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut111 #-}
newtype HappyWrap112 = HappyWrap112 (CExpr)
happyIn112 :: (CExpr) -> (HappyAbsSyn )
happyIn112 :: CExpr -> HappyAbsSyn
happyIn112 x :: CExpr
x = HappyWrap112 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap112
HappyWrap112 CExpr
x)
{-# INLINE happyIn112 #-}
happyOut112 :: (HappyAbsSyn ) -> HappyWrap112
happyOut112 :: HappyAbsSyn -> HappyWrap112
happyOut112 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap112
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut112 #-}
newtype HappyWrap113 = HappyWrap113 (CExpr)
happyIn113 :: (CExpr) -> (HappyAbsSyn )
happyIn113 :: CExpr -> HappyAbsSyn
happyIn113 x :: CExpr
x = HappyWrap113 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap113
HappyWrap113 CExpr
x)
{-# INLINE happyIn113 #-}
happyOut113 :: (HappyAbsSyn ) -> HappyWrap113
happyOut113 :: HappyAbsSyn -> HappyWrap113
happyOut113 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap113
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut113 #-}
newtype HappyWrap114 = HappyWrap114 (CExpr)
happyIn114 :: (CExpr) -> (HappyAbsSyn )
happyIn114 :: CExpr -> HappyAbsSyn
happyIn114 x :: CExpr
x = HappyWrap114 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap114
HappyWrap114 CExpr
x)
{-# INLINE happyIn114 #-}
happyOut114 :: (HappyAbsSyn ) -> HappyWrap114
happyOut114 :: HappyAbsSyn -> HappyWrap114
happyOut114 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap114
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut114 #-}
newtype HappyWrap115 = HappyWrap115 (CExpr)
happyIn115 :: (CExpr) -> (HappyAbsSyn )
happyIn115 :: CExpr -> HappyAbsSyn
happyIn115 x :: CExpr
x = HappyWrap115 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap115
HappyWrap115 CExpr
x)
{-# INLINE happyIn115 #-}
happyOut115 :: (HappyAbsSyn ) -> HappyWrap115
happyOut115 :: HappyAbsSyn -> HappyWrap115
happyOut115 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap115
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut115 #-}
newtype HappyWrap116 = HappyWrap116 (CExpr)
happyIn116 :: (CExpr) -> (HappyAbsSyn )
happyIn116 :: CExpr -> HappyAbsSyn
happyIn116 x :: CExpr
x = HappyWrap116 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap116
HappyWrap116 CExpr
x)
{-# INLINE happyIn116 #-}
happyOut116 :: (HappyAbsSyn ) -> HappyWrap116
happyOut116 :: HappyAbsSyn -> HappyWrap116
happyOut116 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap116
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut116 #-}
newtype HappyWrap117 = HappyWrap117 (CExpr)
happyIn117 :: (CExpr) -> (HappyAbsSyn )
happyIn117 :: CExpr -> HappyAbsSyn
happyIn117 x :: CExpr
x = HappyWrap117 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap117
HappyWrap117 CExpr
x)
{-# INLINE happyIn117 #-}
happyOut117 :: (HappyAbsSyn ) -> HappyWrap117
happyOut117 :: HappyAbsSyn -> HappyWrap117
happyOut117 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap117
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut117 #-}
newtype HappyWrap118 = HappyWrap118 (CExpr)
happyIn118 :: (CExpr) -> (HappyAbsSyn )
happyIn118 :: CExpr -> HappyAbsSyn
happyIn118 x :: CExpr
x = HappyWrap118 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap118
HappyWrap118 CExpr
x)
{-# INLINE happyIn118 #-}
happyOut118 :: (HappyAbsSyn ) -> HappyWrap118
happyOut118 :: HappyAbsSyn -> HappyWrap118
happyOut118 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap118
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut118 #-}
newtype HappyWrap119 = HappyWrap119 (CExpr)
happyIn119 :: (CExpr) -> (HappyAbsSyn )
happyIn119 :: CExpr -> HappyAbsSyn
happyIn119 x :: CExpr
x = HappyWrap119 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap119
HappyWrap119 CExpr
x)
{-# INLINE happyIn119 #-}
happyOut119 :: (HappyAbsSyn ) -> HappyWrap119
happyOut119 :: HappyAbsSyn -> HappyWrap119
happyOut119 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap119
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut119 #-}
newtype HappyWrap120 = HappyWrap120 (CExpr)
happyIn120 :: (CExpr) -> (HappyAbsSyn )
happyIn120 :: CExpr -> HappyAbsSyn
happyIn120 x :: CExpr
x = HappyWrap120 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap120
HappyWrap120 CExpr
x)
{-# INLINE happyIn120 #-}
happyOut120 :: (HappyAbsSyn ) -> HappyWrap120
happyOut120 :: HappyAbsSyn -> HappyWrap120
happyOut120 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap120
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut120 #-}
newtype HappyWrap121 = HappyWrap121 (Located CAssignOp)
happyIn121 :: (Located CAssignOp) -> (HappyAbsSyn )
happyIn121 :: Located CAssignOp -> HappyAbsSyn
happyIn121 x :: Located CAssignOp
x = HappyWrap121 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Located CAssignOp -> HappyWrap121
HappyWrap121 Located CAssignOp
x)
{-# INLINE happyIn121 #-}
happyOut121 :: (HappyAbsSyn ) -> HappyWrap121
happyOut121 :: HappyAbsSyn -> HappyWrap121
happyOut121 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap121
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut121 #-}
newtype HappyWrap122 = HappyWrap122 (CExpr)
happyIn122 :: (CExpr) -> (HappyAbsSyn )
happyIn122 :: CExpr -> HappyAbsSyn
happyIn122 x :: CExpr
x = HappyWrap122 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap122
HappyWrap122 CExpr
x)
{-# INLINE happyIn122 #-}
happyOut122 :: (HappyAbsSyn ) -> HappyWrap122
happyOut122 :: HappyAbsSyn -> HappyWrap122
happyOut122 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap122
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut122 #-}
newtype HappyWrap123 = HappyWrap123 (Reversed [CExpr])
happyIn123 :: (Reversed [CExpr]) -> (HappyAbsSyn )
happyIn123 :: Reversed [CExpr] -> HappyAbsSyn
happyIn123 x :: Reversed [CExpr]
x = HappyWrap123 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CExpr] -> HappyWrap123
HappyWrap123 Reversed [CExpr]
x)
{-# INLINE happyIn123 #-}
happyOut123 :: (HappyAbsSyn ) -> HappyWrap123
happyOut123 :: HappyAbsSyn -> HappyWrap123
happyOut123 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap123
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut123 #-}
newtype HappyWrap124 = HappyWrap124 (Maybe CExpr)
happyIn124 :: (Maybe CExpr) -> (HappyAbsSyn )
happyIn124 :: Maybe CExpr -> HappyAbsSyn
happyIn124 x :: Maybe CExpr
x = HappyWrap124 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Maybe CExpr -> HappyWrap124
HappyWrap124 Maybe CExpr
x)
{-# INLINE happyIn124 #-}
happyOut124 :: (HappyAbsSyn ) -> HappyWrap124
happyOut124 :: HappyAbsSyn -> HappyWrap124
happyOut124 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap124
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut124 #-}
newtype HappyWrap125 = HappyWrap125 (Maybe CExpr)
happyIn125 :: (Maybe CExpr) -> (HappyAbsSyn )
happyIn125 :: Maybe CExpr -> HappyAbsSyn
happyIn125 x :: Maybe CExpr
x = HappyWrap125 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Maybe CExpr -> HappyWrap125
HappyWrap125 Maybe CExpr
x)
{-# INLINE happyIn125 #-}
happyOut125 :: (HappyAbsSyn ) -> HappyWrap125
happyOut125 :: HappyAbsSyn -> HappyWrap125
happyOut125 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap125
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut125 #-}
newtype HappyWrap126 = HappyWrap126 (CExpr)
happyIn126 :: (CExpr) -> (HappyAbsSyn )
happyIn126 :: CExpr -> HappyAbsSyn
happyIn126 x :: CExpr
x = HappyWrap126 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap126
HappyWrap126 CExpr
x)
{-# INLINE happyIn126 #-}
happyOut126 :: (HappyAbsSyn ) -> HappyWrap126
happyOut126 :: HappyAbsSyn -> HappyWrap126
happyOut126 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap126
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut126 #-}
newtype HappyWrap127 = HappyWrap127 (CConst)
happyIn127 :: (CConst) -> (HappyAbsSyn )
happyIn127 :: CConst -> HappyAbsSyn
happyIn127 x :: CConst
x = HappyWrap127 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CConst -> HappyWrap127
HappyWrap127 CConst
x)
{-# INLINE happyIn127 #-}
happyOut127 :: (HappyAbsSyn ) -> HappyWrap127
happyOut127 :: HappyAbsSyn -> HappyWrap127
happyOut127 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap127
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut127 #-}
newtype HappyWrap128 = HappyWrap128 (CStrLit)
happyIn128 :: (CStrLit) -> (HappyAbsSyn )
happyIn128 :: CStrLit -> HappyAbsSyn
happyIn128 x :: CStrLit
x = HappyWrap128 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStrLit -> HappyWrap128
HappyWrap128 CStrLit
x)
{-# INLINE happyIn128 #-}
happyOut128 :: (HappyAbsSyn ) -> HappyWrap128
happyOut128 :: HappyAbsSyn -> HappyWrap128
happyOut128 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap128
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut128 #-}
newtype HappyWrap129 = HappyWrap129 (Reversed [CString])
happyIn129 :: (Reversed [CString]) -> (HappyAbsSyn )
happyIn129 :: Reversed [CString] -> HappyAbsSyn
happyIn129 x :: Reversed [CString]
x = HappyWrap129 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CString] -> HappyWrap129
HappyWrap129 Reversed [CString]
x)
{-# INLINE happyIn129 #-}
happyOut129 :: (HappyAbsSyn ) -> HappyWrap129
happyOut129 :: HappyAbsSyn -> HappyWrap129
happyOut129 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap129
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut129 #-}
newtype HappyWrap130 = HappyWrap130 (ClangCVersion)
happyIn130 :: (ClangCVersion) -> (HappyAbsSyn )
happyIn130 :: ClangCVersion -> HappyAbsSyn
happyIn130 x :: ClangCVersion
x = HappyWrap130 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (ClangCVersion -> HappyWrap130
HappyWrap130 ClangCVersion
x)
{-# INLINE happyIn130 #-}
happyOut130 :: (HappyAbsSyn ) -> HappyWrap130
happyOut130 :: HappyAbsSyn -> HappyWrap130
happyOut130 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap130
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut130 #-}
newtype HappyWrap131 = HappyWrap131 (Ident)
happyIn131 :: (Ident) -> (HappyAbsSyn )
happyIn131 :: Ident -> HappyAbsSyn
happyIn131 x :: Ident
x = HappyWrap131 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Ident -> HappyWrap131
HappyWrap131 Ident
x)
{-# INLINE happyIn131 #-}
happyOut131 :: (HappyAbsSyn ) -> HappyWrap131
happyOut131 :: HappyAbsSyn -> HappyWrap131
happyOut131 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap131
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut131 #-}
newtype HappyWrap132 = HappyWrap132 ([CAttr])
happyIn132 :: ([CAttr]) -> (HappyAbsSyn )
happyIn132 :: [CAttr] -> HappyAbsSyn
happyIn132 x :: [CAttr]
x = HappyWrap132 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ([CAttr] -> HappyWrap132
HappyWrap132 [CAttr]
x)
{-# INLINE happyIn132 #-}
happyOut132 :: (HappyAbsSyn ) -> HappyWrap132
happyOut132 :: HappyAbsSyn -> HappyWrap132
happyOut132 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap132
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut132 #-}
newtype HappyWrap133 = HappyWrap133 ([CAttr])
happyIn133 :: ([CAttr]) -> (HappyAbsSyn )
happyIn133 :: [CAttr] -> HappyAbsSyn
happyIn133 x :: [CAttr]
x = HappyWrap133 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ([CAttr] -> HappyWrap133
HappyWrap133 [CAttr]
x)
{-# INLINE happyIn133 #-}
happyOut133 :: (HappyAbsSyn ) -> HappyWrap133
happyOut133 :: HappyAbsSyn -> HappyWrap133
happyOut133 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap133
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut133 #-}
newtype HappyWrap134 = HappyWrap134 ([CAttr])
happyIn134 :: ([CAttr]) -> (HappyAbsSyn )
happyIn134 :: [CAttr] -> HappyAbsSyn
happyIn134 x :: [CAttr]
x = HappyWrap134 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ([CAttr] -> HappyWrap134
HappyWrap134 [CAttr]
x)
{-# INLINE happyIn134 #-}
happyOut134 :: (HappyAbsSyn ) -> HappyWrap134
happyOut134 :: HappyAbsSyn -> HappyWrap134
happyOut134 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap134
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut134 #-}
newtype HappyWrap135 = HappyWrap135 (Reversed [CAttr])
happyIn135 :: (Reversed [CAttr]) -> (HappyAbsSyn )
happyIn135 :: Reversed [CAttr] -> HappyAbsSyn
happyIn135 x :: Reversed [CAttr]
x = HappyWrap135 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CAttr] -> HappyWrap135
HappyWrap135 Reversed [CAttr]
x)
{-# INLINE happyIn135 #-}
happyOut135 :: (HappyAbsSyn ) -> HappyWrap135
happyOut135 :: HappyAbsSyn -> HappyWrap135
happyOut135 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap135
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut135 #-}
newtype HappyWrap136 = HappyWrap136 (Maybe CAttr)
happyIn136 :: (Maybe CAttr) -> (HappyAbsSyn )
happyIn136 :: Maybe CAttr -> HappyAbsSyn
happyIn136 x :: Maybe CAttr
x = HappyWrap136 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Maybe CAttr -> HappyWrap136
HappyWrap136 Maybe CAttr
x)
{-# INLINE happyIn136 #-}
happyOut136 :: (HappyAbsSyn ) -> HappyWrap136
happyOut136 :: HappyAbsSyn -> HappyWrap136
happyOut136 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap136
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut136 #-}
newtype HappyWrap137 = HappyWrap137 (Reversed [CExpr])
happyIn137 :: (Reversed [CExpr]) -> (HappyAbsSyn )
happyIn137 :: Reversed [CExpr] -> HappyAbsSyn
happyIn137 x :: Reversed [CExpr]
x = HappyWrap137 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CExpr] -> HappyWrap137
HappyWrap137 Reversed [CExpr]
x)
{-# INLINE happyIn137 #-}
happyOut137 :: (HappyAbsSyn ) -> HappyWrap137
happyOut137 :: HappyAbsSyn -> HappyWrap137
happyOut137 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap137
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut137 #-}
happyInTok :: (CToken) -> (HappyAbsSyn )
happyInTok :: CToken -> HappyAbsSyn
happyInTok x :: CToken
x = CToken -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CToken
x
{-# INLINE happyInTok #-}
happyOutTok :: (HappyAbsSyn ) -> (CToken)
happyOutTok :: HappyAbsSyn -> CToken
happyOutTok x :: HappyAbsSyn
x = HappyAbsSyn -> CToken
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOutTok #-}


happyExpList :: HappyAddr
happyExpList :: HappyAddr
happyExpList = Addr# -> HappyAddr
HappyA# "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\xd0\x4a\xfa\x1f\x5e\xb2\xfb\x81\x07\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\x54\x1a\x00\x1e\x80\x44\xc0\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x80\xd0\x4a\xfa\x1f\x5e\xb2\xfb\x81\x07\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x66\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xff\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x90\xa0\xa4\xfe\xc5\x01\x27\x9d\xff\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x10\x00\x00\x80\x05\x00\x02\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\x54\x1a\x00\x1e\x80\x44\xc0\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\xab\xa5\xff\xe1\x7d\xab\x3f\x38\xc0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb0\x5a\xf2\x1f\xde\xb7\xa8\x03\x02\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xaa\x25\xff\xc1\x79\x8b\x3a\x20\xc0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xb0\x10\x10\x00\xc2\x87\x28\x02\x02\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x0a\x01\x01\x00\x78\x88\x22\x20\xc0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb0\x10\x10\x00\xc2\x87\x28\x02\x02\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x01\x01\x00\x78\x88\x22\x20\xc0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\xb0\x5a\xfa\x1f\xde\xb7\xfa\x83\x03\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x10\x00\x00\x80\x05\x00\x02\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\xa9\xa4\xff\xe1\x25\xab\x1f\x38\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\xd0\x4a\xfa\x1f\x5e\xb2\xfb\x81\x07\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\xa0\xa4\xfe\xc5\x01\x27\x9d\xff\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x4a\xea\x5f\x1c\x70\xd2\xf9\xff\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x28\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xa9\xa4\xff\xe1\x25\xbb\x1f\x30\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa9\xa4\xff\xe1\x25\xab\x1f\x38\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\xc0\x00\xf8\xfe\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\xb0\x5a\xfa\x1f\xde\xb7\xfa\x83\x03\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\x54\x1a\x00\x1e\x80\x44\xc0\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\xa4\xfe\xc1\x01\x23\x1d\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4a\xea\x1f\x1c\x30\xd2\x01\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x90\xa0\xa4\xfe\xc5\x01\x27\x9d\xff\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x90\xa0\xa4\xfe\xc5\x01\x27\x9d\xff\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x09\x4a\xea\x5f\x1c\x70\xd2\xf9\xff\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x5a\xe2\x1f\x9c\x35\x80\x03\x02\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x20\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x10\x00\x00\x80\x05\x00\x02\x02\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\xa2\xa5\xfe\xc1\x59\x23\x3d\x30\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4a\xea\x1f\x1c\x30\xd2\x01\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x48\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x09\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa2\xa5\xfe\xc1\x59\x23\x3d\x30\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\xa9\xa4\xff\xe1\x25\xab\x1f\x30\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x80\x49\xa5\x01\xe0\x01\x48\x04\xfc\xfd\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\xfd\xbe\xff\xff\xa5\xff\xdf\xff\x5f\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\x54\x1a\x00\x1e\x80\x44\xc0\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa9\xa4\xff\xe1\x25\xbb\x1f\x30\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xa9\xa4\xff\xe1\x25\xbb\x1f\x30\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x4a\xea\x5f\x1c\x70\xd2\xf9\xff\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xa9\xa4\xff\xe1\x25\xbb\x1f\x30\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa9\xa4\xff\xe1\x25\xab\x1f\x30\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x20\x10\x00\x00\x80\x05\x00\x82\x03\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xa9\xa4\xff\xe1\x25\xbb\x1f\x30\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x4a\xea\x5f\x1c\x70\xd2\xf9\xff\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x91\x4a\xfa\x1f\x5e\xb2\xfb\x01\x03\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x02\x01\x00\x04\x58\x04\xa0\xef\x9f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfe\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\xb0\x5a\xfa\x1f\xde\xb7\xfa\x83\x03\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb0\x10\x10\x00\xc2\x87\x28\x02\x02\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x01\x01\x00\x78\x88\x22\x20\xc0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\xb0\x5a\xfa\x1f\xde\xb7\xfa\x83\x03\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa9\xa4\xff\xe1\x25\xab\x1f\x30\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\xab\xa5\xff\xe1\x7d\xab\x3f\x38\xc0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\xab\xa5\xff\xe1\x7d\xab\x3f\x38\xc0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x90\x4a\xfa\x1f\x5e\xb2\xfa\x81\x03\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\xa0\xa4\xfe\xc5\x01\x27\x9d\xff\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x91\x4a\xfa\x1f\x5e\xb2\xfb\x01\x03\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x20\x10\x00\x00\x80\x05\x00\x82\x02\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x28\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x09\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\xb0\x5a\xfa\x1f\xde\xb7\xfa\x83\x03\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xa9\xa4\xff\xe1\x25\xab\x1f\x30\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xab\xa5\xff\xe1\x7d\xab\x3f\x30\xc0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\xa9\xa4\xff\xe1\x25\xab\x1f\x38\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x90\x4a\xfa\x1f\x5e\xb2\xfa\x81\x03\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x20\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x28\x10\x00\x40\x80\x45\x00\xfa\xfc\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x02\x01\x00\x04\x58\x04\xa0\xef\x9f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\xa0\xa4\xfe\xc5\x01\x27\x9d\xff\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x91\x4a\xfa\x1f\x5e\xb2\xfb\x01\x03\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\xa0\xa4\xfe\xc1\x01\x23\x1d\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x20\x10\x00\x00\x80\x05\x00\x82\x03\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x80\x49\xa5\x01\xe0\x01\x48\x04\xfc\xfd\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\x54\x1a\x00\x1e\x80\x44\xc0\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x80\x49\xa5\x01\xe0\x01\x48\x04\xfc\xfd\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\xfd\xbe\xff\xff\xa5\xff\xdf\xff\x5f\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\xb0\x5a\xfa\x1f\xde\xb7\xfa\x83\x03\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\xb0\x5a\xfa\x1f\xde\xb7\xfa\x83\x03\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x98\x4a\xfa\x5f\x5e\xf2\xfb\xf9\xff\x65\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4a\xea\x1f\x1c\x30\xd2\x01\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\xa4\xfe\xc1\x01\x23\x1d\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\xa4\xfe\xc1\x01\x23\x1d\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xca\xea\x1f\x1c\x30\xd2\x01\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x20\x10\x00\x00\x80\x05\x00\x02\x02\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x90\x4a\xfa\x1f\x5e\xb2\xfa\x01\x03\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xca\x3f\x01\x08\x00\x90\x00\x00\x00\x04\x00\x04\x80\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x90\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x04\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xca\x3f\x01\x08\x00\x90\x00\x00\x00\x04\x00\x04\x80\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x20\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\xab\xa5\xff\xe1\x7d\xab\x3f\x38\xc0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\x54\x1a\x00\x1e\x80\x44\xc0\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x38\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x4a\xea\x1f\x1c\x30\xd2\x01\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa2\xa5\xfe\xc1\x59\x23\x3d\x30\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x04\x00\x00\x4a\xea\x1f\x1c\x30\xd2\x81\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\xa4\xfe\xc1\x01\x23\x1d\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x38\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\xa9\xa4\xff\xe1\x25\xab\x1f\x38\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x20\x10\x00\x00\x80\x05\x00\x82\x02\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x90\x4a\xfa\x1f\x5e\xb2\xfa\x81\x03\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x38\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xff\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x28\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x20\x10\x00\x00\x80\x05\x00\x82\x03\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa2\xa5\xfe\xc1\x59\x23\x3d\x30\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x02\x01\x00\x00\x58\x00\x20\x38\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\x54\x1a\x00\x1e\x80\x44\xc0\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\xac\xfe\xc1\x01\x23\x1d\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xca\x3f\x01\x08\x00\xb0\x00\x00\x00\x04\x00\x04\x80\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x09\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\xfc\x13\x80\x00\x00\x0b\x00\x00\x40\x00\x40\x00\xf8\xfd\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x3f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xff\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x80\x49\xa5\x01\xe0\x01\x48\x04\xfc\xfd\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x98\x54\x1a\x00\x1e\x80\x44\xc0\xdf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x3f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x40\x00\xf8\xfc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x04\x80\xcf\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

{-# NOINLINE happyExpListPerState #-}
happyExpListPerState :: Int -> [[Char]]
happyExpListPerState st :: Int
st =
    [[Char]]
token_strs_expected
  where token_strs :: [[Char]]
token_strs = ["error","%dummy","%start_translation_unit","%start_external_declaration","%start_statement","%start_expression","translation_unit","ext_decl_list","external_declaration","function_definition","function_declarator","statement","labeled_statement","compound_statement","enter_scope","leave_scope","block_item_list","block_item","nested_declaration","nested_function_definition","label_declarations","expression_statement","selection_statement","iteration_statement","jump_statement","asm_statement","maybe_type_qualifier","asm_operands","nonnull_asm_operands","asm_operand","asm_clobbers","declaration","declaration_list","default_declaring_list","asm_attrs_opt","declaring_list","declaration_specifier","declaration_qualifier_list","declaration_qualifier","declaration_qualifier_without_types","storage_class","function_specifier","alignment_specifier","type_specifier","basic_type_name","basic_declaration_specifier","basic_type_specifier","sue_declaration_specifier","sue_type_specifier","typedef_declaration_specifier","typedef_type_specifier","elaborated_type_name","struct_or_union_specifier","struct_or_union","struct_declaration_list","struct_declaration","struct_default_declaring_list","struct_declaring_list","struct_declarator","struct_identifier_declarator","enum_specifier","enumerator_list","enumerator","type_qualifier","type_qualifier_list","declarator","asm_opt","typedef_declarator","parameter_typedef_declarator","clean_typedef_declarator","clean_postfix_typedef_declarator","paren_typedef_declarator","paren_postfix_typedef_declarator","simple_paren_typedef_declarator","identifier_declarator","unary_identifier_declarator","postfix_identifier_declarator","paren_identifier_declarator","function_declarator_old","old_function_declarator","postfix_old_function_declarator","parameter_type_list","parameter_list","parameter_declaration","identifier_list","type_name","abstract_declarator","postfixing_abstract_declarator","array_abstract_declarator","postfix_array_abstract_declarator","unary_abstract_declarator","postfix_abstract_declarator","initializer","initializer_opt","initializer_list","designation","designator_list","designator","array_designator","primary_expression","generic_assoc_list","generic_assoc","offsetof_member_designator","postfix_expression","argument_expression_list","unary_expression","unary_operator","cast_expression","multiplicative_expression","additive_expression","shift_expression","relational_expression","equality_expression","and_expression","exclusive_or_expression","inclusive_or_expression","logical_and_expression","logical_or_expression","conditional_expression","assignment_expression","assignment_operator","expression","comma_expression","expression_opt","assignment_expression_opt","constant_expression","constant","string_literal","string_literal_list","clang_version_literal","identifier","attrs_opt","attrs","attr","attribute_list","attribute","attribute_params","'('","')'","'['","']'","\"->\"","'.'","'!'","'~'","\"++\"","\"--\"","'+'","'-'","'*'","'/'","'%'","'&'","\"<<\"","\">>\"","'<'","\"<=\"","'>'","\">=\"","\"==\"","\"!=\"","'^'","'|'","\"&&\"","\"||\"","'?'","':'","'='","\"+=\"","\"-=\"","\"*=\"","\"/=\"","\"%=\"","\"&=\"","\"^=\"","\"|=\"","\"<<=\"","\">>=\"","','","';'","'{'","'}'","\"...\"","alignof","alignas","\"_Atomic\"","asm","auto","break","\"_Bool\"","case","char","const","continue","\"_Complex\"","default","do","double","else","enum","extern","float","\"_Float32\"","\"_Float32x\"","\"_Float64\"","\"_Float64x\"","\"_Float128\"","\"_Float128x\"","\"__float128\"","for","\"_Generic\"","goto","if","inline","int","\"__int128\"","long","\"__label__\"","\"_Noreturn\"","\"_Nullable\"","\"_Nonnull\"","register","restrict","return","short","signed","sizeof","static","\"_Static_assert\"","struct","switch","typedef","typeof","\"__thread\"","union","unsigned","void","volatile","while","cchar","cint","cfloat","cstr","ident","tyident","\"__attribute__\"","\"__extension__\"","\"__real__\"","\"__imag__\"","\"__builtin_va_arg\"","\"__builtin_offsetof\"","\"__builtin_types_compatible_p\"","\"__builtin_convertvector\"","clangcversion","\"__kernel\"","\"__read_only\"","\"__write_only\"","\"__global\"","\"__local\"","%eof"]
        bit_start :: Int
bit_start = Int
st Int -> Int -> Int
forall a. Num a => a -> a -> a
* 260
        bit_end :: Int
bit_end = (Int
st Int -> Int -> Int
forall a. Num a => a -> a -> a
+ 1) Int -> Int -> Int
forall a. Num a => a -> a -> a
* 260
        read_bit :: Int -> Bool
read_bit = HappyAddr -> Int -> Bool
readArrayBit HappyAddr
happyExpList
        bits :: [Bool]
bits = (Int -> Bool) -> [Int] -> [Bool]
forall a b. (a -> b) -> [a] -> [b]
map Int -> Bool
read_bit [Int
bit_start..Int
bit_end Int -> Int -> Int
forall a. Num a => a -> a -> a
- 1]
        bits_indexed :: [(Bool, Int)]
bits_indexed = [Bool] -> [Int] -> [(Bool, Int)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Bool]
bits [0..259]
        token_strs_expected :: [[Char]]
token_strs_expected = ((Bool, Int) -> [[Char]]) -> [(Bool, Int)] -> [[Char]]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (Bool, Int) -> [[Char]]
f [(Bool, Int)]
bits_indexed
        f :: (Bool, Int) -> [[Char]]
f (False, _) = []
        f (True, nr :: Int
nr) = [[[Char]]
token_strs [[Char]] -> Int -> [Char]
forall a. [a] -> Int -> a
!! Int
nr]

happyActOffsets :: HappyAddr
happyActOffsets :: HappyAddr
happyActOffsets = Addr# -> HappyAddr
HappyA# "\x00\x00\x53\x09\x04\x15\xb1\x17\x00\x00\xb1\x02\x00\x00\xcd\x02\x0a\x18\xb1\x17\x00\x00\x80\x01\xc0\x00\xd4\x00\x79\x02\x2f\x03\x32\x00\x71\x00\x01\x00\x8e\x00\x7f\x03\x00\x00\xb7\x00\x35\x00\x00\x00\x00\x00\x1c\x14\x00\x00\x00\x00\xcd\x17\xcd\x17\x00\x00\x00\x00\x00\x00\x00\x00\x4f\x03\xf9\x17\x05\x01\x41\x18\x00\x00\x00\x00\x00\x00\xdd\x00\x00\x00\x6d\x18\x89\x18\x89\x18\x10\x01\x70\x01\x82\x01\x96\x01\xf0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7b\x01\xae\x01\x00\x00\x00\x00\xe4\x09\x87\x01\xb5\x18\xa5\x01\xbe\x01\x04\x15\xea\x01\x23\x00\xee\x01\xb5\x18\x10\x02\x14\x02\xfe\x01\x00\x00\xc6\x01\x00\x00\x17\x02\x00\x00\xae\x03\x08\x04\x55\x01\xd9\x05\x00\x00\x00\x00\x00\x00\x00\x00\x55\x01\x00\x00\x04\x1f\x0e\x20\xc2\x1c\xf1\x1c\xc4\x1f\x3d\x20\x00\x00\x00\x00\xf7\x01\x00\x00\x32\x06\x00\x00\x00\x00\x00\x00\x23\x02\x00\x00\x00\x00\x00\x00\xe4\x09\x69\x0a\x00\x00\xe1\x00\xe1\x00\x65\x02\x69\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x77\x02\x00\x00\x00\x00\x94\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa8\x02\x53\x09\x00\x00\x00\x00\x00\x00\xfb\x01\x00\x00\xaa\x02\x90\x14\xb5\x18\xb2\x00\x2c\x02\x4c\x02\x90\x14\x01\x13\x00\x00\x00\x00\xfd\x00\xdb\x02\xac\x03\xe7\x02\xfd\x00\xc3\x02\x00\x00\x00\x00\x00\x00\xe8\x01\x00\x00\x00\x00\xfa\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x1d\x00\x00\xff\x02\x00\x00\xd8\x1d\x19\x0e\xdf\x02\x00\x00\x00\x00\x00\x00\x00\x00\xe8\x01\x00\x00\x8b\x06\x06\x03\x00\x00\xb4\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe3\x02\xe4\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xed\x02\x00\x00\x03\x00\x07\x00\x52\x02\xef\x02\x00\x00\x00\x00\x00\x00\xe8\x01\x00\x00\x00\x00\x27\x03\x00\x00\x0f\x03\x11\x03\x00\x00\xea\x02\x00\x00\xea\x02\x00\x00\x00\x00\xb5\x18\xb5\x18\x00\x00\x3f\x03\xb5\x18\x86\x03\xb5\x18\x00\x00\x8d\x03\x59\x03\x04\x15\x00\x00\x00\x00\x00\x00\x4b\x01\x00\x00\xb4\x03\x00\x00\x70\x03\x56\x03\x00\x00\xb5\x18\x27\x23\x27\x23\xb5\x18\x00\x00\x1c\x14\x00\x00\x00\x00\x5c\x03\x00\x00\x00\x00\x1c\x14\xb5\x18\x00\x00\x1c\x14\x00\x00\x00\x00\x00\x00\xc6\x03\xf4\x01\x8c\x21\xe7\x0d\xe7\x0d\xb0\x0d\xc9\x03\xd4\x03\x58\x23\xb5\x18\xb5\x18\x4f\x16\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\xb5\x18\x00\x00\xb5\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\x16\xb5\x18\xd1\x03\xd1\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xda\x03\x0d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xaa\x03\xaa\x03\x49\x04\x49\x04\x46\x04\x46\x04\x46\x04\x46\x04\x79\x02\x79\x02\x4f\x04\xdb\x03\xf7\x03\xd9\x03\xf9\x03\xb5\x18\x00\x04\x00\x00\xf5\x03\x00\x00\xc3\x16\x00\x00\x00\x00\x00\x00\xc2\x03\x87\x20\xcb\x20\xe4\x06\xd4\x0f\x00\x00\x00\x00\x35\x04\x10\x04\x3d\x04\x00\x00\x48\x04\x23\x04\x56\x04\x5c\x04\x6c\x04\x04\x15\x19\x03\x0e\x04\x2d\x04\x0f\x04\x04\x15\xb5\x18\x00\x00\xa3\x04\x4f\x1f\x7c\x04\x80\x04\x00\x00\xa7\x04\x00\x00\xac\x04\xaf\x04\x4a\x01\x62\x01\x40\x1d\xad\x04\x59\x04\xd2\x04\x00\x00\x90\x14\x40\x1d\xc0\x04\x00\x00\x00\x00\x23\x1e\x25\x12\x00\x00\x00\x00\x3f\x00\x4a\x00\xef\x04\xf3\x04\x52\x02\x03\x01\x4a\x00\x00\x00\x40\x1d\xd8\x04\x00\x00\xd1\x04\x00\x00\x90\x14\xd4\x04\x00\x00\x00\x00\x00\x00\x00\x00\xe8\x01\x00\x00\x01\x05\x00\x00\x40\x1d\xeb\x04\x00\x00\x8d\x0e\x00\x00\x00\x05\x75\x0f\x1b\x00\x9f\x04\xd7\x00\x75\x04\xd7\x00\xc4\x1f\x3d\x20\xce\x04\x05\x05\xf0\x04\x00\x00\x10\x00\x8d\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x62\x01\x3d\x07\x62\x01\x96\x07\xc2\x0a\x90\x14\x40\x1d\x06\x05\x00\x00\x1d\x05\x13\x04\x0a\x01\x0a\x01\x52\x02\x00\x00\x52\x02\x00\x00\x52\x02\x00\x00\x00\x00\x30\x13\x2a\x05\x36\x05\x3a\x05\x15\x05\x7e\x04\x19\x05\x54\x05\x57\x05\xd1\xff\x11\x00\x00\x00\x00\x00\x5a\x05\x00\x00\x00\x00\xf6\x04\xce\x01\x00\x00\xe8\xff\x7e\x04\x32\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x13\x9c\x04\x00\x00\x52\x02\x00\x00\x0e\x17\x00\x00\x63\x05\x71\x05\x46\x05\x46\x05\xef\x07\x00\x00\x6a\x00\x86\x00\x46\x05\x00\x00\x13\x05\x8d\x1d\x00\x00\x18\x05\x00\x00\x6e\x1e\xb9\x1e\x27\x05\x70\x12\x18\x05\x18\x05\x00\x00\x80\x05\xf4\x11\x18\x05\x00\x00\x18\x05\x18\x05\x00\x00\xe7\x0d\xe9\x0f\x9e\x05\xae\x05\x1b\x00\x00\x00\xb0\x05\x5b\x05\x01\x0f\x1b\x00\x00\x00\x00\x00\x90\x14\x40\x1d\x72\x05\x00\x00\xb7\x05\xbc\x05\x33\x22\x00\x00\x00\x00\x00\x00\xa0\x04\xca\x05\x29\x01\xa7\x00\xcf\x05\x52\x02\x52\x02\xdb\x04\x00\x00\x00\x00\x00\x00\x75\x12\xc7\x00\x00\x00\x00\x00\xd5\x05\xda\x05\x74\x05\x00\x00\x00\x00\x00\x00\xdb\x05\xdb\x05\x04\x15\x04\x15\x04\x15\x00\x00\xb5\x18\xb5\x18\xb5\x18\xed\x05\x00\x00\x14\x00\x26\x05\x19\x03\xa4\x05\x00\x00\xe5\x05\x00\x00\x00\x00\x00\x00\x00\x00\x62\x01\x48\x08\x62\x01\xa1\x08\xf9\x05\x01\x04\x00\x00\x89\x23\x89\x23\xe8\x04\x89\x23\xfe\x05\xfe\x05\xf6\x22\xfe\x05\x4f\x13\x00\x00\x7b\x13\x23\x06\x2e\x06\x09\x00\x1b\x0b\x00\x00\x00\x00\x22\x16\xb5\x18\x00\x00\xb5\x18\x00\x00\xb5\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb8\x02\x0e\x17\xf7\x00\x00\x00\x16\x01\x00\x00\x17\x06\xb5\x18\xe8\x04\x22\x16\x35\x06\x41\x06\x0b\x00\x00\x00\x52\x02\x00\x00\x00\x00\x00\x00\x00\x00\xe7\x0d\x2c\x06\x17\x00\x00\x00\x36\x06\x62\x06\x02\x03\x00\x00\x64\x06\x66\x06\x00\x00\x3f\x06\xfa\x08\x3f\x06\x3f\x06\x3f\x06\x00\x00\x38\x05\x40\x06\x00\x00\x43\x06\x02\x00\x04\x15\x6e\x06\x53\x06\x58\x06\x4b\x06\x00\x00\x00\x00\x6f\x06\x6f\x06\x8e\x06\x00\x00\x00\x00\xe5\x04\x00\x00\x00\x00\xd2\x00\x00\x00\x00\x00\x00\x00\x00\x00\x79\x12\x52\x02\x00\x00\x6d\x22\x2f\x01\x00\x00\x6b\x05\x91\x05\x0f\x21\xf5\x18\x00\x00\x00\x00\xbc\x22\x00\x00\x00\x00\x00\x00\x00\x00\x9a\x06\xa4\x06\xac\x06\xb9\x06\x1b\x00\x54\x06\x00\x00\xbb\x06\x00\x00\x00\x00\xc0\x06\xb5\x18\x00\x00\x00\x00\x00\x00\xfd\x11\x1c\x12\xb7\x09\x00\x00\x00\x00\x9f\x12\xf3\x12\x10\x0a\x00\x00\x00\x00\x00\x00\x00\x00\xc9\x12\xd2\x00\xd2\x00\x94\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xbd\x02\x19\x00\xb5\x18\xda\x00\x00\x00\xc5\x06\x3a\x17\xc7\x06\xd1\xff\x00\x00\x00\x00\x0a\x18\x00\x00\xb1\x00\x00\x00\xb1\x06\x00\x00\x00\x00\x00\x00\xb5\x18\x78\x01\x00\x00\xd2\x00\x80\x13\xf8\x12\xd3\x06\x00\x00\x00\x00\xb5\x18\xde\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7c\x06\xdb\x06\xb5\x18\x2a\x01\x53\x21\xa5\x06\x00\x00\xa5\x06\x00\x00\xa5\x06\xf5\x06\xb5\x18\x00\x00\x00\x00\xf8\x12\xf9\x04\x00\x00\x00\x00\x00\x00\x00\x00\x04\x15\xb5\x18\xb5\x18\xeb\x06\x00\x00\x15\x00\xee\x06\x00\x00\x19\x07\x87\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf1\x06\x00\x00\x00\x00\x00\x00\x00\x00\xb5\x18\x97\x05\x00\x00\xb5\x18\x00\x00\xf6\x22\xb5\x18\x00\x00\x00\x00\x52\x02\x00\x00\xd0\x02\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa7\x15\x00\x00\x00\x00\x85\x17\x00\x00\x00\x00\xb5\x18\xd7\x15\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1b\x07\x00\x00\x1c\x07\x1e\x07\xb5\x18\x02\x00\x05\x07\x02\x00\x00\x00\x3e\x07\x40\x07\x00\x00\x00\x00\x00\x00\xb5\x18\x00\x00\x2a\x01\x2f\x01\xdf\x06\x00\x00\xb5\x18\x00\x00\x00\x00\x47\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb5\x18\xd1\x13\x00\x00\x00\x00\x00\x00\x0a\x18\x00\x00\x00\x00\x00\x00\xe5\x06\xe5\x06\x00\x00\x04\x15\x04\x15\x2f\x00\x00\x00\x00\x00\x69\x07\x02\x07\x02\x07\x00\x00\x00\x00\x6b\x07\x00\x00\x00\x00\x70\x07\x72\x07\x00\x00\x4b\x07\x0e\x07\x00\x00\x00\x00\x00\x00\xd1\x13\x00\x00\x00\x00\x00\x00\x48\x01\x00\x00\x00\x00\xb5\x18\xb5\x18\x77\x07\x79\x07\x6e\x07\x1f\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyGotoOffsets :: HappyAddr
happyGotoOffsets :: HappyAddr
happyGotoOffsets = Addr# -> HappyAddr
HappyA# "\x47\x06\xff\xff\xc4\x01\x11\x25\x93\x07\x3b\x00\x00\x00\x00\x00\x29\x07\xc4\x09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x72\x0b\x00\x00\x00\x00\xe1\x12\x28\x13\x00\x00\x00\x00\x00\x00\x00\x00\x30\x07\x8d\x13\x00\x00\xc3\x15\x00\x00\x00\x00\x00\x00\x38\x07\x00\x00\x61\x0c\x01\x16\x98\x16\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb9\x07\xfd\xff\x00\x00\x6f\x26\x00\x00\x00\x00\x48\x0e\x00\x00\x48\x07\x00\x00\x94\x24\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x07\x00\x00\x00\x00\x00\x00\xf8\x02\xdf\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd9\x0e\x00\x00\x90\x03\x3a\x01\x98\x02\x3f\x01\x77\x04\x52\x01\x00\x00\x00\x00\x9a\x04\x00\x00\xa3\x00\x00\x00\x00\x00\x00\x00\xe4\x04\xb0\x07\x00\x00\x00\x00\x98\x07\x37\x01\x00\x00\xe5\x09\x83\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xcf\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x77\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xca\x1a\x88\x26\x50\x07\x55\x07\x56\x07\xf2\x1b\xd9\x01\x00\x00\x00\x00\x94\x01\x00\x00\x1f\x05\x00\x00\x99\x02\xcb\x07\x00\x00\x00\x00\x00\x00\x50\x01\xc8\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb5\x09\x00\x00\x9f\x07\x00\x00\xf0\x19\xe4\x21\xe0\x07\x00\x00\x00\x00\x00\x00\x00\x00\x77\x01\xd3\x07\x0b\x01\x00\x00\x00\x00\x78\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfe\x07\x7c\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xec\x0d\x03\x0b\x3d\x05\x16\x08\x00\x00\x00\x00\x00\x00\xda\x01\x04\x08\x00\x00\x00\x00\x00\x00\x1a\x08\xdd\x01\x09\x08\x29\x05\x00\x00\x2c\x05\x00\x00\x00\x00\x2a\x25\x43\x25\x00\x00\x00\x00\x5c\x25\x00\x00\x75\x25\x00\x00\x37\x02\x00\x00\x30\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6c\x01\x30\x05\x00\x00\xa1\x26\xde\x18\x4d\x1c\xba\x26\x00\x00\xcd\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x0c\xd3\x26\x00\x00\x83\x0c\x00\x00\x00\x00\x00\x00\x00\x00\xdd\x02\x89\x00\xdc\xff\x5e\x00\x8f\x1c\x00\x00\x00\x00\xca\x00\x8e\x25\xc7\x28\xa7\x25\xe0\x28\x29\x1b\xaa\x1b\xa2\x1c\x0f\x1f\xf9\x28\xa3\x07\xfc\x07\x55\x08\xae\x08\x07\x09\x76\x0a\xab\x0b\xd7\x0e\x60\x0f\xa2\x11\x9a\x12\x00\x00\xec\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x25\xd9\x25\xa9\x07\xac\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x95\x28\x00\x00\x00\x00\x00\x00\x00\x00\x35\x13\x00\x00\x00\x00\x00\x00\xab\x07\x28\x06\x00\x00\xb8\x19\x11\x11\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x10\xe1\x01\x21\x08\xdf\x07\xc2\x07\x1e\x10\x05\x27\x00\x00\x00\x00\x66\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x5b\x03\x29\x29\x8c\x0b\xe9\x07\x4c\x05\x00\x00\x00\x00\xf0\x1a\x42\x0c\xf4\x07\x00\x00\x00\x00\xff\x14\x9d\x10\x00\x00\x00\x00\x73\x06\xa9\x11\x00\x00\x00\x00\x96\x05\xd3\x03\x63\x14\x00\x00\xee\x0c\xf6\x07\x00\x00\x00\x00\x2e\x08\x4b\x1b\x3f\x08\x00\x00\x00\x00\x00\x00\x00\x00\x1a\x02\x53\x08\x00\x00\x00\x00\x17\x0d\x17\x08\x00\x00\xa4\x21\x00\x00\x00\x00\x77\x24\xa5\x05\xd4\xff\x13\x15\x0b\x1a\xee\x1c\xd0\x04\x66\x01\x4f\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x76\x05\x00\x00\x00\x00\x00\x00\x00\x00\x45\x29\xa6\x0e\x52\x29\x98\x0d\x55\x1a\x71\x1b\x55\x0d\x18\x08\x00\x00\x00\x00\xef\x05\xf3\x01\x39\x0c\x2a\x06\x00\x00\x48\x06\x00\x00\x4f\x06\x00\x00\x00\x00\x6a\x01\x00\x00\x00\x00\x00\x00\x00\x00\xc4\x00\x00\x00\x00\x00\x00\x00\x94\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf7\x07\x00\x00\x00\x00\xde\x05\xe3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7a\x04\x4f\x06\x00\x00\x52\x06\x00\x00\x24\x24\x00\x00\x00\x00\x00\x00\x1f\x02\x40\x02\xdb\x13\x00\x00\xbc\x0f\xa3\x16\x54\x02\x00\x00\x00\x00\xff\x03\x00\x00\x30\x06\x00\x00\x1c\x05\x00\x00\x80\x19\x6e\x10\x37\x06\x57\x06\x00\x00\x45\x19\x31\x16\x76\x06\x00\x00\x81\x06\xb0\x06\x00\x00\x50\x00\x7f\x22\x00\x00\x00\x00\xda\x06\x00\x00\x00\x00\x00\x00\xc3\x21\xe8\x06\x00\x00\x00\x00\xcc\x1b\x7e\x0d\x1b\x08\x00\x00\x00\x00\x00\x00\xa2\x0c\x41\x08\x00\x00\x00\x00\x17\x07\x00\x00\x6e\x02\x22\x0e\x00\x00\x35\x07\x53\x07\x5e\x07\x00\x00\x00\x00\x00\x00\x65\x03\x72\x19\x00\x00\x00\x00\x00\x00\x00\x00\xfa\x07\x00\x00\x00\x00\x00\x00\x57\x02\x75\x02\x8d\x10\xa7\x10\xc1\x10\x00\x00\xad\x24\xc6\x24\xf2\x25\x00\x00\x00\x00\x00\x00\x00\x00\x5c\x02\x28\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x78\x12\x7e\x01\x7f\x15\x63\x01\x00\x00\x6d\x15\x00\x00\x5c\x1c\x6b\x1c\x4e\x00\x7a\x1c\x00\x00\x00\x00\x38\x17\x00\x00\x0d\x0f\x00\x00\xbc\x06\x00\x00\x00\x00\xf8\x07\xbf\x1a\x00\x00\x00\x00\xa1\x23\x1e\x27\x00\x00\xae\x28\x00\x00\x37\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x41\x24\x04\x06\x00\x00\x00\x00\x00\x00\x00\x00\x50\x27\x02\x08\xc6\x23\x00\x00\x00\x00\xfb\x07\x00\x00\x67\x07\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x75\x08\x99\x01\x7a\x08\x7c\x08\x7d\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x39\x00\x30\x11\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2f\x08\x3a\x08\x00\x00\x00\x00\x00\x00\x6a\x07\x00\x00\x00\x00\xef\x13\x00\x00\x00\x00\x00\x00\x00\x00\xda\x0b\x6d\x07\x00\x00\xe6\x11\xce\x1f\x00\x00\x00\x00\x00\x00\xce\x05\xd0\x0b\x00\x00\x00\x00\x8a\x14\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x62\x07\x80\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x69\x27\x00\x00\x00\x00\x00\x00\xb7\x15\x0f\x07\x84\x1a\x00\x00\x00\x00\x0f\x0d\xb6\x06\x8a\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x40\x11\x02\x15\x95\x16\x7b\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x13\x08\x82\x27\xce\xff\x00\x00\x00\x00\x04\x24\x00\x00\x12\x08\x00\x00\x00\x00\x22\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9b\x27\xce\xff\x00\x00\x0c\x17\x6a\x01\x4f\x0a\x00\x00\x00\x00\x00\x00\xb4\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x08\x00\x00\xcd\x27\xba\x05\x28\x06\x94\x07\x00\x00\x97\x07\x00\x00\x9a\x07\x00\x00\xe6\x27\x00\x00\x00\x00\x4f\x0a\xe7\x07\x00\x00\x00\x00\x00\x00\x00\x00\x4a\x11\xdf\x24\xf8\x24\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x92\x08\x00\x00\x00\x00\x00\x00\x00\x00\x0b\x26\x2a\x08\x00\x00\xff\x27\x00\x00\x8c\x0f\x18\x28\x00\x00\x00\x00\x05\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xea\x23\x00\x00\x00\x00\x5e\x24\x00\x00\x00\x00\x31\x28\xea\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x26\x18\x00\x00\x00\x76\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4a\x28\x00\x00\x14\x06\x38\x29\x25\x08\x00\x00\x63\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7c\x28\x8d\x05\x00\x00\x00\x00\x00\x00\x3d\x08\x00\x00\x00\x00\x00\x00\xed\x07\x31\x08\x00\x00\x64\x11\xd3\x11\x00\x00\x00\x00\x00\x00\x00\x00\x38\x08\x3e\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf4\xff\xba\x08\x00\x00\x00\x00\x4a\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3d\x26\x56\x26\x00\x00\x00\x00\x00\x00\x4b\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyAdjustOffset :: Happy_GHC_Exts.Int# -> Happy_GHC_Exts.Int#
happyAdjustOffset :: Int# -> Int#
happyAdjustOffset off :: Int#
off = Int#
off

happyDefActions :: HappyAddr
happyDefActions :: HappyAddr
happyDefActions = Addr# -> HappyAddr
HappyA# "\xfa\xff\x1b\xfe\x00\x00\x00\x00\x00\x00\x1b\xfe\x7a\xfe\x6e\xfe\x5c\xfe\x00\x00\x5a\xfe\x56\xfe\x53\xfe\x50\xfe\x4b\xfe\x48\xfe\x46\xfe\x44\xfe\x42\xfe\x40\xfe\x3e\xfe\x3b\xfe\x2e\xfe\x00\x00\x8a\xfe\x89\xfe\x1b\xfe\x5d\xfe\x5e\xfe\x00\x00\x00\x00\x60\xfe\x5f\xfe\x61\xfe\x62\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x24\xfe\x25\xfe\x23\xfe\x22\xfe\x8b\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe4\xff\xe3\xff\xe2\xff\xe1\xff\xe0\xff\xdf\xff\xde\xff\x00\x00\x00\x00\xc7\xff\xd7\xff\xb5\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2a\xfe\x00\x00\x00\x00\x8b\xfe\x1c\xfe\x00\x00\xf7\xff\x00\x00\xf6\xff\x00\x00\x00\x00\x00\x00\x00\x00\x97\xff\x8d\xff\x8c\xff\x8b\xff\x00\x00\x62\xff\x9a\xff\x7d\xff\x99\xff\x7c\xff\x98\xff\x7b\xff\x57\xff\x3d\xff\x1b\xfe\x3c\xff\x00\x00\xe5\xff\xef\xfe\xed\xfe\xee\xfe\xa5\xff\xe0\xfe\xdf\xfe\x00\x00\x1a\xfe\x19\xfe\x00\x00\x1b\xfe\x00\x00\x00\x00\x87\xff\x71\xff\x79\xff\x70\xff\x74\xff\x1b\xfe\x89\xff\x75\xff\x6e\xff\x6d\xff\x6c\xff\x6b\xff\x6a\xff\x69\xff\x68\xff\x81\xff\x77\xff\x6f\xff\x76\xff\x80\xff\x86\xff\x78\xff\x73\xff\x88\xff\x00\x00\x38\xff\x8a\xff\x00\x00\x85\xff\x37\xff\x72\xff\x7a\xff\xe3\xfe\x4b\xff\x00\x00\x1b\xfe\x84\xff\x83\xff\x82\xff\x00\x00\xf5\xff\x00\x00\x1b\xfe\x00\x00\x00\x00\x1a\xfe\x00\x00\x1b\xfe\x00\x00\xec\xfe\xde\xfe\x1a\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\xff\x61\xff\x56\xff\x0b\xff\xa5\xff\x18\xfe\x00\x00\x45\xff\x10\xff\x13\xff\x18\xff\x15\xff\x14\xff\x16\xff\x17\xff\x12\xff\x11\xff\x1b\xfe\xe8\xfe\xbc\xfe\xba\xfe\xd9\xfe\x28\xfe\x00\x00\x95\xff\x60\xff\x55\xff\x0f\xff\x0b\xff\xa5\xff\x00\x00\x00\x00\x48\xff\x00\x00\x51\xff\x3f\xff\x3e\xff\x4d\xff\x91\xff\x8f\xff\x8e\xff\x90\xff\x4c\xff\x5a\xff\x53\xff\x52\xff\xa9\xff\x59\xff\x58\xff\xaa\xff\x66\xff\x5d\xff\x5e\xff\x5c\xff\x65\xff\x64\xff\x63\xff\x00\x00\x0b\xff\x0c\xff\x08\xff\x05\xff\x04\xff\x09\xff\xfb\xfe\x0d\xff\xa5\xff\x00\x00\x1b\xfe\x07\xff\x00\x00\x93\xff\x67\xff\x5b\xff\x0b\xff\xa5\xff\x92\xff\x00\x00\x50\xff\x00\x00\x0b\xff\xa5\xff\x1b\xfe\xa8\xff\x1b\xfe\xa7\xff\xf3\xff\x00\x00\x00\x00\x29\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x1d\xfe\x2a\xfe\x00\x00\x00\x00\xbc\xff\x5c\xfe\x26\xfe\x00\x00\xbb\xff\x00\x00\xb4\xff\xd5\xff\x1b\xfe\xc6\xff\x00\x00\x1b\xfe\x1b\xfe\x00\x00\x64\xfe\x1b\xfe\x65\xfe\x6b\xfe\x21\xfe\x20\xfe\x69\xfe\x1b\xfe\x00\x00\x67\xfe\x1b\xfe\x63\xfe\x6c\xfe\x6d\xfe\x00\x00\xc3\xfe\x7d\xff\x7c\xff\x7b\xff\x00\x00\x00\x00\x00\x00\x1a\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6a\xfe\x00\x00\x39\xfe\x35\xfe\x34\xfe\x38\xfe\x37\xfe\x36\xfe\x31\xfe\x30\xfe\x2f\xfe\x33\xfe\x32\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x74\xfe\x73\xfe\xf8\xff\xf9\xff\x76\xfe\x75\xfe\x00\x00\x00\x00\x70\xfe\x78\xfe\x3a\xfe\x57\xfe\x58\xfe\x59\xfe\x54\xfe\x55\xfe\x51\xfe\x52\xfe\x4c\xfe\x4e\xfe\x4d\xfe\x4f\xfe\x49\xfe\x4a\xfe\x47\xfe\x45\xfe\x43\xfe\x41\xfe\x00\x00\x00\x00\x3f\xfe\x2c\xfe\x2d\xfe\x88\xfe\x00\x00\xc0\xfe\xbd\xfe\xbf\xfe\xbe\xfe\x00\x00\xc1\xfe\xd9\xfe\xad\xfe\xc2\xfe\x86\xfe\x00\x00\x00\x00\x00\x00\x1f\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd6\xff\xd5\xff\x00\x00\x00\x00\x00\x00\x00\x00\xdb\xff\x00\x00\x1b\xfe\x00\x00\x00\x00\xbe\xff\x00\x00\xba\xff\x00\x00\x00\x00\x00\x00\x00\x00\x1b\xfe\x9b\xfe\x1b\xfe\x00\x00\xf1\xff\x1b\xfe\x1b\xfe\x9b\xfe\xef\xff\x06\xff\xd9\xfe\x00\x00\x03\xff\xf7\xfe\x1a\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf1\xfe\x1b\xfe\x9b\xfe\xf0\xff\x39\xff\x36\xff\x1b\xfe\x00\x00\x94\xff\x5f\xff\x54\xff\x0e\xff\x0b\xff\xa5\xff\x00\x00\x42\xff\x1b\xfe\x9b\xfe\xee\xff\x28\xfe\x27\xfe\x00\x00\x28\xfe\x61\xfe\x1b\xfe\xd4\xfe\xd0\xfe\xcd\xfe\x99\xff\x7c\xff\xc9\xfe\x00\x00\xd8\xfe\xd6\xfe\x00\x00\x1a\xfe\xc5\xfe\xb9\xfe\xec\xff\xa4\xff\x00\x00\x00\x00\x00\x00\x00\x00\x1a\xfe\x1b\xfe\x1b\xfe\x9b\xfe\xf2\xff\x00\x00\x00\x00\x00\x00\x1b\xfe\xdb\xfe\xe2\xfe\xe7\xfe\xeb\xfe\xee\xfe\xea\xfe\xdd\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x1f\xff\x00\x00\x00\x00\x00\x00\x00\x00\x14\xfe\x00\x00\x16\xfe\x12\xfe\x13\xfe\x4a\xff\x49\xff\x00\x00\x00\x00\x1e\xff\x1c\xff\x00\x00\x00\x00\x7e\xff\x7f\xff\xe9\xfe\xe6\xfe\xda\xfe\x00\x00\x00\x00\xe1\xfe\xe5\xfe\xa0\xff\x00\x00\xeb\xff\x00\x00\x00\x00\x0b\xff\x0b\xff\x00\x00\x0d\xff\x00\x00\x1b\xfe\x0b\xff\xdc\xfe\x00\x00\x1b\xfe\xbb\xfe\x1b\xfe\xc7\xfe\x00\x00\xc8\xfe\xd9\xfe\xad\xfe\x1b\xfe\x1b\xfe\xcc\xfe\xd9\xfe\xad\xfe\x1b\xfe\xcf\xfe\x1b\xfe\x1b\xfe\xd3\xfe\x1b\xfe\x00\x00\x00\x00\x00\x00\x61\xfe\xb8\xfe\x00\x00\x00\x00\x28\xfe\x61\xfe\xa2\xff\xe7\xff\x1b\xfe\x1b\xfe\x9b\xfe\xed\xff\x00\x00\x00\x00\x1b\xfe\x36\xff\x9c\xff\xe9\xff\x00\x00\x00\x00\x00\x00\x1b\xfe\x00\x00\xf4\xfe\xff\xfe\x00\x00\x02\xff\x01\xff\xf6\xfe\x00\x00\x00\x00\xa3\xff\xe8\xff\x00\x00\x00\x00\x00\x00\x9e\xff\x9d\xff\xea\xff\x0b\xff\x0b\xff\x00\x00\x00\x00\x00\x00\xbd\xff\x2a\xfe\x2a\xfe\x00\x00\x00\x00\xdc\xff\x00\x00\x00\x00\xd6\xff\x00\x00\xd3\xff\x00\x00\xd4\xff\xd2\xff\xd0\xff\xd1\xff\x00\x00\x00\x00\x00\x00\x00\x00\x4b\xff\x1b\xfe\xdd\xff\x1b\xfe\x1b\xfe\x00\x00\x1b\xfe\x00\x00\x68\xfe\x1b\xfe\x66\xfe\x1b\xfe\xab\xfe\xa9\xfe\x00\x00\x00\x00\x00\x00\x1a\xfe\x9f\xfe\x5b\xfe\x99\xfe\x00\x00\x3c\xfe\x00\x00\x77\xfe\x00\x00\x79\xfe\x6f\xfe\x3d\xfe\x2b\xfe\x98\xfe\x00\x00\x00\x00\x00\x00\x91\xfe\x92\xfe\x9e\xfe\x00\x00\x00\x00\x00\x00\x99\xfe\x00\x00\x00\x00\x00\x00\xa6\xfe\xa7\xfe\xa5\xfe\xa8\xfe\xaa\xfe\xac\xfe\x1a\xfe\x00\x00\x00\x00\x80\xfe\x00\x00\x00\x00\x00\x00\x7d\xfe\x00\x00\x00\x00\xcf\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd9\xff\x00\x00\x00\x00\xc9\xff\x00\x00\xb3\xff\x00\x00\x00\x00\x00\x00\x00\x00\xc5\xff\xc3\xff\xc2\xff\x9b\xfe\x9b\xfe\x00\x00\x4f\xff\x4e\xff\x00\x00\x00\xff\xf5\xfe\x00\x00\xfa\xfe\xfe\xfe\xf2\xfe\xf3\xfe\x00\x00\xfd\xfe\xf0\xfe\x1b\xfe\x2b\xff\x34\xff\x00\x00\x00\x00\x1b\xfe\x1a\xfe\x35\xff\x3a\xff\x1b\xfe\x47\xff\x46\xff\xa1\xff\xe6\xff\x00\x00\x00\x00\x00\x00\x00\x00\x61\xfe\x1b\xfe\xb6\xfe\x00\x00\xb7\xfe\xb1\xfe\x00\x00\x00\x00\xd2\xfe\xd1\xfe\xce\xfe\x1b\xfe\xa9\xfe\x1a\xfe\xcb\xfe\xca\xfe\x1b\xfe\xa9\xfe\x1a\xfe\xc6\xfe\xd5\xfe\xd7\xfe\xc4\xfe\x00\x00\x00\x00\x00\x00\x0b\xff\x44\xff\x43\xff\x9a\xfe\xe4\xfe\xf4\xff\x00\x00\x1b\xff\x00\x00\x00\x00\x23\xff\x00\x00\x00\x00\x00\x00\x14\xfe\x15\xfe\x17\xfe\x5c\xfe\x0f\xfe\x00\x00\x10\xfe\x00\x00\x1d\xff\x22\xff\x19\xff\x00\x00\x00\x00\x21\xff\x00\x00\x1a\xfe\x1a\xfe\x00\x00\xb4\xfe\xb0\xfe\x00\x00\x00\x00\xb5\xfe\xaf\xfe\x41\xff\x40\xff\x31\xff\x2f\xff\x27\xff\x00\x00\x00\x00\x1a\xfe\x1b\xfe\x33\xff\x1b\xfe\x32\xff\x1b\xfe\x2a\xff\x00\x00\x3b\xff\xfc\xfe\x00\x00\x00\x00\xf9\xfe\x0a\xff\x9b\xff\x9f\xff\x00\x00\x2a\xfe\x2a\xfe\x00\x00\xda\xff\x00\x00\xb2\xff\xb1\xff\x00\x00\x00\x00\xb9\xff\xd8\xff\xc8\xff\xce\xff\xcc\xff\xcd\xff\x00\x00\xcb\xff\x82\xfe\x83\xfe\x84\xfe\x00\x00\x00\x00\x85\xfe\x00\x00\x87\xfe\x1b\xfe\x00\x00\xa4\xfe\xa2\xfe\xa3\xfe\xa1\xfe\x00\x00\x8e\xfe\x00\x00\x93\xfe\x90\xfe\x8d\xfe\x94\xfe\x97\xfe\x00\x00\x72\xfe\x96\xfe\x00\x00\x71\xfe\x8f\xfe\x00\x00\x00\x00\x9d\xfe\xa0\xfe\x7f\xfe\x81\xfe\x7e\xfe\x7c\xfe\x00\x00\xca\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb3\xff\xc1\xff\x00\x00\x00\x00\xc4\xff\xf8\xfe\x29\xff\x00\x00\x2d\xff\x00\x00\x00\x00\x30\xff\x26\xff\x00\x00\x24\xff\xae\xfe\x00\x00\xb3\xfe\x20\xff\x1a\xff\xa6\xff\x11\xfe\x00\x00\x00\x00\x0d\xfe\x0e\xfe\x1e\xfe\x5c\xfe\x0c\xfe\xb2\xfe\x25\xff\x1b\xfe\x2e\xff\x28\xff\x00\x00\x00\x00\x00\x00\xb8\xff\xb0\xff\x00\x00\x00\x00\x00\x00\x7b\xfe\x9c\xfe\x00\x00\x95\xfe\x8c\xfe\x00\x00\x00\x00\xaf\xff\x00\x00\x00\x00\xd6\xff\xc0\xff\x2c\xff\x00\x00\x0b\xfe\x0a\xfe\xbf\xff\x00\x00\xac\xff\xb7\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xab\xff\xb6\xff\xad\xff\xae\xff"#

happyCheck :: HappyAddr
happyCheck :: HappyAddr
happyCheck = Addr# -> HappyAddr
HappyA# "\xff\xff\x02\x00\x03\x00\x04\x00\x01\x00\x03\x00\x38\x00\x1f\x00\x01\x00\x38\x00\x04\x00\x02\x00\x18\x00\x02\x00\x3a\x00\x02\x00\x0d\x00\x14\x00\x02\x00\x02\x00\x0d\x00\x39\x00\x02\x00\x02\x00\x19\x00\x02\x00\x1b\x00\x1a\x00\x1d\x00\x1e\x00\x1f\x00\x04\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x17\x00\x0d\x00\x02\x00\x1e\x00\x1e\x00\x2e\x00\x36\x00\x39\x00\x2a\x00\x1f\x00\x3a\x00\x2a\x00\x2a\x00\x6b\x00\x02\x00\x03\x00\x04\x00\x01\x00\x2a\x00\x10\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x7c\x00\x01\x00\x0d\x00\x1e\x00\x15\x00\x16\x00\x17\x00\x7d\x00\x7e\x00\x7f\x00\x19\x00\x6d\x00\x1b\x00\x0d\x00\x1d\x00\x1e\x00\x1f\x00\x7f\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x01\x00\x6a\x00\x79\x00\x6b\x00\x6c\x00\x6d\x00\x36\x00\x6b\x00\x6c\x00\x6d\x00\x3a\x00\x6d\x00\x0d\x00\x6d\x00\x02\x00\x03\x00\x04\x00\x7d\x00\x7e\x00\x7f\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x6d\x00\x01\x00\x6d\x00\x39\x00\x19\x00\x15\x00\x16\x00\x17\x00\x6b\x00\x6c\x00\x19\x00\x79\x00\x1b\x00\x0d\x00\x1d\x00\x1e\x00\x1f\x00\x39\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x04\x00\x01\x00\x1b\x00\x6b\x00\x6c\x00\x6d\x00\x36\x00\x60\x00\x26\x00\x7b\x00\x3a\x00\x79\x00\x02\x00\x0d\x00\x6b\x00\x6c\x00\x6d\x00\x7d\x00\x7e\x00\x7f\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x39\x00\x39\x00\x21\x00\x22\x00\x23\x00\x24\x00\x01\x00\x26\x00\x7c\x00\x0b\x00\x0c\x00\x7d\x00\x7e\x00\x7f\x00\x2d\x00\x2e\x00\x2f\x00\x01\x00\x0d\x00\x6b\x00\x6c\x00\x6d\x00\x01\x00\x36\x00\x03\x00\x2a\x00\x39\x00\x7f\x00\x2c\x00\x0d\x00\x2c\x00\x2a\x00\x01\x00\x04\x00\x0d\x00\x11\x00\x12\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x0d\x00\x79\x00\x26\x00\x6b\x00\x6c\x00\x6d\x00\x7d\x00\x7e\x00\x7f\x00\x2d\x00\x2e\x00\x2f\x00\x03\x00\x37\x00\x38\x00\x06\x00\x01\x00\x20\x00\x36\x00\x22\x00\x23\x00\x24\x00\x01\x00\x26\x00\x01\x00\x2d\x00\x7f\x00\x7f\x00\x0d\x00\x01\x00\x2d\x00\x2e\x00\x2f\x00\x04\x00\x0d\x00\x01\x00\x6b\x00\x6c\x00\x6d\x00\x36\x00\x1f\x00\x0d\x00\x39\x00\x03\x00\x37\x00\x38\x00\x06\x00\x6b\x00\x6c\x00\x6b\x00\x6c\x00\x7e\x00\x7f\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x01\x00\x01\x00\x21\x00\x22\x00\x23\x00\x24\x00\x01\x00\x26\x00\x6b\x00\x6c\x00\x6d\x00\x1f\x00\x0d\x00\x0d\x00\x2d\x00\x2e\x00\x2f\x00\x04\x00\x0d\x00\x6b\x00\x6c\x00\x6d\x00\x7c\x00\x36\x00\x6b\x00\x6c\x00\x39\x00\x6b\x00\x6c\x00\x6a\x00\x1e\x00\x7f\x00\x02\x00\x01\x00\x6b\x00\x1e\x00\x6d\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x01\x00\x0d\x00\x21\x00\x22\x00\x23\x00\x24\x00\x22\x00\x26\x00\x7f\x00\x7c\x00\x26\x00\x22\x00\x0d\x00\x01\x00\x2d\x00\x2e\x00\x2f\x00\x04\x00\x6b\x00\x1e\x00\x6d\x00\x7b\x00\x1c\x00\x36\x00\x6b\x00\x0d\x00\x6d\x00\x01\x00\x2a\x00\x39\x00\x22\x00\x6b\x00\x0a\x00\x6d\x00\x39\x00\x2e\x00\x0e\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x04\x00\x01\x00\x21\x00\x22\x00\x23\x00\x24\x00\x22\x00\x26\x00\x7f\x00\x39\x00\x3c\x00\x0d\x00\x0e\x00\x0f\x00\x2d\x00\x2e\x00\x2f\x00\x1c\x00\x6b\x00\x6b\x00\x6d\x00\x01\x00\x1c\x00\x36\x00\x6b\x00\x6c\x00\x39\x00\x04\x00\x20\x00\x39\x00\x22\x00\x23\x00\x24\x00\x39\x00\x26\x00\x2d\x00\x2b\x00\x44\x00\x45\x00\x46\x00\x47\x00\x2d\x00\x2e\x00\x2f\x00\x44\x00\x45\x00\x46\x00\x47\x00\x2b\x00\x3c\x00\x36\x00\x6b\x00\x7f\x00\x39\x00\x3c\x00\x7f\x00\x21\x00\x22\x00\x23\x00\x24\x00\x7f\x00\x26\x00\x6b\x00\x6c\x00\x44\x00\x45\x00\x46\x00\x47\x00\x2d\x00\x2e\x00\x2f\x00\x05\x00\x06\x00\x07\x00\x1e\x00\x6b\x00\x6c\x00\x36\x00\x2b\x00\x7f\x00\x39\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x44\x00\x45\x00\x46\x00\x47\x00\x1e\x00\x44\x00\x45\x00\x46\x00\x47\x00\x7e\x00\x7f\x00\x6b\x00\x6c\x00\x7f\x00\x05\x00\x06\x00\x07\x00\x7f\x00\x09\x00\x01\x00\x0b\x00\x0c\x00\x0d\x00\x01\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x01\x00\x1c\x00\x03\x00\x2a\x00\x1c\x00\x19\x00\x2d\x00\x1b\x00\x7f\x00\x1d\x00\x1e\x00\x1f\x00\x0d\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x01\x00\x39\x00\x7f\x00\x2c\x00\x01\x00\x3c\x00\x36\x00\x7f\x00\x3c\x00\x32\x00\x3a\x00\x1e\x00\x44\x00\x45\x00\x46\x00\x47\x00\x5d\x00\x49\x00\x4a\x00\x01\x00\x61\x00\x03\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x1c\x00\x73\x00\x45\x00\x46\x00\x47\x00\x1c\x00\x78\x00\x79\x00\x5d\x00\x08\x00\x7c\x00\x7b\x00\x61\x00\x2c\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x01\x00\x73\x00\x03\x00\x3c\x00\x7e\x00\x7f\x00\x78\x00\x79\x00\x3c\x00\x1c\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x05\x00\x06\x00\x07\x00\x6d\x00\x09\x00\x01\x00\x0b\x00\x0c\x00\x0d\x00\x01\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x1c\x00\x7e\x00\x7f\x00\x1c\x00\x6d\x00\x19\x00\x7b\x00\x1b\x00\x01\x00\x1d\x00\x1e\x00\x1f\x00\x3c\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x13\x00\x14\x00\x15\x00\x16\x00\x3c\x00\x1c\x00\x36\x00\x3c\x00\x5d\x00\x01\x00\x3a\x00\x1c\x00\x61\x00\x6d\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x01\x00\x73\x00\x01\x00\x75\x00\x3f\x00\x40\x00\x78\x00\x79\x00\x3c\x00\x01\x00\x45\x00\x46\x00\x47\x00\x6a\x00\x3c\x00\x20\x00\x5d\x00\x22\x00\x23\x00\x24\x00\x61\x00\x0d\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x01\x00\x73\x00\x03\x00\x39\x00\x05\x00\x06\x00\x78\x00\x79\x00\x09\x00\x0a\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x2b\x00\x02\x00\x45\x00\x46\x00\x47\x00\x30\x00\x2a\x00\x32\x00\x33\x00\x2d\x00\x35\x00\x2a\x00\x37\x00\x02\x00\x2d\x00\x3a\x00\x7e\x00\x7f\x00\x3d\x00\x2c\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x2a\x00\x01\x00\x04\x00\x2d\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x03\x00\x52\x00\x02\x00\x03\x00\x55\x00\x01\x00\x06\x00\x58\x00\x59\x00\x2c\x00\x5b\x00\x5c\x00\x5d\x00\x2c\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x32\x00\x7f\x00\x7f\x00\x2c\x00\x01\x00\x2c\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x76\x00\x01\x00\x10\x00\x79\x00\x7a\x00\x7b\x00\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x3b\x00\x1b\x00\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x2c\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x32\x00\x2b\x00\x2c\x00\x17\x00\x18\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x34\x00\x35\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x6d\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x2b\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x1c\x00\x1d\x00\x10\x00\x39\x00\x44\x00\x45\x00\x46\x00\x47\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x1b\x00\x44\x00\x45\x00\x46\x00\x47\x00\x01\x00\x02\x00\x03\x00\x20\x00\x2b\x00\x22\x00\x23\x00\x24\x00\x01\x00\x26\x00\x0d\x00\x0e\x00\x0f\x00\x6b\x00\x6c\x00\x2f\x00\x30\x00\x31\x00\x66\x00\x33\x00\x51\x00\x35\x00\x6d\x00\x37\x00\x38\x00\x6a\x00\x3a\x00\x02\x00\x39\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x02\x00\x4a\x00\x2a\x00\x2b\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x04\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x7f\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x10\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x1a\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x7f\x00\x19\x00\x10\x00\x3f\x00\x40\x00\x01\x00\x02\x00\x03\x00\x1e\x00\x45\x00\x46\x00\x47\x00\x1b\x00\x1b\x00\x1e\x00\x1f\x00\x2a\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x6d\x00\x2f\x00\x30\x00\x2a\x00\x2b\x00\x33\x00\x36\x00\x35\x00\x02\x00\x37\x00\x3a\x00\x2a\x00\x3a\x00\x6b\x00\x6c\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x02\x00\x4a\x00\x4d\x00\x2a\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x7f\x00\x52\x00\x0b\x00\x0c\x00\x55\x00\x11\x00\x12\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x51\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x17\x00\x18\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\x76\x00\x03\x00\x6a\x00\x79\x00\x7a\x00\x7d\x00\x7e\x00\x7f\x00\x19\x00\x2a\x00\x1b\x00\x0d\x00\x1d\x00\x1e\x00\x1f\x00\x2a\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x2a\x00\x20\x00\x6b\x00\x22\x00\x23\x00\x24\x00\x36\x00\x01\x00\x02\x00\x03\x00\x3a\x00\x01\x00\x02\x00\x03\x00\x01\x00\x30\x00\x31\x00\x2b\x00\x33\x00\x02\x00\x35\x00\x2b\x00\x37\x00\x38\x00\x02\x00\x3a\x00\x39\x00\x02\x00\x3d\x00\x39\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x44\x00\x45\x00\x46\x00\x47\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x6d\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x1f\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x03\x00\x5d\x00\x01\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x01\x00\x02\x00\x03\x00\x1f\x00\x6b\x00\x6c\x00\x6d\x00\x7d\x00\x7e\x00\x7f\x00\x01\x00\x02\x00\x03\x00\x6b\x00\x6c\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x20\x00\x02\x00\x22\x00\x23\x00\x24\x00\x02\x00\x7f\x00\x1f\x00\x7e\x00\x7f\x00\x01\x00\x02\x00\x03\x00\x2c\x00\x30\x00\x31\x00\x2c\x00\x33\x00\x01\x00\x35\x00\x04\x00\x37\x00\x38\x00\x02\x00\x3a\x00\x39\x00\x1f\x00\x3d\x00\x6d\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7d\x00\x7e\x00\x7f\x00\x2a\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x02\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x1f\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x03\x00\x5d\x00\x02\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x51\x00\x52\x00\x53\x00\x02\x00\x6b\x00\x6c\x00\x6d\x00\x02\x00\x21\x00\x22\x00\x23\x00\x24\x00\x2c\x00\x26\x00\x2a\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x2d\x00\x2e\x00\x2f\x00\x7d\x00\x7e\x00\x7f\x00\x7f\x00\x2a\x00\x2b\x00\x36\x00\x6b\x00\x6c\x00\x39\x00\x02\x00\x30\x00\x31\x00\x02\x00\x33\x00\x01\x00\x35\x00\x2b\x00\x37\x00\x38\x00\x6a\x00\x3a\x00\x2a\x00\x2b\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x51\x00\x52\x00\x53\x00\x02\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x32\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x6b\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x03\x00\x5d\x00\x6d\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x51\x00\x52\x00\x53\x00\x1f\x00\x6b\x00\x6c\x00\x6d\x00\x2a\x00\x2b\x00\x21\x00\x22\x00\x23\x00\x24\x00\x7f\x00\x26\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x04\x00\x2d\x00\x2e\x00\x2f\x00\x7d\x00\x7e\x00\x7f\x00\x7d\x00\x7e\x00\x7f\x00\x36\x00\x7d\x00\x7e\x00\x7f\x00\x30\x00\x31\x00\x04\x00\x33\x00\x04\x00\x35\x00\x5b\x00\x37\x00\x38\x00\x02\x00\x3a\x00\x2a\x00\x2b\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7d\x00\x7e\x00\x7f\x00\x02\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x02\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x02\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x02\x00\x5d\x00\x6a\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x51\x00\x52\x00\x53\x00\x5d\x00\x6b\x00\x6c\x00\x6d\x00\x61\x00\x35\x00\x63\x00\x64\x00\x6b\x00\x6c\x00\x26\x00\x7f\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x2d\x00\x2e\x00\x2f\x00\x44\x00\x45\x00\x46\x00\x47\x00\x6b\x00\x6c\x00\x36\x00\x78\x00\x79\x00\x39\x00\x7b\x00\x30\x00\x31\x00\x1e\x00\x33\x00\x32\x00\x35\x00\x6b\x00\x37\x00\x38\x00\x2d\x00\x3a\x00\x80\x00\x81\x00\x3d\x00\x1e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7d\x00\x7e\x00\x7f\x00\x02\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x2c\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x02\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x1e\x00\x5d\x00\x02\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x51\x00\x52\x00\x53\x00\x02\x00\x6b\x00\x6c\x00\x6d\x00\x00\x00\x01\x00\x35\x00\x1e\x00\x7d\x00\x7e\x00\x7f\x00\x26\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x1e\x00\x2d\x00\x2e\x00\x2f\x00\x44\x00\x45\x00\x46\x00\x47\x00\x7e\x00\x7f\x00\x36\x00\x5b\x00\x5c\x00\x39\x00\x30\x00\x31\x00\x02\x00\x33\x00\x02\x00\x35\x00\x02\x00\x37\x00\x38\x00\x2c\x00\x3a\x00\x2d\x00\x2b\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x51\x00\x52\x00\x53\x00\x2b\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x2b\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x3e\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x1f\x00\x5d\x00\x02\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x51\x00\x52\x00\x53\x00\x02\x00\x6b\x00\x6c\x00\x6d\x00\x51\x00\x52\x00\x53\x00\x51\x00\x52\x00\x53\x00\x02\x00\x7f\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x7d\x00\x7e\x00\x7f\x00\x04\x00\x3e\x00\x3f\x00\x40\x00\x7d\x00\x7e\x00\x7f\x00\x44\x00\x45\x00\x46\x00\x47\x00\x30\x00\x31\x00\x04\x00\x33\x00\x04\x00\x35\x00\x6d\x00\x37\x00\x38\x00\x04\x00\x3a\x00\x32\x00\x02\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7d\x00\x7e\x00\x7f\x00\x04\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x2b\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x04\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x03\x00\x5d\x00\x6d\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x7f\x00\x7d\x00\x7e\x00\x7f\x00\x6b\x00\x6c\x00\x6d\x00\x1e\x00\x44\x00\x45\x00\x46\x00\x47\x00\x7d\x00\x7e\x00\x7f\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x6d\x00\x1e\x00\x30\x00\x31\x00\x2b\x00\x33\x00\x2a\x00\x35\x00\x01\x00\x37\x00\x38\x00\x2c\x00\x3a\x00\x04\x00\x04\x00\x3d\x00\x04\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7d\x00\x7e\x00\x7f\x00\x2b\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x7f\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x7f\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x02\x00\x5d\x00\x02\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x04\x00\x6d\x00\x3e\x00\x3f\x00\x40\x00\x6c\x00\x6d\x00\x6d\x00\x44\x00\x45\x00\x46\x00\x47\x00\x7d\x00\x7e\x00\x7f\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x7d\x00\x7e\x00\x7f\x00\x51\x00\x52\x00\x53\x00\x02\x00\x6a\x00\x30\x00\x31\x00\x04\x00\x33\x00\x01\x00\x35\x00\x01\x00\x37\x00\x38\x00\x2b\x00\x3a\x00\x6a\x00\x02\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x51\x00\x52\x00\x53\x00\x6a\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x7f\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x01\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x2b\x00\x5d\x00\x72\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x51\x00\x52\x00\x53\x00\x5d\x00\x6b\x00\x6c\x00\x6d\x00\x61\x00\x7c\x00\x63\x00\x64\x00\x51\x00\x52\x00\x53\x00\x7a\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x51\x00\x52\x00\x53\x00\x51\x00\x52\x00\x53\x00\x51\x00\x52\x00\x53\x00\x08\x00\x78\x00\x79\x00\x7c\x00\x7b\x00\x30\x00\x31\x00\x07\x00\x33\x00\x1a\x00\x35\x00\x7c\x00\x37\x00\x38\x00\x79\x00\x3a\x00\x39\x00\x07\x00\x3d\x00\x7f\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7d\x00\x7e\x00\x7f\x00\x1a\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x07\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x1a\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x53\x00\x5d\x00\x7c\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x7d\x00\x7e\x00\x7f\x00\x5d\x00\x6b\x00\x6c\x00\x6d\x00\x61\x00\x07\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x7d\x00\x7e\x00\x7f\x00\x7d\x00\x7e\x00\x7f\x00\x7d\x00\x7e\x00\x7f\x00\x1a\x00\x78\x00\x79\x00\x07\x00\x1a\x00\x30\x00\x31\x00\x07\x00\x33\x00\x1a\x00\x35\x00\x7c\x00\x37\x00\x38\x00\x7c\x00\x3a\x00\x7f\x00\x0a\x00\x3d\x00\x4e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x51\x00\x52\x00\x53\x00\x79\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x57\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x07\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x57\x00\x5d\x00\x57\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x51\x00\x52\x00\x53\x00\x5d\x00\x6b\x00\x6c\x00\x6d\x00\x61\x00\x30\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x7d\x00\x7e\x00\x7f\x00\x1a\x00\x57\x00\x57\x00\x79\x00\x30\x00\x57\x00\x79\x00\x78\x00\x79\x00\x4e\x00\x7f\x00\x30\x00\x31\x00\x7f\x00\x33\x00\x07\x00\x35\x00\x7c\x00\x37\x00\x38\x00\x07\x00\x3a\x00\x07\x00\x07\x00\x3d\x00\x57\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x57\x00\x7f\x00\x81\x00\x72\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x07\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x7f\x00\x58\x00\x59\x00\x01\x00\x5b\x00\x7f\x00\x5d\x00\x7c\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\x72\x00\x7f\x00\x79\x00\x5d\x00\x6b\x00\x6c\x00\x6d\x00\x61\x00\x79\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x09\x00\x79\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x58\x00\x59\x00\x01\x00\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\xff\xff\xff\xff\xff\xff\x5d\x00\x6b\x00\x6c\x00\x6d\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x58\x00\x59\x00\x01\x00\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x0d\x00\xff\xff\xff\xff\xff\xff\x5d\x00\x6b\x00\x6c\x00\x6d\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x30\x00\xff\xff\x32\x00\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\xff\xff\xff\xff\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\x5c\x00\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x01\x00\xff\xff\x03\x00\xff\xff\x07\x00\xff\xff\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\xff\xff\x0d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\xff\xff\x79\x00\x7a\x00\x19\x00\xff\xff\x1b\x00\xff\xff\x1d\x00\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\x30\x00\xff\xff\xff\xff\x33\x00\x36\x00\x35\x00\xff\xff\x37\x00\x3a\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\xff\xff\xff\xff\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\x01\x00\x5b\x00\x03\x00\x5d\x00\x31\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x38\x00\x0d\x00\xff\xff\xff\xff\xff\xff\x5d\x00\x6b\x00\x6c\x00\x6d\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x45\x00\x46\x00\x47\x00\x76\x00\x49\x00\x4a\x00\x79\x00\x7a\x00\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\x65\x00\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\x77\x00\x78\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\x7e\x00\x7f\x00\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\x01\x00\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\x0d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x6b\x00\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\x39\x00\x79\x00\x7a\x00\xff\xff\xff\xff\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\xff\xff\xff\xff\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\x01\x00\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x7f\x00\x0d\x00\xff\xff\xff\xff\xff\xff\x5d\x00\x6b\x00\x6c\x00\x6d\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\xff\xff\x76\x00\xff\xff\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\xff\xff\xff\xff\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\x01\x00\x5b\x00\x03\x00\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\x0d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x6b\x00\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\xff\xff\x79\x00\x7a\x00\x3a\x00\xff\xff\xff\xff\xff\xff\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\x30\x00\x49\x00\x4a\x00\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\xff\xff\xff\xff\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\xff\xff\x5d\x00\x07\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\x07\x00\x79\x00\x7a\x00\xff\xff\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\x19\x00\xff\xff\x1b\x00\x36\x00\x1d\x00\x1e\x00\x1f\x00\x3a\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\x4f\x00\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\x49\x00\x4a\x00\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\x07\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x25\x00\x26\x00\xff\xff\x28\x00\x26\x00\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x2d\x00\x2e\x00\x2f\x00\x7d\x00\x7e\x00\x7f\x00\x36\x00\xff\xff\x35\x00\x36\x00\x3a\x00\x5d\x00\x7d\x00\x7e\x00\x7f\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\xff\xff\x39\x00\x44\x00\x45\x00\x46\x00\x47\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\x4f\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\x07\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x07\x00\x7d\x00\x7e\x00\x7f\x00\x25\x00\x26\x00\x7f\x00\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x7e\x00\x7f\x00\xff\xff\x19\x00\xff\xff\x1b\x00\x36\x00\x1d\x00\x1e\x00\x1f\x00\x3a\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\x4f\x00\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\x07\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x5d\x00\x7d\x00\x7e\x00\x7f\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x4f\x00\x31\x00\x32\x00\x33\x00\xff\xff\xff\xff\x36\x00\x78\x00\x79\x00\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x07\x00\x73\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x19\x00\xff\xff\x1b\x00\xff\xff\x1d\x00\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x07\x00\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x19\x00\xff\xff\x1b\x00\xff\xff\x1d\x00\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x39\x00\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\xff\xff\xff\xff\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x19\x00\xff\xff\x1b\x00\xff\xff\x1d\x00\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x07\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\x7d\x00\x7e\x00\x7f\x00\x3a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x19\x00\xff\xff\x1b\x00\xff\xff\x1d\x00\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\x01\x00\xff\xff\x03\x00\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x21\x00\x22\x00\x23\x00\x24\x00\x0d\x00\x26\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\x39\x00\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\x31\x00\xff\xff\xff\xff\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\x65\x00\x7e\x00\x7f\x00\x31\x00\xff\xff\x01\x00\xff\xff\x6c\x00\x6d\x00\xff\xff\x38\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x77\x00\x78\x00\x10\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x1b\x00\x49\x00\x4a\x00\xff\xff\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x2f\x00\xff\xff\x31\x00\xff\xff\x65\x00\x05\x00\x06\x00\x07\x00\xff\xff\x38\x00\xff\xff\xff\xff\x6d\x00\xff\xff\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x3a\x00\xff\xff\x77\x00\x78\x00\x3e\x00\x3f\x00\x40\x00\x4a\x00\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\x7e\x00\x7f\x00\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\xff\xff\xff\xff\x5a\x00\x5b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x65\x00\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x1b\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\x2f\x00\xff\xff\x31\x00\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x7c\x00\x38\x00\x20\x00\xff\xff\x22\x00\x23\x00\x24\x00\xff\xff\x26\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x2d\x00\x2e\x00\x2f\x00\xff\xff\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\x04\x00\xff\xff\x39\x00\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\xff\xff\xff\xff\x5a\x00\x5b\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\xff\xff\x65\x00\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x1b\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\xff\xff\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x2f\x00\xff\xff\x31\x00\xff\xff\x5d\x00\x05\x00\x06\x00\x07\x00\x61\x00\x38\x00\x63\x00\x64\x00\x65\x00\x66\x00\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\xff\xff\x39\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4a\x00\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\xff\xff\xff\xff\x5a\x00\x5b\x00\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\xff\xff\xff\xff\x65\x00\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x5d\x00\xff\xff\xff\xff\x1b\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\x2f\x00\xff\xff\x31\x00\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x7c\x00\x38\x00\xff\xff\xff\xff\xff\xff\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x5d\x00\xff\xff\x4a\x00\xff\xff\x61\x00\x36\x00\x63\x00\x64\x00\x65\x00\x3a\x00\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\xff\xff\xff\xff\x5a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\xff\xff\x03\x00\x78\x00\x79\x00\x65\x00\x4f\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x0d\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\x5f\x00\x77\x00\x78\x00\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x1b\x00\x31\x00\x05\x00\x06\x00\x07\x00\x7d\x00\x7e\x00\x7f\x00\x38\x00\xff\xff\xff\xff\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\xff\xff\xff\xff\x2f\x00\xff\xff\x31\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x38\x00\xff\xff\x05\x00\x06\x00\x07\x00\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x65\x00\x7e\x00\x7f\x00\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x6d\x00\xff\xff\x5a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x77\x00\x78\x00\xff\xff\x65\x00\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x5d\x00\xff\xff\x77\x00\x78\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\x5d\x00\xff\xff\x7c\x00\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\x05\x00\x06\x00\x07\x00\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x7c\x00\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\x05\x00\x06\x00\x07\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\xff\xff\xff\xff\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\xff\xff\x05\x00\x06\x00\x07\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\x39\x00\xff\xff\xff\xff\xff\xff\xff\xff\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\x49\x00\x4a\x00\xff\xff\xff\xff\x5d\x00\x7d\x00\x7e\x00\x7f\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\xff\xff\x5d\x00\x78\x00\x79\x00\xff\xff\x61\x00\x7c\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\x7e\x00\x7f\x00\xff\xff\x5d\x00\x78\x00\x79\x00\xff\xff\x61\x00\x7c\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\x05\x00\x06\x00\x07\x00\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x7c\x00\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\x05\x00\x06\x00\x07\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\xff\xff\xff\xff\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\xff\xff\x05\x00\x06\x00\x07\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\x39\x00\xff\xff\xff\xff\xff\xff\xff\xff\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x7d\x00\x7e\x00\x7f\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\xff\xff\x5d\x00\x78\x00\x79\x00\xff\xff\x61\x00\x7c\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\x7e\x00\x7f\x00\xff\xff\x5d\x00\x78\x00\x79\x00\xff\xff\x61\x00\x7c\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\x05\x00\x06\x00\x07\x00\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x7c\x00\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\xff\xff\x49\x00\x4a\x00\xff\xff\x01\x00\xff\xff\x03\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x5d\x00\x03\x00\x0d\x00\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\x0d\x00\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x31\x00\x32\x00\x33\x00\x78\x00\x79\x00\x36\x00\x01\x00\xff\xff\x03\x00\x3a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x31\x00\x01\x00\x7e\x00\x7f\x00\x0d\x00\xff\xff\xff\xff\x38\x00\xff\xff\x31\x00\xff\xff\x5d\x00\xff\xff\x0d\x00\xff\xff\x61\x00\x38\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\x53\x00\x54\x00\xff\xff\x56\x00\x78\x00\x79\x00\x31\x00\xff\xff\x7c\x00\x53\x00\x54\x00\xff\xff\x56\x00\x38\x00\xff\xff\x31\x00\xff\xff\xff\xff\x65\x00\xff\xff\xff\xff\xff\xff\x38\x00\xff\xff\x6b\x00\x6c\x00\x6d\x00\x65\x00\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\x6b\x00\x6c\x00\x6d\x00\x77\x00\x78\x00\xff\xff\xff\xff\x53\x00\x54\x00\x01\x00\x56\x00\x03\x00\x77\x00\x78\x00\x01\x00\xff\xff\x53\x00\x54\x00\x01\x00\x56\x00\x04\x00\x0d\x00\xff\xff\xff\xff\xff\xff\x65\x00\x0d\x00\xff\xff\xff\xff\xff\xff\x0d\x00\x6b\x00\x6c\x00\x6d\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6b\x00\x6c\x00\x6d\x00\x77\x00\x78\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\x01\x00\x31\x00\x03\x00\xff\xff\xff\xff\xff\xff\x31\x00\xff\xff\x38\x00\xff\xff\x31\x00\xff\xff\x0d\x00\x38\x00\xff\xff\xff\xff\xff\xff\x38\x00\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x53\x00\x54\x00\x01\x00\x56\x00\x53\x00\x54\x00\xff\xff\x56\x00\x31\x00\xff\xff\xff\xff\xff\xff\xff\xff\x65\x00\x0d\x00\x38\x00\xff\xff\xff\xff\x65\x00\x6b\x00\xff\xff\x6d\x00\x65\x00\xff\xff\x6b\x00\x6c\x00\x6d\x00\xff\xff\x6b\x00\x6c\x00\x6d\x00\x77\x00\x78\x00\xff\xff\xff\xff\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\x77\x00\x78\x00\x53\x00\x54\x00\x01\x00\x56\x00\x03\x00\x5d\x00\xff\xff\x01\x00\x31\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x0d\x00\x38\x00\x01\x00\xff\xff\x65\x00\x0d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x6b\x00\xff\xff\x6d\x00\xff\xff\x0d\x00\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\xff\xff\xff\xff\xff\xff\x31\x00\xff\xff\xff\xff\xff\xff\xff\xff\x31\x00\xff\xff\x38\x00\xff\xff\xff\xff\x65\x00\xff\xff\x38\x00\x01\x00\x31\x00\xff\xff\x6b\x00\x6c\x00\x6d\x00\xff\xff\xff\xff\x38\x00\xff\xff\xff\xff\xff\xff\x0d\x00\x5d\x00\xff\xff\x77\x00\x78\x00\x61\x00\xff\xff\x63\x00\x64\x00\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x01\x00\xff\xff\x03\x00\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\x65\x00\x78\x00\x79\x00\xff\xff\x0d\x00\x65\x00\x6b\x00\xff\xff\x6d\x00\x31\x00\xff\xff\x6b\x00\x6c\x00\x6d\x00\x65\x00\xff\xff\x38\x00\xff\xff\x77\x00\x78\x00\x6b\x00\xff\xff\x6d\x00\x77\x00\x78\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\x01\x00\xff\xff\x03\x00\xff\xff\x31\x00\x01\x00\xff\xff\x53\x00\x54\x00\x5d\x00\x56\x00\x38\x00\x0d\x00\x61\x00\xff\xff\x63\x00\x64\x00\x0d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x65\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x6b\x00\xff\xff\x6d\x00\xff\xff\xff\xff\x78\x00\x79\x00\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\xff\xff\x31\x00\x78\x00\x79\x00\xff\xff\xff\xff\x31\x00\xff\xff\x38\x00\x65\x00\xff\xff\xff\xff\xff\xff\x38\x00\xff\xff\xff\xff\xff\xff\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\x01\x00\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x65\x00\x10\x00\xff\xff\xff\xff\xff\xff\x65\x00\xff\xff\xff\xff\x6d\x00\xff\xff\x5d\x00\x6b\x00\x1b\x00\x6d\x00\x61\x00\xff\xff\x63\x00\x64\x00\x77\x00\x78\x00\xff\xff\xff\xff\xff\xff\x77\x00\x78\x00\xff\xff\xff\xff\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x2f\x00\x26\x00\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\x39\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4a\x00\xff\xff\x01\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x5a\x00\x10\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x1b\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\xff\xff\x2c\x00\xff\xff\xff\xff\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\x7f\x00\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\x4a\x00\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\x5a\x00\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x1b\x00\x49\x00\x4a\x00\xff\xff\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x31\x00\x32\x00\x33\x00\xff\xff\x2f\x00\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\x4a\x00\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\x5a\x00\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1e\x00\x1f\x00\x1b\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x2b\x00\x2c\x00\xff\xff\xff\xff\x2f\x00\xff\xff\x36\x00\x32\x00\xff\xff\x34\x00\x3a\x00\x36\x00\xff\xff\xff\xff\x39\x00\xff\xff\x3b\x00\x3c\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x4b\x00\x4c\x00\x4d\x00\x49\x00\x4a\x00\x4b\x00\x4c\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\x57\x00\xff\xff\xff\xff\x5a\x00\xff\xff\xff\xff\xff\xff\x5e\x00\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x0c\x00\x0d\x00\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\x7e\x00\x7f\x00\xff\xff\x04\x00\xff\xff\xff\xff\x19\x00\xff\xff\x1b\x00\xff\xff\x1d\x00\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x01\x00\xff\xff\x03\x00\xff\xff\xff\xff\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x1b\x00\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x2c\x00\x2d\x00\xff\xff\x2f\x00\xff\xff\x01\x00\xff\xff\x03\x00\xff\xff\xff\xff\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x78\x00\x79\x00\x10\x00\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\x39\x00\x4a\x00\x1b\x00\xff\xff\xff\xff\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\x5a\x00\xff\xff\x2c\x00\x2d\x00\xff\xff\x2f\x00\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x4a\x00\xff\xff\x01\x00\x61\x00\x03\x00\x63\x00\x64\x00\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x5a\x00\x10\x00\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\x1b\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\xff\xff\xff\xff\x2c\x00\xff\xff\x01\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x5d\x00\x10\x00\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\x3a\x00\x4a\x00\x1e\x00\xff\xff\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\x78\x00\x79\x00\xff\xff\x5a\x00\xff\xff\x2f\x00\xff\xff\xff\xff\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\x02\x00\x4a\x00\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\x5a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x1b\x00\xff\xff\xff\xff\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x3a\x00\x1b\x00\xff\xff\x4a\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\xff\xff\x2c\x00\x5a\x00\xff\xff\x2f\x00\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\xff\xff\xff\xff\x4a\x00\xff\xff\x01\x00\x78\x00\x79\x00\xff\xff\x7e\x00\x7f\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x5a\x00\x10\x00\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\xff\xff\xff\xff\x2c\x00\x01\x00\x02\x00\x2f\x00\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\xff\xff\x1b\x00\xff\xff\xff\xff\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x5a\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\xff\xff\x4a\x00\xff\xff\x01\x00\x4f\x00\xff\xff\xff\xff\x7e\x00\x7f\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x5a\x00\x10\x00\x5e\x00\x5f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\xff\xff\xff\xff\x2c\x00\x01\x00\xff\xff\x2f\x00\x7d\x00\x7e\x00\x7f\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\x01\x00\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x5a\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\x4a\x00\x2f\x00\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x5a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\x4a\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\xff\xff\x5a\x00\x2f\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x5a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\xff\xff\x2f\x00\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\x01\x00\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x5a\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x01\x00\x4a\x00\x2f\x00\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x5a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\x4a\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\xff\xff\x5a\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\x01\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\xff\xff\x4a\x00\xff\xff\xff\xff\x0d\x00\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x5a\x00\xff\xff\xff\xff\xff\xff\x1e\x00\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x35\x00\xff\xff\x37\x00\x4f\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\x6b\x00\x6c\x00\x6d\x00\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\xff\xff\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\x4b\x00\x4c\x00\x4d\x00\xff\xff\xff\xff\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\xff\xff\xff\xff\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x36\x00\x45\x00\x46\x00\x47\x00\x3a\x00\x49\x00\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\x4b\x00\x4c\x00\x4d\x00\xff\xff\xff\xff\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\x7e\x00\x7f\x00\x3a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\x4b\x00\x4c\x00\x4d\x00\xff\xff\xff\xff\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x1e\x00\x1f\x00\xff\xff\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x20\x00\xff\xff\x22\x00\x23\x00\x24\x00\xff\xff\x26\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x2d\x00\x2e\x00\x2f\x00\x4b\x00\x4c\x00\x4d\x00\x4e\x00\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\x39\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x21\x00\x22\x00\x23\x00\x24\x00\xff\xff\x26\x00\x21\x00\x22\x00\x23\x00\x24\x00\xff\xff\x26\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\x2d\x00\x2e\x00\x2f\x00\x36\x00\xff\xff\xff\xff\x39\x00\xff\xff\x7f\x00\x36\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x21\x00\x22\x00\x23\x00\x24\x00\xff\xff\x26\x00\x21\x00\x22\x00\x23\x00\x24\x00\xff\xff\x26\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\x2d\x00\x2e\x00\x2f\x00\x36\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\xff\xff\x45\x00\x46\x00\x47\x00\xff\xff\x7e\x00\x7f\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\x7f\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x21\x00\x22\x00\x23\x00\x24\x00\xff\xff\x26\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x2d\x00\x2e\x00\x2f\x00\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\x36\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\x7f\x00\x3a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x25\x00\x26\x00\xff\xff\x28\x00\x4f\x00\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\x5d\x00\xff\xff\xff\xff\x3a\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\x7f\x00\x4f\x00\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x25\x00\x26\x00\xff\xff\x28\x00\x4f\x00\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\x5d\x00\xff\xff\xff\xff\x3a\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\x4f\x00\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\x25\x00\x26\x00\xff\xff\x28\x00\x4f\x00\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\x5d\x00\xff\xff\xff\xff\x3a\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\x4f\x00\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x77\x00\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x25\x00\x26\x00\xff\xff\x28\x00\xff\xff\x2a\x00\xff\xff\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x25\x00\x26\x00\x36\x00\x28\x00\xff\xff\x2a\x00\x3a\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x25\x00\x26\x00\x36\x00\x28\x00\xff\xff\x2a\x00\x3a\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x4f\x00\xff\xff\xff\xff\x25\x00\x26\x00\x36\x00\x28\x00\xff\xff\x2a\x00\x3a\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\xff\xff\x4f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x3a\x00\x26\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4f\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\x39\x00\x4f\x00\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\xff\xff\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\x2b\x00\xff\xff\xff\xff\xff\xff\xff\xff\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x7d\x00\x7e\x00\x7f\x00\x38\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x40\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x7e\x00\x7f\x00\x4d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x78\x00\x79\x00\x2b\x00\x5b\x00\xff\xff\xff\xff\xff\xff\x5f\x00\x31\x00\x61\x00\x33\x00\xff\xff\xff\xff\x65\x00\xff\xff\x38\x00\xff\xff\xff\xff\x3e\x00\x3f\x00\x40\x00\x6d\x00\xff\xff\x40\x00\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\xff\xff\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5b\x00\xff\xff\xff\xff\xff\xff\x5f\x00\xff\xff\x61\x00\xff\xff\xff\xff\xff\xff\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x2c\x00\xff\xff\xff\xff\xff\xff\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\xff\xff\xff\xff\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\x5c\x00\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\xff\xff\x79\x00\x7a\x00\x2e\x00\xff\xff\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\xff\xff\xff\xff\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\xff\xff\x79\x00\x7a\x00\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6b\x00\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\xff\xff\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\xff\xff\xff\xff\xff\xff\x5f\x00\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\x6d\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x78\x00\x79\x00\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\xff\xff\xff\xff\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\x5c\x00\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x76\x00\xff\xff\x3a\x00\x79\x00\x7a\x00\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x52\x00\xff\xff\xff\xff\x55\x00\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\xff\xff\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x6c\x00\x6d\x00\xff\xff\x38\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x34\x00\x76\x00\x40\x00\xff\xff\x79\x00\x7a\x00\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x4d\x00\x44\x00\x45\x00\x46\x00\x47\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5b\x00\xff\xff\xff\xff\xff\xff\x5f\x00\xff\xff\x61\x00\xff\xff\xff\xff\xff\xff\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\xff\xff\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\x5b\x00\xff\xff\xff\xff\xff\xff\x5f\x00\x31\x00\x61\x00\x33\x00\x63\x00\x64\x00\x65\x00\xff\xff\x38\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6d\x00\xff\xff\x40\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5b\x00\xff\xff\xff\xff\xff\xff\x5f\x00\xff\xff\x61\x00\xff\xff\xff\xff\xff\xff\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\x78\x00\x79\x00\x7a\x00\x31\x00\xff\xff\xff\xff\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x31\x00\xff\xff\x77\x00\x78\x00\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x31\x00\xff\xff\x77\x00\x78\x00\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x31\x00\xff\xff\x77\x00\x78\x00\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\x31\x00\xff\xff\x6c\x00\x6d\x00\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\x77\x00\x78\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\x39\x00\xff\xff\x53\x00\x54\x00\xff\xff\x56\x00\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x63\x00\x64\x00\x65\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6d\x00\xff\xff\xff\xff\x39\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x77\x00\x78\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\x78\x00\x79\x00\x3a\x00\xff\xff\x5d\x00\x7d\x00\x7e\x00\x7f\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x7f\x00\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\x78\x00\x79\x00\x2b\x00\xff\xff\x2d\x00\x7d\x00\x7e\x00\x7f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\x2b\x00\xff\xff\x2d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\x6e\x00\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\x39\x00\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\x6e\x00\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\x78\x00\x79\x00\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\x6e\x00\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\x3b\x00\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\x6c\x00\x6d\x00\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\x6c\x00\x6d\x00\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\x6c\x00\x6d\x00\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x59\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x63\x00\x64\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6c\x00\x6d\x00\x56\x00\xff\xff\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\xff\xff\x56\x00\x7c\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\x56\x00\xff\xff\x7c\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x78\x00\x79\x00\xff\xff\x61\x00\x7c\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x56\x00\x77\x00\x78\x00\x79\x00\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\x82\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x56\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x56\x00\xff\xff\xff\xff\xff\xff\xff\xff\x78\x00\x79\x00\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\xff\xff\x78\x00\x79\x00\x5d\x00\xff\xff\xff\xff\xff\xff\x61\x00\x7f\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\x75\x00\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\x75\x00\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\x75\x00\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\x75\x00\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\x75\x00\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\x74\x00\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\x73\x00\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x77\x00\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\xff\xff\x78\x00\x79\x00\x61\x00\xff\xff\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x34\x00\x44\x00\x45\x00\x46\x00\x47\x00\x78\x00\x79\x00\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x44\x00\x45\x00\x46\x00\x47\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#

happyTable :: HappyAddr
happyTable :: HappyAddr
happyTable = Addr# -> HappyAddr
HappyA# "\x00\x00\x4d\x00\x4e\x00\x4f\x00\xb7\x01\x48\x03\x17\x03\x0a\x03\xb2\x01\x00\x02\x6c\x03\xa3\x02\xb6\x03\x5c\x03\x32\x02\x8f\x02\xf2\x00\x14\x01\x1f\x02\x0f\x03\xf2\x00\xd9\x00\xbd\x02\x7b\x03\x50\x00\x58\x03\x51\x00\x39\x01\x52\x00\x53\x00\x54\x00\x1b\xfe\x55\x00\x56\x00\x57\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\xa1\x03\x0b\x01\xae\x03\xbe\x02\x7c\x03\x6d\x03\x64\x00\x15\x01\x90\x02\x1b\x03\x65\x00\x20\x02\x10\x03\x01\x02\x5b\x01\x4e\x00\x4f\x00\x4b\x02\x59\x03\x3b\x01\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x06\x02\xb7\x01\x4c\x02\xaf\x03\x43\x03\x44\x03\x45\x03\x33\x02\xa1\x00\x6f\x00\x50\x00\x97\x00\x51\x00\xf2\x00\x52\x00\x53\x00\x54\x00\xda\x00\x55\x00\x56\x00\x57\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x01\x03\x2b\x00\xb7\x03\x95\x00\xb8\x01\x97\x00\x64\x00\x95\x00\xf3\x00\x97\x00\x65\x00\x97\x00\x1d\x02\x97\x00\x9c\x00\x4e\x00\x4f\x00\x6d\x00\x6e\x00\x6f\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x97\x00\x00\x03\x97\x00\xc8\x00\x3a\x01\x9f\x03\x44\x03\x45\x03\x0c\x01\x4d\x00\x50\x00\x46\x03\x51\x00\x1d\x02\x52\x00\x53\x00\x54\x00\xd0\x00\x55\x00\x56\x00\x57\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\xc4\x00\x4b\x02\x38\x01\x95\x00\xf3\x00\x97\x00\x64\x00\xae\x02\xe0\x00\xff\xff\x65\x00\x46\x03\x91\x03\x4c\x02\x95\x00\xb8\x01\x97\x00\x6d\x00\x6e\x00\x6f\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\xe1\x00\xc2\x01\xc5\x00\x56\x00\x57\x00\x58\x00\xb7\x01\xc6\x00\xaf\x02\x44\x01\x45\x01\xee\x02\xa8\x02\x6f\x00\xc7\x00\x62\x00\x63\x00\x01\x03\xf2\x00\x95\x00\xb8\x01\x97\x00\x2c\x02\x64\x00\xc4\x00\x92\x03\xc8\x00\xd1\x00\xf9\x01\x1d\x02\xbd\x01\x35\x01\x71\x00\xf3\x00\x2d\x02\x42\x01\x43\x01\xc9\x00\x67\x00\x68\x00\x69\x00\xca\x00\x6b\x00\x6c\x00\x72\x00\x46\x03\xae\x00\x95\x00\xf3\x00\x97\x00\x6d\x00\x6e\x00\x6f\x00\xaf\x00\x62\x00\x63\x00\x9d\x02\x04\x02\x05\x02\x9e\x02\xeb\x01\xf4\x00\x64\x00\xd3\x00\xd4\x00\xd5\x00\x4b\x02\xf5\x00\x26\x01\x19\x03\xe2\x00\xb2\x00\xec\x01\xeb\x01\xf6\x00\x62\x00\x63\x00\xbe\x01\x4c\x02\x1d\x01\x95\x00\xf3\x00\x97\x00\x64\x00\x65\x03\xec\x01\xd6\x00\x8d\xfe\x07\x03\x05\x02\x8d\xfe\x0c\x01\x4d\x00\x0c\x01\x4d\x00\xcb\x00\x6f\x00\xf7\x00\x67\x00\x68\x00\x69\x00\xf8\x00\x6b\x00\x6c\x00\x4b\x02\xeb\x01\xbf\x01\x56\x00\x57\x00\x58\x00\x1c\x02\xc0\x01\x95\x00\xb8\x01\x97\x00\x8d\xfe\x4c\x02\xec\x01\xc1\x01\x62\x00\x63\x00\xac\x00\x1d\x02\x95\x00\xb8\x01\x97\x00\x06\x02\x64\x00\x95\x00\xf3\x00\xc2\x01\x0c\x01\x4d\x00\x23\x01\x2d\x03\xb2\x00\xbe\x03\xeb\x01\x95\x00\x36\x03\x97\x00\xc3\x01\x67\x00\x68\x00\x69\x00\xc4\x01\x6b\x00\x6c\x00\xf1\x00\xec\x01\xad\x00\x56\x00\x57\x00\x58\x00\xdf\x00\xae\x00\xf9\x00\x06\x02\xe0\x00\xd8\x00\xf2\x00\x1c\x02\xaf\x00\x62\x00\x63\x00\xb3\x02\x95\x00\x95\x01\x97\x00\xff\xff\xe6\x01\x64\x00\x95\x00\x1d\x02\x97\x00\x1c\x01\xbf\x03\xe1\x00\xcf\x00\x95\x00\x90\x01\x97\x00\xd9\x00\x96\x01\x91\x01\xb0\x00\x67\x00\x68\x00\x69\x00\xb1\x00\x6b\x00\x6c\x00\xb6\x02\x1b\x01\xc5\x00\x56\x00\x57\x00\x58\x00\xd8\x00\xc6\x00\xb2\x00\xd0\x00\xa4\x01\x46\x01\x47\x01\x48\x01\xc7\x00\x62\x00\x63\x00\xc8\x01\x95\x00\x95\x00\x97\x00\x1a\x01\xb9\x01\x64\x00\x95\x00\xf3\x00\xc8\x00\x4e\x03\xf4\x00\xd9\x00\xd3\x00\xd4\x00\xd5\x00\xc2\x01\xf5\x00\x8e\x03\x19\x01\xc9\x00\x67\x00\x68\x00\xf0\x01\xf6\x00\x62\x00\x63\x00\x0b\x02\x67\x00\x68\x00\xf0\x01\x14\x01\xa4\x01\x64\x00\x95\x00\xb2\x00\xd6\x00\xa4\x01\xe2\x00\xbf\x01\x56\x00\x57\x00\x58\x00\xda\x00\xc0\x01\x95\x00\xf3\x00\xf7\x00\x67\x00\x68\x00\xf0\x01\xc1\x01\x62\x00\x63\x00\x33\x00\x34\x00\x35\x00\x18\x01\x95\x00\xf3\x00\x64\x00\x10\x01\xd1\x00\xc2\x01\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\xef\x01\x67\x00\x68\x00\xf0\x01\x0f\x01\xc3\x01\x67\x00\x68\x00\xf0\x01\xb4\x02\x6f\x00\x0c\x01\x4d\x00\xda\x00\x6c\x02\x34\x00\x35\x00\xb2\x00\x6d\x02\x0d\x01\x6e\x02\x6f\x02\x70\x02\x09\x01\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x83\x01\xa9\x01\xc4\x00\x0b\x03\xa3\x01\x71\x02\x0c\x03\x51\x00\xf9\x00\x52\x00\x72\x02\x73\x02\x84\x01\x55\x00\x56\x00\x57\x00\x58\x00\x74\x02\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x06\x01\xc8\x00\xb2\x00\xe5\xff\x05\x01\xa4\x01\x64\x00\xb2\x00\xa4\x01\xa6\x01\x75\x02\x1d\xfe\xf1\x01\x67\x00\x68\x00\x69\x00\x06\x00\xf2\x01\x6c\x00\xc3\x00\x07\x00\xc4\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x40\x02\x3b\x00\xa8\x00\x68\x00\x0f\x02\xe6\x01\x18\x00\x19\x00\x06\x00\x98\x01\x3c\x00\xff\xff\x07\x00\x3f\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\xad\x01\x3b\x00\xc4\x00\xa4\x01\xf3\x01\x6f\x00\x18\x00\x19\x00\xa4\x01\xc8\x01\x3c\x00\x6d\x00\xe3\x01\x6f\x00\x6c\x02\x34\x00\x35\x00\x97\x00\xba\x02\xa4\x00\x6e\x02\x6f\x02\x70\x02\xa3\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\xa9\x01\xab\x00\x6f\x00\xc6\x02\x97\x00\x71\x02\xff\xff\x51\x00\xa0\x00\x52\x00\x72\x02\x73\x02\xa4\x01\x55\x00\x56\x00\x57\x00\x58\x00\x74\x02\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x3e\x01\x3f\x01\x40\x01\x41\x01\xa4\x01\xc5\x02\x64\x00\xa4\x01\x06\x00\x9f\x00\x75\x02\x40\x02\x07\x00\x97\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x9e\x00\x06\x01\xfd\x01\x99\x01\xb2\x01\xeb\x00\x18\x00\x19\x00\xa4\x01\x71\x00\xa8\x00\x68\x00\x0f\x02\x2b\x00\xa4\x01\xdc\x00\x06\x00\xd3\x00\xd4\x00\xd5\x00\x07\x00\x72\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x56\x01\x3b\x00\x57\x01\xd6\x00\x58\x01\x59\x01\x18\x00\x19\x00\x5a\x01\x5b\x01\x3c\x00\x6d\x00\xe3\x01\x6f\x00\x5d\x01\xef\x01\xe8\x01\x68\x00\xe9\x01\x73\x00\x67\x03\x74\x00\x75\x00\x68\x03\x76\x00\x1c\x03\x77\x00\xed\x01\x1d\x03\x78\x00\xb5\x01\x6f\x00\x79\x00\x3f\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x6e\x03\xe5\x01\xfc\x00\x6f\x03\x84\x00\x85\x00\x86\x00\x87\x00\xc4\x00\x88\x00\x53\x03\x54\x03\x89\x00\xbe\x01\x55\x03\x8a\x00\x8b\x00\x3f\x00\x8c\x00\x8d\x00\x8e\x00\x3f\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\xa6\x01\xdd\x00\xb2\x00\xe5\xff\x1b\x00\x3f\x00\x95\x00\x96\x00\x97\x00\x98\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x99\x00\xa8\x01\x23\x00\x9a\x00\x9b\x00\xfb\xff\x84\x01\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\xfd\x00\x24\x00\xe8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xed\x00\x3f\x00\xee\x00\x67\x00\x68\x00\x69\x00\xfe\x00\x6b\x00\x6c\x00\xa6\x01\x3e\x00\x3f\x00\x3c\x01\x3d\x01\x25\x00\x73\x00\x1b\xfe\x40\x00\x75\x00\x41\x00\x76\x00\x42\x00\x77\x00\x1b\xfe\x43\x00\x78\x00\x44\x00\x45\x00\x79\x00\x97\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x46\x00\x26\x00\x47\x00\x48\x00\x84\x00\x85\x00\x86\x00\x87\x00\x9e\x01\x88\x00\x1b\xfe\x1b\xfe\x89\x00\x1b\xfe\x49\x00\x8a\x00\x8b\x00\x27\x00\x8c\x00\x8d\x00\x8e\x00\x4a\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x1b\xfe\x4b\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x4c\x00\x77\x02\x97\x00\x78\x02\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x99\x00\x1b\xfe\x1b\xfe\x9a\x00\x9b\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x36\x01\x37\x01\x23\x00\xc2\x01\x5e\x02\x67\x00\x68\x00\xf0\x01\xcb\x02\xea\x00\xeb\x00\xcc\x02\xed\x00\x24\x00\x0b\x02\x67\x00\x68\x00\xf0\x01\xc3\x00\xee\x01\xc4\x00\xe3\x00\x9c\x01\xd3\x00\xd4\x00\xd5\x00\x94\x01\xe4\x00\x46\x01\x47\x01\x48\x01\x0c\x01\x4d\x00\x25\x00\xd7\xff\xd7\xff\x98\x01\xd7\xff\x93\x01\xd7\xff\x97\x00\xd7\xff\xd7\xff\x8a\x01\xd7\xff\x86\x01\xd6\x00\xd7\xff\x7c\x01\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\x7b\x01\x26\x00\x02\x01\x03\x01\xd7\xff\xd7\xff\xd7\xff\xd7\xff\x91\x02\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xb2\x00\xd7\xff\xd7\xff\x27\x00\xd7\xff\xd7\xff\xd7\xff\x3b\x01\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\x39\x01\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\xd7\xff\xd7\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\xe5\x00\x3a\x01\x23\x00\x49\x02\xeb\x00\xad\x01\x11\x02\xc4\x00\x8e\x02\xe8\x01\x68\x00\xe9\x01\x38\x01\x24\x00\xd0\x01\xd1\x01\x8c\x02\x55\x00\x56\x00\x57\x00\x58\x00\xd2\x01\x5a\x00\x5b\x00\x5c\x00\xd3\x01\xd4\x01\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x97\x00\x25\x00\x73\x00\x00\x01\x01\x01\x75\x00\x64\x00\x76\x00\x81\x02\x77\x00\xd5\x01\x80\x02\x78\x00\x0c\x01\x4d\x00\x79\x00\x7f\x02\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x7e\x02\x26\x00\xfb\x02\x7d\x02\x84\x00\x85\x00\x86\x00\x87\x00\xb2\x00\x88\x00\x44\x01\x45\x01\x89\x00\x42\x01\x43\x01\x8a\x00\x8b\x00\x27\x00\x8c\x00\x8d\x00\x8e\x00\x6c\x02\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x3c\x01\x3d\x01\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x96\x00\x97\x00\x78\x02\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x27\x02\x99\x00\xc4\x00\x2b\x00\x9a\x00\x9b\x00\x6d\x00\xda\x01\x6f\x00\x64\x02\x7c\x02\x51\x00\x28\x02\x52\x00\xdf\x01\xe0\x01\x7b\x02\x55\x00\x56\x00\x57\x00\x58\x00\xe1\x01\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x7a\x02\xd2\x00\xdc\x01\xd3\x00\xd4\x00\xd5\x00\x64\x00\xad\x01\xee\x01\xc4\x00\xe2\x01\xad\x01\xd5\x02\xc4\x00\x66\x02\x73\x00\xb7\x00\x64\x02\x75\x00\x62\x02\x76\x00\x63\x02\x77\x00\xb8\x00\x61\x02\x78\x00\xd6\x00\x60\x02\x79\x00\xc8\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\xf1\x01\x67\x00\x68\x00\xf0\x01\x84\x00\x85\x00\x86\x00\x87\x00\x97\x00\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x14\x02\x8a\x00\x8b\x00\x27\x02\x8c\x00\xc4\x00\x8e\x00\x5a\x02\x8f\x00\xfb\x00\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x28\x02\xad\x01\xcf\x02\xc4\x00\x14\x02\x95\x00\xfc\x00\x97\x00\x6d\x00\xe3\x01\x6f\x00\xad\x01\x3b\x03\xc4\x00\x0c\x01\x4d\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\xdc\x00\x4f\x02\xd3\x00\xd4\x00\xd5\x00\x4e\x02\xd7\x00\x14\x02\xf3\x01\x6f\x00\xad\x01\x81\x03\xc4\x00\x46\x02\x73\x00\xb7\x00\x3f\x00\x75\x00\x3f\x02\x76\x00\x38\x02\x77\x00\xb8\x00\x22\x02\x78\x00\xd6\x00\x14\x02\x79\x00\x97\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\xce\x00\xa1\x00\x6f\x00\x21\x02\x84\x00\x85\x00\x86\x00\x87\x00\x12\x02\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x14\x02\x8a\x00\x8b\x00\x27\x02\x8c\x00\xc4\x00\x8e\x00\x0b\x02\x8f\x00\xcd\x00\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x28\x02\xbf\x00\xc0\x00\xc1\x00\x0a\x02\x95\x00\xce\x00\x97\x00\x09\x02\xbf\x01\x56\x00\x57\x00\x58\x00\x08\x02\xc0\x01\x04\x02\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\xc1\x01\x62\x00\x63\x00\xa0\x00\xa1\x00\x6f\x00\xdd\x00\x20\x02\xbc\x02\x64\x00\x0c\x01\x4d\x00\xc2\x01\x03\x02\x73\x00\x1b\xfe\x02\x02\x75\x00\x0e\x03\x76\x00\x07\x03\x77\x00\x1b\xfe\x2b\x00\x78\x00\x20\x02\x4b\x03\x79\x00\x04\x03\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\xbf\x00\xc0\x00\xc1\x00\x03\x03\x84\x00\x85\x00\x86\x00\x87\x00\xa6\x01\x88\x00\x1b\xfe\x1b\xfe\x89\x00\x1b\xfe\xfe\x02\x8a\x00\x8b\x00\x2c\x02\x8c\x00\xc4\x00\x8e\x00\x97\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x1b\xfe\x2d\x02\xab\x01\xc0\x00\xc1\x00\x14\x02\x95\x00\x96\x00\x97\x00\x32\x03\x33\x03\xad\x00\x56\x00\x57\x00\x58\x00\xb2\x00\xae\x00\x99\x00\x1b\xfe\x1b\xfe\x9a\x00\x9b\x00\xed\x02\xaf\x00\x62\x00\x63\x00\xa1\x01\xa1\x00\x6f\x00\xa0\x01\xa1\x00\x6f\x00\x64\x00\x8f\x01\xa1\x00\x6f\x00\x73\x00\x1b\xfe\xec\x02\x75\x00\xea\x02\x76\x00\xe9\x02\x77\x00\x1b\xfe\xe1\x02\x78\x00\x30\x03\x31\x03\x79\x00\xe0\x02\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x5a\x02\xa1\x00\x6f\x00\xd4\x02\x84\x00\x85\x00\x86\x00\x87\x00\xd2\x02\x88\x00\x1b\xfe\x1b\xfe\x89\x00\x1b\xfe\xca\x02\x8a\x00\x8b\x00\x71\x00\x8c\x00\xc9\x02\x8e\x00\x2b\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x1b\xfe\x72\x00\x4c\x02\xc0\x00\xc1\x00\x06\x00\x95\x00\x96\x00\x97\x00\x07\x00\x86\x03\x93\x03\x09\x00\x77\x03\x78\x03\xc6\x00\xb2\x00\x99\x00\x1b\xfe\x1b\xfe\x9a\x00\x9b\x00\xc7\x00\x62\x00\x63\x00\x2b\x03\x67\x00\x68\x00\xf0\x01\x0c\x01\x4d\x00\x64\x00\x18\x00\x19\x00\xc8\x00\x94\x03\x73\x00\xb7\x00\xbf\x02\x75\x00\xa6\x01\x76\x00\xdc\x01\x77\x00\xb8\x00\xb9\x02\x78\x00\xfd\x01\xfe\x01\x79\x00\x1c\xfe\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x34\x02\xa1\x00\x6f\x00\xa5\x02\x84\x00\x85\x00\x86\x00\x87\x00\x8b\x02\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\xa4\x02\x8a\x00\x8b\x00\x71\x00\x8c\x00\x62\x03\x8e\x00\x5e\x03\x8f\x00\xfb\x00\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x72\x00\xbf\x00\xc0\x00\xc1\x00\x5d\x03\x95\x00\xfc\x00\x97\x00\x9b\x00\x05\x00\x9b\x03\x5a\x03\x2d\x03\x2e\x03\x6f\x00\xc0\x01\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x57\x03\xc1\x01\x62\x00\x63\x00\x2b\x03\x67\x00\x68\x00\xf0\x01\x08\x03\x6f\x00\x64\x00\x62\x03\x63\x03\xc2\x01\x73\x00\xb7\x00\x56\x03\x75\x00\x52\x03\x76\x00\x51\x03\x77\x00\xb8\x00\x3f\x00\x78\x00\x4a\x03\x49\x03\x79\x00\x42\x03\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x0d\x02\xc0\x00\xc1\x00\x41\x03\x84\x00\x85\x00\x86\x00\x87\x00\x40\x03\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x3f\x03\x8a\x00\x8b\x00\x71\x00\x8c\x00\x14\x02\x8e\x00\x3c\x03\x8f\x00\xcd\x00\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x72\x00\x0c\x02\xc0\x00\xc1\x00\x29\x03\x95\x00\xce\x00\x97\x00\xbf\x00\xc0\x00\xc1\x00\x05\x03\xc0\x00\xc1\x00\x28\x03\xb2\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\xfa\x02\xa1\x00\x6f\x00\x27\x03\x50\x02\xea\x00\xeb\x00\xf6\x02\xa1\x00\x6f\x00\xef\x01\x67\x00\x68\x00\xf0\x01\x73\x00\xb7\x00\x26\x03\x75\x00\x23\x03\x76\x00\x97\x00\x77\x00\xb8\x00\x22\x03\x78\x00\xa6\x01\x17\x03\x79\x00\x12\x03\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\xf5\x02\xa1\x00\x6f\x00\x8d\x03\x84\x00\x85\x00\x86\x00\x87\x00\x90\x03\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x8b\x03\x8a\x00\x8b\x00\x83\x01\x8c\x00\xc4\x00\x8e\x00\x97\x00\x8f\x00\xc6\x01\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x84\x01\xb2\x00\xf1\x02\xa1\x00\x6f\x00\x95\x00\xc7\x01\x97\x00\x89\x03\xef\x01\x67\x00\x68\x00\xf0\x01\xf0\x02\xa1\x00\x6f\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\xa5\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\xa5\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x97\x00\x83\x03\x73\x00\x1b\xfe\x7d\x03\x75\x00\x7a\x03\x76\x00\x79\x03\x77\x00\x1b\xfe\x3f\x00\x78\x00\xa6\x03\xa5\x03\x79\x00\xa4\x03\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\xef\x02\xa1\x00\x6f\x00\xa1\x03\x84\x00\x85\x00\x86\x00\x87\x00\xb2\x00\x88\x00\x1b\xfe\x1b\xfe\x89\x00\x1b\xfe\xb2\x00\x8a\x00\x8b\x00\xeb\x01\x8c\x00\x9f\x03\x8e\x00\x9e\x03\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x1b\xfe\xec\x01\x99\x03\x97\x00\x50\x02\xea\x00\xeb\x00\x96\x00\x97\x00\x97\x00\xef\x01\x67\x00\x68\x00\xf0\x01\xea\x02\xa1\x00\x6f\x00\x99\x00\x1b\xfe\x1b\xfe\x9a\x00\x9b\x00\xa5\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\xe5\x02\xa1\x00\x6f\x00\x4c\x02\xc0\x00\xc1\x00\xad\x03\x2b\x00\x73\x00\xb7\x00\xaa\x03\x75\x00\xbb\x03\x76\x00\xba\x03\x77\x00\xb8\x00\xb9\x03\x78\x00\x2b\x00\xc3\x03\x79\x00\xc2\x03\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\xd0\x02\xc0\x00\xc1\x00\x2b\x00\x84\x00\x85\x00\x86\x00\x87\x00\xb2\x00\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x05\x00\x8a\x00\x8b\x00\xeb\x01\x8c\x00\xc1\x03\x8e\x00\x49\x01\x8f\x00\xfb\x00\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\xec\x01\xcf\x02\xc0\x00\xc1\x00\x06\x00\x95\x00\xfc\x00\x97\x00\x07\x00\x28\x01\xb3\x03\x09\x00\x4c\x02\xc0\x00\xc1\x00\x21\x01\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x5a\x03\xc0\x00\xc1\x00\x4c\x02\xc0\x00\xc1\x00\x37\x03\xc0\x00\xc1\x00\x16\x01\x18\x00\x19\x00\x09\x01\xb4\x03\x73\x00\xb7\x00\x03\x01\x75\x00\xbe\x00\x76\x00\xf7\x01\x77\x00\xb8\x00\xf6\x01\x78\x00\xb5\x00\xe7\x01\x79\x00\xb2\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x24\x03\xa1\x00\x6f\x00\xe5\x01\x84\x00\x85\x00\x86\x00\x87\x00\xc9\x01\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\xc7\x01\x8a\x00\x8b\x00\xeb\x01\x8c\x00\xdc\x01\x8e\x00\xbb\x01\x8f\x00\xcd\x00\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\xec\x01\x23\x03\xa1\x00\x6f\x00\x06\x00\x95\x00\xce\x00\x97\x00\x07\x00\xba\x01\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x6e\x01\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x85\x03\xa1\x00\x6f\x00\x84\x03\xa1\x00\x6f\x00\x83\x03\xa1\x00\x6f\x00\xb8\x01\x18\x00\x19\x00\xaa\x01\xa8\x01\x73\x00\xb7\x00\xa6\x01\x75\x00\xa2\x01\x76\x00\x5e\x01\x77\x00\xb8\x00\x5d\x01\x78\x00\x88\x02\x6a\x02\x79\x00\x69\x02\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x4c\x02\xc0\x00\xc1\x00\x68\x02\x84\x00\x85\x00\x86\x00\x87\x00\x5b\x02\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x41\x02\x8a\x00\x8b\x00\xeb\x01\x8c\x00\x55\x02\x8e\x00\x46\x02\x8f\x00\xc6\x01\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\xec\x01\x6f\x03\xc0\x00\xc1\x00\x06\x00\x95\x00\xc7\x01\x97\x00\x07\x00\x44\x02\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x6d\x01\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\xb1\x03\xa1\x00\x6f\x00\x3f\x02\x3c\x02\x12\x02\x0c\x03\xd5\x02\xe1\x02\xc7\x02\x18\x00\x19\x00\xb9\x02\x88\x02\x73\x00\xb7\x00\x88\x02\x75\x00\x4f\x03\x76\x00\x5f\x03\x77\x00\xb8\x00\x4d\x03\x78\x00\x4c\x03\x4b\x03\x79\x00\x3d\x03\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x3c\x03\xb2\x00\x10\x03\x92\x03\x84\x00\x85\x00\x86\x00\x87\x00\x75\x03\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x89\x03\x8a\x00\x8b\x00\xeb\x01\x8c\x00\x89\x03\x8e\x00\x73\x03\x8f\x00\xfb\x00\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\xec\x01\xb2\x03\x89\x03\xab\x03\x06\x00\x95\x00\xfc\x00\x97\x00\x07\x00\xaa\x03\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x6c\x01\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\xb5\x03\xbf\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x73\x00\xb7\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\xeb\x01\x8c\x00\x00\x00\x8e\x00\x00\x00\x8f\x00\xcd\x00\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\xec\x01\x00\x00\x00\x00\x00\x00\x06\x00\x95\x00\xce\x00\x97\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x6b\x01\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x73\x00\xb7\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\x71\x00\x8c\x00\x00\x00\x8e\x00\x00\x00\x8f\x00\xc6\x01\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x72\x00\x00\x00\x00\x00\x00\x00\x06\x00\x95\x00\xc7\x01\x97\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x6a\x01\x00\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x73\x00\x00\x00\x74\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x8d\x00\x8e\x00\x00\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x2c\x02\x00\x00\xc4\x00\x00\x00\xdd\x01\x00\x00\x95\x00\x96\x00\x97\x00\x98\x00\x00\x00\x00\x00\x2d\x02\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x00\x00\x9a\x00\x9b\x00\xde\x01\x00\x00\x51\x00\x00\x00\x52\x00\xdf\x01\xe0\x01\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\xe1\x01\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x73\x00\x00\x00\x00\x00\x75\x00\x64\x00\x76\x00\x00\x00\x77\x00\xe2\x01\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x27\x02\x8c\x00\xc4\x00\x8e\x00\xb7\x00\x8f\x00\xb4\x00\x91\x00\x92\x00\x93\x00\x94\x00\xb8\x00\x28\x02\x00\x00\x00\x00\x00\x00\x06\x00\x95\x00\xb5\x00\x97\x00\x07\x00\x00\x00\x10\x01\x09\x00\x48\x01\xa8\x00\x68\x00\xa9\x00\x99\x00\xaa\x00\x6c\x00\x9a\x00\x9b\x00\x6d\x00\xe3\x01\x6f\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x73\x00\x00\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\xbc\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\xbd\x00\xbe\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\xab\x00\x6f\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x71\x00\x8c\x00\x00\x00\x8e\x00\x00\x00\x8f\x00\xb4\x00\x91\x00\x92\x00\x93\x00\x94\x00\x00\x00\x72\x00\x00\x00\x00\x00\x00\x00\x00\x00\x95\x00\xb5\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\xc2\x01\x9a\x00\x9b\x00\x00\x00\x00\x00\xcb\x02\xea\x00\xeb\x00\x00\x00\x00\x00\x00\x00\x0b\x02\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x73\x00\x00\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\xeb\x01\x8c\x00\x00\x00\x8e\x00\x00\x00\x8f\x00\xb4\x00\x91\x00\x92\x00\x93\x00\x94\x00\xb2\x00\xec\x01\x00\x00\x00\x00\x00\x00\x06\x00\x95\x00\xb5\x00\x97\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x69\x01\x00\x00\x99\x00\x00\x00\x00\x00\x9a\x00\x9b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x73\x00\x00\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x83\x01\x8c\x00\xc4\x00\x8e\x00\x00\x00\x8f\x00\xb4\x00\x91\x00\x92\x00\x93\x00\x94\x00\x00\x00\x84\x01\x00\x00\x00\x00\x00\x00\x00\x00\x95\x00\xb5\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x00\x00\x9a\x00\x9b\x00\xad\x01\x00\x00\x00\x00\x00\x00\xae\x01\xea\x00\xeb\x00\xaf\x01\xed\x00\x00\x00\xa5\x00\x67\x00\x68\x00\x69\x00\x73\x00\xa6\x00\x6c\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x00\x00\x8e\x00\x2b\x01\x8f\x00\xb4\x00\x91\x00\x92\x00\x93\x00\x94\x00\x6d\x00\xb0\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb5\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x5c\x02\x9a\x00\x9b\x00\x00\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\xde\x01\x00\x00\x51\x00\x64\x00\x52\x00\xdf\x01\xe0\x01\x30\x01\x55\x00\x56\x00\x57\x00\x58\x00\xe1\x01\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\xa4\x00\x00\x00\x00\x00\x00\x00\x31\x01\x64\x00\x00\x00\x00\x00\x00\x00\xe2\x01\xa5\x00\x67\x00\x68\x00\x69\x00\x00\x00\xa6\x00\x6c\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x2b\x01\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x32\x01\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\xae\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\xaf\x00\x62\x00\x63\x00\x6d\x00\xa7\x00\x6f\x00\x64\x00\x00\x00\x2a\x03\x64\x00\x30\x01\x06\x00\x6d\x00\xe3\x01\x6f\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x68\x01\x00\x00\xc8\x00\x2b\x03\x67\x00\x68\x00\xf0\x01\x51\x02\xea\x00\xeb\x00\x00\x00\x8a\x01\x00\x00\xf1\x01\x67\x00\x68\x00\xf0\x01\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x2b\x01\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x32\x01\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x56\x02\x6d\x00\x33\x01\x6f\x00\x2c\x01\x5a\x00\xb2\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x38\x03\x6f\x00\x00\x00\xde\x01\x00\x00\x51\x00\x64\x00\x52\x00\xdf\x01\xe0\x01\x30\x01\x55\x00\x56\x00\x57\x00\x58\x00\xe1\x01\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\x0e\x02\x00\x00\x00\x00\x00\x00\x88\x01\x64\x00\x00\x00\x00\x00\x00\x00\xe2\x01\xa5\x00\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x2b\x01\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x32\x01\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x6d\x00\xa7\x00\x6f\x00\x64\x00\x00\x00\x00\x00\x00\x00\x30\x01\x06\x00\x6d\x00\xe3\x01\x6f\x00\x07\x00\x00\x00\x10\x01\x09\x00\x20\x01\xd6\x02\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x86\x01\xd7\x02\xd8\x02\xd9\x02\x00\x00\x00\x00\x64\x00\x18\x00\x19\x00\x00\x00\xda\x02\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x47\x02\x32\x01\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\xde\x01\x00\x00\x51\x00\x00\x00\x52\x00\xdf\x01\xe0\x01\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\xe1\x01\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x3d\x02\x6d\x00\xdb\x02\x6f\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\xe2\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xde\x01\x00\x00\x51\x00\x00\x00\x52\x00\xdf\x01\xe0\x01\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\xe1\x01\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\xc8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\xe2\x01\x00\x00\xf1\x01\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14\x02\x00\x00\x00\x00\xa6\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6d\x00\xe3\x01\x6f\x00\xde\x01\x00\x00\x51\x00\x00\x00\x52\x00\xdf\x01\xe0\x01\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\xe1\x01\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\xe2\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\xa7\x02\x1e\x03\x6f\x00\xe2\x01\x00\x00\x00\x00\x00\x00\x00\x00\x6d\x00\xe3\x01\x6f\x00\xde\x01\x00\x00\x51\x00\x00\x00\x52\x00\xdf\x01\xe0\x01\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\xe1\x01\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x83\x01\x00\x00\xc4\x00\x64\x00\x00\x00\x00\x00\x00\x00\xe2\x01\xc5\x00\x56\x00\x57\x00\x58\x00\x84\x01\xc6\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc7\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\xc8\x00\x6d\x00\xe3\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x02\x67\x00\x68\x00\xf0\x01\x00\x00\xb7\x00\x00\x00\x00\x00\x00\x00\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x6d\x00\xe3\x01\x6f\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\xcd\x00\x00\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x19\x02\x6f\x00\xb7\x00\x00\x00\x1b\x00\x00\x00\xce\x00\x97\x00\x00\x00\xb8\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\xcf\x01\xbd\x00\xbe\x00\x23\x00\x00\x00\xb2\x01\xeb\x00\xb3\x01\xed\x00\xb4\x01\x00\x00\xa8\x00\x68\x00\xa9\x00\x24\x00\xaa\x00\x6c\x00\x00\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x25\x00\x00\x00\x1b\xfe\x00\x00\xbc\x00\x0d\x01\x34\x00\x35\x00\x00\x00\x1b\xfe\x00\x00\x00\x00\x97\x00\x00\x00\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\xd2\x02\x00\x00\xbd\x00\xbe\x00\xae\x01\xea\x00\xeb\x00\x26\x00\x00\x00\x00\x00\xa5\x00\x67\x00\x68\x00\xf0\x01\xb5\x01\x6f\x00\x1b\xfe\x1b\xfe\x00\x00\x1b\xfe\x00\x00\x00\x00\x00\x00\x27\x00\xd0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1b\xfe\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x97\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x00\x00\x1b\xfe\x1b\xfe\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x3c\x02\x00\x00\x00\x00\x23\x00\x00\x00\x6d\x00\xb0\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x24\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\x25\x00\x00\x00\xb7\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x3c\x00\xb8\x00\xf4\x00\x00\x00\xd3\x00\xd4\x00\xd5\x00\x00\x00\xf5\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf6\x00\x62\x00\x63\x00\x00\x00\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\xe6\x00\x00\x00\xd6\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x00\x00\x00\x00\x27\x00\x1b\xfe\x00\x00\x1d\x02\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x00\x00\xbc\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x97\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x00\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\xe8\x02\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\xe7\x00\x00\x00\xe8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xed\x00\x24\x00\xee\x00\x67\x00\x68\x00\x69\x00\xef\x00\x6b\x00\x6c\x00\x00\x00\xf9\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x25\x00\x00\x00\xb7\x00\x00\x00\x06\x00\x96\x01\x34\x00\x35\x00\x07\x00\xb8\x00\x10\x01\x09\x00\x0a\x00\x67\x01\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\x00\x00\xc8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x26\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x00\x00\x00\x00\x27\x00\x1a\xfe\xa6\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x00\x00\x00\x00\x00\x00\xbc\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x97\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x00\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x37\x02\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa7\x02\xa8\x02\x6f\x00\x06\x00\x00\x00\x00\x00\x24\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\x25\x00\x00\x00\x1a\xfe\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x3c\x00\x1a\xfe\x00\x00\x00\x00\x00\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x06\x00\x00\x00\x26\x00\x00\x00\x07\x00\x64\x00\x10\x01\x09\x00\x66\x01\x30\x01\x00\x00\x1a\xfe\x1a\xfe\x00\x00\x1a\xfe\x00\x00\x00\x00\x00\x00\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x83\x01\x00\x00\xc4\x00\x18\x00\x19\x00\x1a\xfe\xa9\x02\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x84\x01\x97\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x71\x03\x1a\xfe\x1a\xfe\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\xb2\x01\xeb\x00\xb3\x01\xed\x00\xb4\x01\x00\x00\xa8\x00\x68\x00\x0f\x02\x24\x00\x1b\xfe\x78\x02\x34\x00\x35\x00\x6d\x00\x33\x01\x6f\x00\x1b\xfe\x00\x00\x00\x00\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\x00\x00\x00\x00\x25\x00\x00\x00\xb7\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb8\x00\x00\x00\x67\x02\x34\x00\x35\x00\x00\x00\x1b\xfe\x1b\xfe\x00\x00\x1b\xfe\x00\x00\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1b\xfe\xb5\x01\x6f\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x97\x00\x00\x00\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1b\xfe\x1b\xfe\x00\x00\xbc\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x06\x00\x00\x00\xbd\x00\xbe\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x06\x00\x00\x00\x3c\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\xc4\x02\x34\x00\x35\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x3c\x00\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf7\x02\x00\x00\x00\x00\x00\x00\xc3\x02\x34\x00\x35\x00\x00\x00\x00\x00\x00\x00\xa5\x00\x67\x00\x68\x00\xf0\x01\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\x00\x00\x00\x00\x82\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x00\x00\x00\x00\xc2\x02\x34\x00\x35\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\xc8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x51\x02\xea\x00\xeb\x00\x52\x02\xed\x00\x00\x00\xf1\x01\x67\x00\x68\x00\x69\x00\x00\x00\xf2\x01\x6c\x00\x00\x00\x00\x00\x06\x00\x6d\x00\xf8\x02\x6f\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\x00\x00\x00\x00\x00\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x3c\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\x53\x02\x6f\x00\x00\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x3c\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\x42\x03\x34\x00\x35\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x3c\x00\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x81\x02\x00\x00\x00\x00\x00\x00\x7f\x03\x34\x00\x35\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\x00\x00\x00\x00\x82\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x00\x00\x00\x00\xb0\x03\x34\x00\x35\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\xc8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x51\x02\xea\x00\xeb\x00\x52\x02\xed\x00\x00\x00\xf1\x01\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x6d\x00\x83\x02\x6f\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\x00\x00\x00\x00\x00\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x3c\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\x53\x02\x6f\x00\x00\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x3c\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\xaf\x03\x34\x00\x35\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x3c\x00\x00\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x00\x00\xb2\x01\xeb\x00\xb3\x01\xed\x00\x4f\x02\x00\x00\xa8\x00\x68\x00\xa9\x00\x00\x00\xaa\x00\x6c\x00\x00\x00\x2c\x02\x00\x00\xc4\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2c\x02\x06\x00\xc4\x00\x2d\x02\x00\x00\x07\x00\x00\x00\x10\x01\x09\x00\x65\x01\x00\x00\x00\x00\x2d\x02\xd6\x02\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\xd7\x02\xd8\x02\xd9\x02\x18\x00\x19\x00\x64\x00\x2c\x02\x00\x00\xc4\x00\xda\x02\x00\x00\x00\x00\x00\x00\x00\x00\x1b\xfe\x55\x02\xb5\x01\x6f\x00\x2d\x02\x00\x00\x00\x00\x1b\xfe\x00\x00\xb7\x00\x00\x00\x06\x00\x00\x00\xf2\x00\x00\x00\x07\x00\xb8\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3b\x00\x1b\xfe\x1b\xfe\x00\x00\x1b\xfe\x18\x00\x19\x00\x1a\xfe\x00\x00\x3c\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x1a\xfe\x00\x00\xb7\x00\x00\x00\x00\x00\x1b\xfe\x00\x00\x00\x00\x00\x00\xb8\x00\x00\x00\x95\x00\xf3\x00\x97\x00\xbc\x00\x6d\x00\xdb\x02\x6f\x00\x00\x00\x00\x00\x95\x00\xf3\x00\x97\x00\x1b\xfe\x1b\xfe\x00\x00\x00\x00\x1a\xfe\x1a\xfe\x27\x02\x1a\xfe\xc4\x00\xbd\x00\xbe\x00\xce\x02\x00\x00\xb9\x00\xba\x00\x4b\x02\xbb\x00\xb7\x02\x28\x02\x00\x00\x00\x00\x00\x00\x1a\xfe\x1d\x02\x00\x00\x00\x00\x00\x00\x4c\x02\x95\x00\xf3\x00\x97\x00\xbc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x95\x00\xf3\x00\x97\x00\x1a\xfe\x1a\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\x27\x02\x1b\xfe\xc4\x00\x00\x00\x00\x00\x00\x00\xb7\x00\x00\x00\x1b\xfe\x00\x00\xb7\x00\x00\x00\x28\x02\xb8\x00\x00\x00\x00\x00\x00\x00\xb8\x00\x00\x00\xfd\x00\x00\x00\xe8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xed\x00\x00\x00\xee\x00\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x1b\xfe\x1b\xfe\x00\x00\x1b\xfe\x00\x00\xb9\x00\xba\x00\x1e\x03\xbb\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\xb7\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1b\xfe\x1d\x02\xb8\x00\x00\x00\x00\x00\xbc\x00\x95\x00\x00\x00\x97\x00\xbc\x00\x00\x00\x95\x00\xf3\x00\x97\x00\x00\x00\x95\x00\xf3\x00\x97\x00\x1b\xfe\x1b\xfe\x00\x00\x00\x00\x00\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\xbd\x00\xbe\x00\xb9\x00\xba\x00\x27\x02\xbb\x00\xc4\x00\x06\x00\x00\x00\x4b\x02\xb7\x00\x07\x00\x00\x00\x10\x01\x09\x00\x64\x01\x28\x02\xb8\x00\x71\x00\x00\x00\xbc\x00\x4c\x02\x00\x00\x00\x00\x00\x00\x00\x00\x95\x00\x00\x00\x97\x00\x00\x00\x72\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1a\xfe\x00\x00\x00\x00\x00\x00\x00\x00\xb7\x00\x00\x00\x1a\xfe\x00\x00\x00\x00\xbc\x00\x00\x00\xb8\x00\xeb\x01\xb7\x00\x00\x00\x95\x00\xf3\x00\x97\x00\x00\x00\x00\x00\xb8\x00\x00\x00\x00\x00\x00\x00\xec\x01\x06\x00\x00\x00\xbd\x00\xbe\x00\x07\x00\x00\x00\x2a\x01\x09\x00\x1a\xfe\x1a\xfe\x00\x00\x1a\xfe\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x83\x01\x00\x00\xc4\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x1a\xfe\x18\x00\x19\x00\x00\x00\x84\x01\xbc\x00\x95\x00\x00\x00\x97\x00\xb7\x00\x00\x00\x95\x00\xf3\x00\x97\x00\xbc\x00\x00\x00\xb8\x00\x00\x00\x1a\xfe\x1a\xfe\x95\x00\x00\x00\x97\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\x83\x01\x00\x00\xc4\x00\x00\x00\xb7\x00\xeb\x01\x00\x00\xb9\x00\xba\x00\x06\x00\xbb\x00\xb8\x00\x84\x01\x07\x00\x00\x00\x29\x01\x09\x00\xec\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\xbc\x00\x07\x00\x00\x00\x10\x01\x09\x00\x89\x02\x95\x00\x00\x00\x97\x00\x00\x00\x00\x00\x18\x00\x19\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\x00\x00\x1a\xfe\x18\x00\x19\x00\x00\x00\x00\x00\xb7\x00\x00\x00\x1a\xfe\xbc\x00\x00\x00\x00\x00\x00\x00\xb8\x00\x00\x00\x00\x00\x00\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1a\xfe\x1a\xfe\x00\x00\x1a\xfe\x1f\x01\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x1a\xfe\x23\x00\x00\x00\x00\x00\x00\x00\xbc\x00\x00\x00\x00\x00\x97\x00\x00\x00\x06\x00\x95\x00\x24\x00\x97\x00\x07\x00\x00\x00\x26\x01\x09\x00\x1a\xfe\x1a\xfe\x00\x00\x00\x00\x00\x00\xbd\x00\xbe\x00\x00\x00\x00\x00\x00\x00\xbf\x01\x56\x00\x57\x00\x58\x00\x25\x00\xc0\x01\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\xc1\x01\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\xc2\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x26\x00\x00\x00\x1b\x00\x00\x00\x01\x03\x67\x00\x68\x00\xf0\x01\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x27\x00\x23\x00\x00\x00\xb2\x01\xeb\x00\xb3\x01\xed\x00\x39\x03\x00\x00\xa8\x00\x68\x00\x0f\x02\x24\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x96\x03\x00\x00\x3f\x00\x00\x00\x00\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\xb2\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x26\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\xb5\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x27\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x93\x00\x94\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x96\x00\x97\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\xb2\x01\xeb\x00\xb3\x01\xed\x00\x48\x02\x00\x00\xa8\x00\x68\x00\xa9\x00\x24\x00\xaa\x00\x6c\x00\x00\x00\xd6\x02\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x29\x03\xd8\x02\xd9\x02\x00\x00\x25\x00\x64\x00\x00\x00\x00\x00\x00\x00\xda\x02\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x26\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\xb5\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x27\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x93\x00\x94\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x96\x00\x97\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x00\x00\x6d\x00\xdb\x02\x6f\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd0\x01\xd1\x01\x24\x00\x55\x00\x56\x00\x57\x00\x58\x00\xd2\x01\x5a\x00\x5b\x00\x5c\x00\xd3\x01\xd4\x01\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x3e\x00\x3f\x00\x00\x00\x00\x00\x25\x00\x00\x00\x64\x00\x40\x00\x00\x00\x41\x00\xd5\x01\x42\x00\x00\x00\x00\x00\x43\x00\x00\x00\x44\x00\x45\x00\xb2\x01\xeb\x00\xb3\x01\xed\x00\x4f\x02\x00\x00\xa8\x00\x68\x00\x0f\x02\xd6\x01\xd7\x01\xd8\x01\x46\x00\x26\x00\x47\x00\x48\x00\x2f\x02\xea\x00\xeb\x00\x00\x00\x00\x00\x00\x00\x30\x02\x67\x00\x68\x00\xf0\x01\x49\x00\x00\x00\x00\x00\x27\x00\x00\x00\x00\x00\x00\x00\x4a\x00\x31\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x00\x00\x4b\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x4c\x00\x4d\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\xb2\x02\x70\x02\x00\x00\x6d\x00\xda\x01\x6f\x00\x00\x00\xb5\x01\x6f\x00\x00\x00\xb5\x02\x00\x00\x00\x00\x71\x02\x00\x00\x51\x00\x00\x00\x52\x00\x72\x02\x73\x02\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\x74\x02\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\x75\x02\x1b\x00\x00\x00\x9d\x02\x00\x00\x00\x00\x9e\x02\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\xe7\x00\x00\x00\xe8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xed\x00\x24\x00\xee\x00\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x10\x01\x09\x00\x20\x01\x9f\x02\x6b\x03\x00\x00\x25\x00\x00\x00\x1b\x00\x00\x00\x9d\x02\x00\x00\x00\x00\x9e\x02\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x18\x00\x19\x00\x23\x00\x00\x00\x00\x00\x6d\x00\xe3\x01\x6f\x00\x00\x00\x00\x00\x00\x00\xc8\x00\x26\x00\x24\x00\x00\x00\x00\x00\x51\x02\xea\x00\xeb\x00\x00\x00\x00\x00\x00\x00\xf1\x01\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x27\x00\x00\x00\x9f\x02\xa7\x03\x00\x00\x25\x00\xa6\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x4c\x00\x4d\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x26\x00\x00\x00\x1b\x00\x07\x00\x9d\x02\x23\x01\x09\x00\x9e\x02\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x27\x00\x23\x00\x00\x00\xa7\x02\x1f\x03\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x24\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x4c\x00\x4d\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x00\x00\x9f\x02\x00\x00\x1b\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x06\x00\x23\x00\x00\x00\x00\x00\x07\x00\x00\x00\x1f\x01\x09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\xf2\x02\x26\x00\x77\x01\x00\x00\xae\x01\xea\x00\xeb\x00\x00\x00\x00\x00\x00\x00\xa5\x00\x67\x00\x68\x00\xf0\x01\x18\x00\x19\x00\x00\x00\x27\x00\x00\x00\x25\x00\x00\x00\x00\x00\x82\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x4c\x00\x4d\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x63\x01\x26\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6d\x00\xf3\x02\x6f\x00\x24\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\xb2\x01\xeb\x00\xb3\x01\xed\x00\x48\x02\x00\x00\xa8\x00\x68\x00\x0f\x02\xfe\x02\x24\x00\x00\x00\x26\x00\xae\x01\xea\x00\xeb\x00\xaf\x01\xed\x00\x00\x00\xa5\x00\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x8b\x02\x27\x00\x00\x00\x25\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x1d\x01\x09\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x00\x00\x26\x00\x00\x00\x1b\x00\x18\x00\x19\x00\x00\x00\xb5\x01\x6f\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x27\x00\x23\x00\x00\x00\x6d\x00\xb0\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x00\x00\x9f\x02\x1b\x00\x16\x03\x25\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\xb2\x01\xeb\x00\xb3\x01\xed\x00\xca\x02\x00\x00\xa8\x00\x68\x00\x0f\x02\x00\x00\x24\x00\x00\x00\x00\x00\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x27\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\x30\x01\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x26\x00\x00\x00\x1b\x00\xa9\x02\x00\x00\x00\x00\xb5\x01\x6f\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x27\x00\x23\x00\xaa\x02\xab\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x00\x00\x9f\x02\x1b\x00\x00\x00\x25\x00\x6d\x00\x33\x01\x6f\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x1f\x01\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x27\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x28\x01\x26\x00\x25\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x26\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x27\x00\x25\x00\x4b\x01\x4c\x01\x4d\x01\x4e\x01\x4f\x01\x50\x01\x51\x01\x52\x01\x53\x01\x54\x01\x55\x01\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x25\x01\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x00\x00\x25\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x1f\x01\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x27\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x26\x00\x25\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x26\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x27\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\xeb\x01\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x26\x00\x00\x00\x00\x00\xec\x01\x2c\x01\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x27\x00\x00\x00\x00\x00\x00\x00\x2d\x03\x64\x00\x00\x00\x00\x00\x00\x00\x30\x01\x00\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x76\x00\x00\x00\x77\x00\x8d\x01\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\xb4\x00\x00\x00\x92\x00\x93\x00\x94\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x00\x00\x00\x00\x95\x00\xb5\x00\x97\x00\xd0\x01\xd1\x01\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\xd2\x01\x5a\x00\x5b\x00\x5c\x00\xd3\x01\xd4\x01\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\xd5\x01\x00\x00\x00\x00\x00\x00\x00\x00\xb2\x01\xeb\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa8\x00\x68\x00\x0f\x02\x00\x00\x00\x00\x00\x00\xd6\x01\xd7\x01\xd8\x01\x00\x00\x00\x00\x00\x00\x84\x02\xc0\x00\xc1\x00\x85\x02\x86\x02\x00\x00\x00\x00\x00\x00\xd0\x01\xd1\x01\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\xd2\x01\x5a\x00\x5b\x00\x5c\x00\xd3\x01\xd4\x01\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\xb2\x01\xeb\x00\xb3\x01\xed\x00\xca\x02\x64\x00\xa8\x00\x68\x00\xa9\x00\xd5\x01\xaa\x00\x6c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6d\x00\xf4\x02\x6f\x00\xa8\x00\x68\x00\x0f\x02\x00\x00\x00\x00\x00\x00\xd6\x01\xd7\x01\xd8\x01\x00\x00\x00\x00\x00\x00\x84\x02\xc0\x00\xc1\x00\x85\x02\x86\x02\xd0\x01\xd1\x01\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\xd2\x01\x5a\x00\x5b\x00\x5c\x00\xd3\x01\xd4\x01\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\xb5\x01\x6f\x00\xd5\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6d\x00\xf9\x02\x6f\x00\x00\x00\x00\x00\x00\x00\xd6\x01\xd7\x01\xd8\x01\x00\x00\x00\x00\x00\x00\x84\x02\xc0\x00\xc1\x00\x85\x02\x86\x02\xd0\x01\xd1\x01\x00\x00\x55\x00\x56\x00\x57\x00\x58\x00\xd2\x01\x5a\x00\x5b\x00\x5c\x00\xd3\x01\xd4\x01\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\xd5\x01\xf4\x00\x00\x00\xd3\x00\xd4\x00\xd5\x00\x00\x00\xf5\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x87\x02\x6f\x00\xf6\x00\x62\x00\x63\x00\xd6\x01\xd7\x01\xd8\x01\xd9\x01\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\xd6\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2d\x02\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2e\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6d\x00\xda\x01\x6f\x00\xc5\x00\x56\x00\x57\x00\x58\x00\x00\x00\xc6\x00\xad\x00\x56\x00\x57\x00\x58\x00\x00\x00\xae\x00\xc7\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\xaf\x00\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\xc8\x00\x00\x00\xf9\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x22\x02\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x17\x02\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x23\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\xad\x00\x56\x00\x57\x00\x58\x00\x00\x00\xae\x00\xad\x00\x56\x00\x57\x00\x58\x00\x00\x00\xae\x00\xaf\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\xaf\x00\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x49\x02\xeb\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe8\x01\x68\x00\xe9\x01\x00\x00\x24\x02\x25\x02\xe8\x01\x68\x00\xe9\x01\x00\x00\x00\x00\xb2\x00\x9f\x02\xc0\x00\xc1\x00\xa0\x02\xa1\x02\x00\x00\x9f\x02\xc0\x00\xc1\x00\xa0\x02\xa1\x02\xad\x00\x56\x00\x57\x00\x58\x00\x00\x00\xae\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xaf\x00\x62\x00\x63\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x64\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\xb2\x00\x30\x01\x00\x00\x00\x00\x00\x00\x00\x00\xb2\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9f\x02\xc0\x00\xc1\x00\xa0\x02\xa1\x02\x2c\x01\x5a\x00\x00\x00\x2d\x01\xfa\x01\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x06\x00\x00\x00\x00\x00\x30\x01\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xfb\x01\xb2\x00\x57\x02\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x58\x02\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\x30\x01\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x73\x01\x2c\x01\x5a\x00\x00\x00\x2d\x01\x42\x02\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x06\x00\x00\x00\x00\x00\x30\x01\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x43\x02\x00\x00\x15\x02\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x16\x02\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\x30\x01\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x72\x01\x00\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\xe3\x02\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x06\x00\x00\x00\x00\x00\x30\x01\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xe4\x02\x00\x00\xf4\x01\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf5\x01\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x2c\x01\x5a\x00\x00\x00\x2d\x01\x00\x00\x2e\x01\x00\x00\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2c\x01\x5a\x00\x64\x00\x2d\x01\x00\x00\x2e\x01\x30\x01\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2c\x01\x5a\x00\x64\x00\x2d\x01\x00\x00\x2e\x01\x30\x01\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\x8c\x01\x00\x00\x00\x00\x2c\x01\x5a\x00\x64\x00\x2d\x01\x00\x00\x2e\x01\x30\x01\x2f\x01\x61\x00\x62\x00\x63\x00\x00\x00\xb1\x02\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\x00\x00\x30\x01\xc6\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb0\x02\x00\x00\xc7\x00\x62\x00\x63\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x64\x00\x00\x00\x00\x00\xc8\x00\xad\x02\x6d\x00\x33\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x7c\x01\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\x00\x00\x00\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\x00\x00\x00\x00\xdf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x73\x00\xb7\x00\x00\x00\x75\x00\x00\x00\x6d\x00\x33\x01\x6f\x00\xb8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x7b\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x71\x01\x80\x01\x81\x01\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x00\x00\x18\x00\x19\x00\xdc\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\xb7\x00\x91\x00\x75\x00\x00\x00\x00\x00\xbc\x00\x00\x00\xb8\x00\x00\x00\x00\x00\x28\x02\xea\x00\xeb\x00\x97\x00\x00\x00\x7b\x00\x29\x02\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x00\x00\x2a\x02\x7d\x01\xc0\x00\xc1\x00\x7e\x01\x7f\x01\xb9\x00\xba\x00\x89\x00\xbb\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x91\x00\x00\x00\x00\x00\x00\x00\xbc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x3f\x00\x00\x00\x00\x00\x00\x00\x73\x00\x00\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x8d\x00\x8e\x00\x00\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x00\x00\x9a\x00\x9b\x00\xfd\x02\x00\x00\x73\x00\x00\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x00\x00\x8e\x00\x00\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x00\x00\x9a\x00\x9b\x00\x73\x00\x1b\xfe\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x1b\xfe\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x1b\xfe\x1b\xfe\x89\x00\x1b\xfe\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x00\x00\x8e\x00\x00\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x1b\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xdc\x01\x96\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x1b\xfe\x1b\xfe\x9a\x00\x9b\x00\x73\x00\x1b\xfe\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x1b\xfe\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x1b\xfe\x1b\xfe\x89\x00\x1b\xfe\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x00\x00\x8e\x00\x00\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x1b\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x1b\xfe\x1b\xfe\x9a\x00\x9b\x00\x73\x00\xb7\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x00\x00\x8e\x00\x00\x00\x8f\x00\xc6\x01\x91\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc7\x01\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x19\xfe\x19\xfe\x00\x00\x19\xfe\x00\x00\x19\xfe\x00\x00\x19\xfe\x19\xfe\x00\x00\x19\xfe\x00\x00\x00\x00\x19\xfe\x00\x00\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x00\x00\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x00\x00\x19\xfe\x19\xfe\x00\x00\x19\xfe\x00\x00\x19\xfe\x00\x00\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x19\xfe\x19\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x73\x00\xb7\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x91\x00\x00\x00\x93\x00\x94\x00\xbc\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x97\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x70\x01\x00\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x73\x00\x00\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x18\x00\x19\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x8d\x00\x8e\x00\x00\x00\x8f\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\x00\x97\x00\x73\x00\x00\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\x99\x00\x00\x00\x78\x00\x9a\x00\x9b\x00\x79\x00\x00\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x00\x00\x8e\x00\x00\x00\x8f\x00\xb4\x00\x91\x00\x92\x00\x93\x00\x94\x00\x00\x00\x00\x00\x73\x00\xb7\x00\x00\x00\x75\x00\x00\x00\xb5\x00\x97\x00\x00\x00\xb8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x33\x03\x99\x00\x7b\x00\x00\x00\x9a\x00\x9b\x00\x00\x00\x34\x03\x00\x00\xe8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xed\x00\x84\x00\x1a\x02\x67\x00\x68\x00\xf0\x01\x88\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x91\x00\x00\x00\x00\x00\x00\x00\xbc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\xb7\x00\x00\x00\x75\x00\x00\x00\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\xb7\x00\x91\x00\x75\x00\x93\x00\x94\x00\xbc\x00\x00\x00\xb8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x97\x00\x00\x00\x7b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x89\x00\xbb\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x91\x00\x00\x00\x00\x00\x00\x00\xbc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\xbd\x00\xbe\x00\x9a\x00\x9b\x00\xb7\x00\x00\x00\x00\x00\x00\x00\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\xc6\x01\x00\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc7\x01\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x19\xfe\x00\x00\xbd\x00\xbe\x00\x19\xfe\x00\x00\x19\xfe\x19\xfe\x00\x00\x19\xfe\x00\x00\x00\x00\x19\xfe\x00\x00\x19\xfe\x00\x00\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x19\xfe\x19\xfe\x19\xfe\x00\x00\x00\x00\x19\xfe\x19\xfe\x00\x00\x19\xfe\x00\x00\x19\xfe\x19\xfe\x00\x00\x00\x00\x00\x00\x19\xfe\x00\x00\x00\x00\x19\xfe\x00\x00\x19\xfe\x19\xfe\x19\xfe\x19\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x19\xfe\x19\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb7\x00\x00\x00\x19\xfe\x19\xfe\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\xcd\x00\x00\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xce\x00\x97\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb7\x00\x00\x00\xbd\x00\xbe\x00\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\xc6\x01\x00\x00\x92\x00\x93\x00\x94\x00\xbc\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb7\x00\x00\x00\xc7\x01\x97\x00\x76\x00\x00\x00\x77\x00\xb8\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\xbd\x00\xbe\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\xc8\x00\x00\x00\xb9\x00\xba\x00\x00\x00\xbb\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x93\x00\x94\x00\xbc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x97\x00\x00\x00\x00\x00\xc2\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\xbd\x00\xbe\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\xcb\x01\x00\x00\x00\x00\x00\x00\x00\x00\x38\x02\x00\x00\x18\x00\x19\x00\xca\x01\x00\x00\x06\x00\x39\x02\x3a\x02\x6f\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\xcb\x01\x00\x00\x00\x00\x00\x00\x00\x00\xe6\x02\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\xb2\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\xcb\x01\x00\x00\x00\x00\x00\x00\x00\x00\xcc\x01\x00\x00\x18\x00\x19\x00\xdd\x02\x00\x00\xde\x02\x6d\x00\xcd\x01\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x93\x00\x94\x00\xdd\x02\x00\x00\x37\x03\x00\x00\x00\x00\x00\x00\x00\x00\x96\x00\x97\x00\xdf\x02\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\xb5\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x93\x00\x94\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\x00\x97\x00\xdf\x02\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\xed\x02\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x18\x00\x19\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x93\x00\x94\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\x00\x97\x00\xdf\x02\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\xad\x02\x00\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x93\x00\x94\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x96\x00\x97\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x93\x00\x94\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\x96\x00\x97\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\xb4\x00\x00\x00\x92\x00\x93\x00\x94\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x00\x00\x78\x00\xb5\x00\x97\x00\x79\x00\x00\x00\x7a\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8a\x00\x8b\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x93\x00\x94\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x96\x00\x97\x00\x94\x02\x00\x00\x95\x02\x96\x02\x97\x02\x98\x02\x99\x02\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x9a\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x94\x02\x9b\x02\x5e\x03\x96\x02\x97\x02\x98\x02\x99\x02\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x9a\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x68\x03\x00\x00\x9b\x02\x69\x03\x97\x02\x98\x02\x99\x02\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x9a\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x9b\x02\x12\x03\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x03\x13\x03\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x14\x03\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x9a\x02\x00\x00\x65\x03\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x9a\x02\x00\x00\xa8\x03\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x9a\x02\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\xcb\x01\x00\x00\x00\x00\x00\x00\x00\x00\x35\x02\x00\x00\x18\x00\x19\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\xb2\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x06\x01\x00\x00\x07\x01\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x06\x01\x00\x00\xc1\x02\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x06\x01\x00\x00\xc0\x02\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x06\x01\x00\x00\x7e\x03\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x06\x01\x00\x00\x7d\x03\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x17\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x9f\x01\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x9e\x01\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x9c\x01\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x9a\x01\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x78\x01\x00\x00\x00\x00\x79\x01\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x75\x01\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x60\x01\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x61\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x5f\x01\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xbf\x02\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x74\x03\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xa2\x03\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xbc\x03\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xbb\x03\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x12\x01\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\xf9\x01\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x8e\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x8b\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x87\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x63\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x66\x02\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x93\x02\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x91\x02\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x60\x03\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x20\x03\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x19\x03\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x8e\x03\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x8b\x03\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x87\x03\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x81\x03\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x72\x03\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x70\x03\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\xa7\x03\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x9c\x03\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x99\x03\x18\x00\x19\x00\x07\x00\x00\x00\x96\x03\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x97\x03\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x8c\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x92\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x77\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x74\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x10\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x6f\x01\x00\x00\x5d\x02\x00\x00\xe8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xed\x00\x9a\x03\x1a\x02\x67\x00\x68\x00\xf0\x01\x18\x00\x19\x00\x34\x03\x00\x00\xe8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xed\x00\x00\x00\x1a\x02\x67\x00\x68\x00\xf0\x01\xfd\x00\x00\x00\xe8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xed\x00\x00\x00\x1a\x02\x67\x00\x68\x00\xf0\x01\xe7\x00\x00\x00\xe8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xed\x00\x00\x00\x1a\x02\x67\x00\x68\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyReduceArr :: Array
  Int
  (Int#
   -> CToken
   -> Int#
   -> Happy_IntList
   -> HappyStk HappyAbsSyn
   -> P HappyAbsSyn)
happyReduceArr = (Int, Int)
-> [(Int,
     Int#
     -> CToken
     -> Int#
     -> Happy_IntList
     -> HappyStk HappyAbsSyn
     -> P HappyAbsSyn)]
-> Array
     Int
     (Int#
      -> CToken
      -> Int#
      -> Happy_IntList
      -> HappyStk HappyAbsSyn
      -> P HappyAbsSyn)
forall i e. Ix i => (i, i) -> [(i, e)] -> Array i e
Happy_Data_Array.array (4, 501) [
	(4 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_4),
	(5 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_5),
	(6 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_6),
	(7 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_7),
	(8 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_8),
	(9 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_9),
	(10 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_10),
	(11 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_11),
	(12 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_12),
	(13 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_13),
	(14 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_14),
	(15 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_15),
	(16 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_16),
	(17 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_17),
	(18 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_18),
	(19 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_19),
	(20 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_20),
	(21 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_21),
	(22 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_22),
	(23 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_23),
	(24 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_24),
	(25 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_25),
	(26 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_26),
	(27 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_27),
	(28 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_28),
	(29 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_29),
	(30 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_30),
	(31 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_31),
	(32 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_32),
	(33 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_33),
	(34 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_34),
	(35 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_35),
	(36 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_36),
	(37 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_37),
	(38 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_38),
	(39 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_39),
	(40 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_40),
	(41 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_41),
	(42 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_42),
	(43 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_43),
	(44 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_44),
	(45 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_45),
	(46 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_46),
	(47 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_47),
	(48 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_48),
	(49 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_49),
	(50 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_50),
	(51 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_51),
	(52 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_52),
	(53 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_53),
	(54 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_54),
	(55 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_55),
	(56 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_56),
	(57 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_57),
	(58 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_58),
	(59 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_59),
	(60 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_60),
	(61 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_61),
	(62 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_62),
	(63 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_63),
	(64 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_64),
	(65 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_65),
	(66 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_66),
	(67 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_67),
	(68 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_68),
	(69 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_69),
	(70 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_70),
	(71 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_71),
	(72 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_72),
	(73 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_73),
	(74 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_74),
	(75 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_75),
	(76 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_76),
	(77 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_77),
	(78 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_78),
	(79 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_79),
	(80 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_80),
	(81 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_81),
	(82 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_82),
	(83 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_83),
	(84 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_84),
	(85 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_85),
	(86 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_86),
	(87 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_87),
	(88 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_88),
	(89 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_89),
	(90 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_90),
	(91 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_91),
	(92 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_92),
	(93 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_93),
	(94 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_94),
	(95 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_95),
	(96 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_96),
	(97 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_97),
	(98 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_98),
	(99 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_99),
	(100 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_100),
	(101 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_101),
	(102 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_102),
	(103 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_103),
	(104 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_104),
	(105 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_105),
	(106 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_106),
	(107 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_107),
	(108 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_108),
	(109 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_109),
	(110 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_110),
	(111 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_111),
	(112 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_112),
	(113 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_113),
	(114 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_114),
	(115 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_115),
	(116 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_116),
	(117 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_117),
	(118 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_118),
	(119 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_119),
	(120 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_120),
	(121 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_121),
	(122 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_122),
	(123 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_123),
	(124 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_124),
	(125 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_125),
	(126 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_126),
	(127 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_127),
	(128 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_128),
	(129 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_129),
	(130 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_130),
	(131 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_131),
	(132 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_132),
	(133 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_133),
	(134 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_134),
	(135 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_135),
	(136 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_136),
	(137 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_137),
	(138 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_138),
	(139 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_139),
	(140 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_140),
	(141 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_141),
	(142 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_142),
	(143 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_143),
	(144 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_144),
	(145 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_145),
	(146 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_146),
	(147 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_147),
	(148 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_148),
	(149 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_149),
	(150 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_150),
	(151 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_151),
	(152 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_152),
	(153 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_153),
	(154 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_154),
	(155 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_155),
	(156 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_156),
	(157 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_157),
	(158 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_158),
	(159 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_159),
	(160 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_160),
	(161 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_161),
	(162 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_162),
	(163 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_163),
	(164 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_164),
	(165 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_165),
	(166 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_166),
	(167 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_167),
	(168 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_168),
	(169 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_169),
	(170 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_170),
	(171 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_171),
	(172 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_172),
	(173 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_173),
	(174 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_174),
	(175 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_175),
	(176 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_176),
	(177 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_177),
	(178 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_178),
	(179 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_179),
	(180 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_180),
	(181 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_181),
	(182 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_182),
	(183 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_183),
	(184 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_184),
	(185 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_185),
	(186 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_186),
	(187 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_187),
	(188 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_188),
	(189 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_189),
	(190 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_190),
	(191 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_191),
	(192 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_192),
	(193 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_193),
	(194 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_194),
	(195 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_195),
	(196 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_196),
	(197 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_197),
	(198 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_198),
	(199 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_199),
	(200 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_200),
	(201 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_201),
	(202 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_202),
	(203 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_203),
	(204 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_204),
	(205 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_205),
	(206 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_206),
	(207 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_207),
	(208 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_208),
	(209 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_209),
	(210 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_210),
	(211 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_211),
	(212 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_212),
	(213 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_213),
	(214 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_214),
	(215 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_215),
	(216 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_216),
	(217 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_217),
	(218 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_218),
	(219 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_219),
	(220 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_220),
	(221 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_221),
	(222 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_222),
	(223 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_223),
	(224 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_224),
	(225 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_225),
	(226 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_226),
	(227 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_227),
	(228 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_228),
	(229 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_229),
	(230 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_230),
	(231 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_231),
	(232 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_232),
	(233 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_233),
	(234 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_234),
	(235 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_235),
	(236 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_236),
	(237 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_237),
	(238 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_238),
	(239 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_239),
	(240 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_240),
	(241 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_241),
	(242 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_242),
	(243 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_243),
	(244 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_244),
	(245 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_245),
	(246 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_246),
	(247 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_247),
	(248 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_248),
	(249 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_249),
	(250 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_250),
	(251 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_251),
	(252 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_252),
	(253 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_253),
	(254 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_254),
	(255 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_255),
	(256 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_256),
	(257 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_257),
	(258 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_258),
	(259 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_259),
	(260 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_260),
	(261 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_261),
	(262 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_262),
	(263 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_263),
	(264 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_264),
	(265 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_265),
	(266 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_266),
	(267 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_267),
	(268 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_268),
	(269 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_269),
	(270 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_270),
	(271 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_271),
	(272 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_272),
	(273 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_273),
	(274 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_274),
	(275 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_275),
	(276 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_276),
	(277 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_277),
	(278 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_278),
	(279 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_279),
	(280 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_280),
	(281 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_281),
	(282 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_282),
	(283 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_283),
	(284 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_284),
	(285 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_285),
	(286 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_286),
	(287 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_287),
	(288 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_288),
	(289 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_289),
	(290 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_290),
	(291 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_291),
	(292 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_292),
	(293 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_293),
	(294 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_294),
	(295 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_295),
	(296 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_296),
	(297 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_297),
	(298 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_298),
	(299 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_299),
	(300 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_300),
	(301 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_301),
	(302 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_302),
	(303 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_303),
	(304 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_304),
	(305 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_305),
	(306 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_306),
	(307 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_307),
	(308 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_308),
	(309 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_309),
	(310 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_310),
	(311 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_311),
	(312 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_312),
	(313 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_313),
	(314 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_314),
	(315 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_315),
	(316 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_316),
	(317 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_317),
	(318 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_318),
	(319 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_319),
	(320 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_320),
	(321 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_321),
	(322 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_322),
	(323 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_323),
	(324 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_324),
	(325 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_325),
	(326 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_326),
	(327 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_327),
	(328 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_328),
	(329 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_329),
	(330 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_330),
	(331 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_331),
	(332 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_332),
	(333 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_333),
	(334 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_334),
	(335 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_335),
	(336 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_336),
	(337 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_337),
	(338 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_338),
	(339 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_339),
	(340 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_340),
	(341 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_341),
	(342 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_342),
	(343 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_343),
	(344 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_344),
	(345 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_345),
	(346 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_346),
	(347 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_347),
	(348 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_348),
	(349 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_349),
	(350 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_350),
	(351 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_351),
	(352 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_352),
	(353 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_353),
	(354 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_354),
	(355 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_355),
	(356 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_356),
	(357 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_357),
	(358 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_358),
	(359 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_359),
	(360 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_360),
	(361 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_361),
	(362 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_362),
	(363 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_363),
	(364 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_364),
	(365 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_365),
	(366 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_366),
	(367 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_367),
	(368 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_368),
	(369 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_369),
	(370 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_370),
	(371 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_371),
	(372 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_372),
	(373 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_373),
	(374 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_374),
	(375 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_375),
	(376 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_376),
	(377 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_377),
	(378 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_378),
	(379 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_379),
	(380 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_380),
	(381 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_381),
	(382 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_382),
	(383 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_383),
	(384 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_384),
	(385 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_385),
	(386 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_386),
	(387 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_387),
	(388 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_388),
	(389 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_389),
	(390 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_390),
	(391 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_391),
	(392 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_392),
	(393 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_393),
	(394 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_394),
	(395 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_395),
	(396 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_396),
	(397 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_397),
	(398 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_398),
	(399 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_399),
	(400 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_400),
	(401 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_401),
	(402 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_402),
	(403 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_403),
	(404 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_404),
	(405 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_405),
	(406 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_406),
	(407 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_407),
	(408 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_408),
	(409 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_409),
	(410 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_410),
	(411 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_411),
	(412 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_412),
	(413 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_413),
	(414 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_414),
	(415 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_415),
	(416 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_416),
	(417 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_417),
	(418 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_418),
	(419 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_419),
	(420 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_420),
	(421 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_421),
	(422 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_422),
	(423 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_423),
	(424 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_424),
	(425 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_425),
	(426 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_426),
	(427 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_427),
	(428 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_428),
	(429 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_429),
	(430 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_430),
	(431 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_431),
	(432 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_432),
	(433 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_433),
	(434 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_434),
	(435 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_435),
	(436 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_436),
	(437 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_437),
	(438 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_438),
	(439 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_439),
	(440 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_440),
	(441 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_441),
	(442 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_442),
	(443 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_443),
	(444 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_444),
	(445 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_445),
	(446 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_446),
	(447 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_447),
	(448 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_448),
	(449 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_449),
	(450 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_450),
	(451 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_451),
	(452 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_452),
	(453 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_453),
	(454 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_454),
	(455 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_455),
	(456 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_456),
	(457 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_457),
	(458 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_458),
	(459 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_459),
	(460 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_460),
	(461 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_461),
	(462 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_462),
	(463 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_463),
	(464 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_464),
	(465 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_465),
	(466 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_466),
	(467 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_467),
	(468 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_468),
	(469 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_469),
	(470 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_470),
	(471 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_471),
	(472 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_472),
	(473 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_473),
	(474 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_474),
	(475 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_475),
	(476 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_476),
	(477 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_477),
	(478 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_478),
	(479 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_479),
	(480 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_480),
	(481 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_481),
	(482 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_482),
	(483 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_483),
	(484 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_484),
	(485 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_485),
	(486 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_486),
	(487 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_487),
	(488 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_488),
	(489 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_489),
	(490 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_490),
	(491 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_491),
	(492 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_492),
	(493 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_493),
	(494 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_494),
	(495 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_495),
	(496 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_496),
	(497 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_497),
	(498 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_498),
	(499 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_499),
	(500 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_500),
	(501 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_501)
	]

happy_n_terms :: Int
happy_n_terms = 124 :: Int
happy_n_nonterms :: Int
happy_n_nonterms = 131 :: Int

happyReduce_4 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_4 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_4 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 0# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_4
happyReduction_4 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_4 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTranslUnit -> (CTranslUnit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_1 of { (HappyWrap8 happy_var_1 :: Reversed [CExtDecl]
happy_var_1) -> 
	( let decls :: [CExtDecl]
decls = Reversed [CExtDecl] -> [CExtDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CExtDecl]
happy_var_1 in
                       case [CExtDecl]
decls of
                           []     -> do{ Name
n <- P Name
getNewName; Position
p <- P Position
getCurrentPosition; CTranslUnit -> P CTranslUnit
forall (m :: * -> *) a. Monad m => a -> m a
return (CTranslUnit -> P CTranslUnit) -> CTranslUnit -> P CTranslUnit
forall a b. (a -> b) -> a -> b
$ [CExtDecl] -> NodeInfo -> CTranslUnit
forall a. [CExternalDeclaration a] -> a -> CTranslationUnit a
CTranslUnit [CExtDecl]
decls (Position -> PosLength -> Name -> NodeInfo
mkNodeInfo' Position
p (Position
p,0) Name
n) }
                           (d :: CExtDecl
d:ds :: [CExtDecl]
ds) -> CExtDecl -> (NodeInfo -> CTranslUnit) -> P CTranslUnit
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExtDecl
d ((NodeInfo -> CTranslUnit) -> P CTranslUnit)
-> (NodeInfo -> CTranslUnit) -> P CTranslUnit
forall a b. (a -> b) -> a -> b
$ [CExtDecl] -> NodeInfo -> CTranslUnit
forall a. [CExternalDeclaration a] -> a -> CTranslationUnit a
CTranslUnit [CExtDecl]
decls)})
	) (\r :: CTranslUnit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTranslUnit -> HappyAbsSyn
happyIn7 CTranslUnit
r))

happyReduce_5 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_5 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_5 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  1# HappyAbsSyn
happyReduction_5
happyReduction_5 :: HappyAbsSyn
happyReduction_5  =  Reversed [CExtDecl] -> HappyAbsSyn
happyIn8
		 (Reversed [CExtDecl]
forall a. Reversed [a]
empty
	)

happyReduce_6 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_6 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_6 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  1# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_6
happyReduction_6 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_6 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_1 of { (HappyWrap8 happy_var_1 :: Reversed [CExtDecl]
happy_var_1) -> 
	Reversed [CExtDecl] -> HappyAbsSyn
happyIn8
		 (Reversed [CExtDecl]
happy_var_1
	)}

happyReduce_7 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_7 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_7 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  1# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_7
happyReduction_7 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_7 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_1 of { (HappyWrap8 happy_var_1 :: Reversed [CExtDecl]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
happy_x_2 of { (HappyWrap9 happy_var_2 :: CExtDecl
happy_var_2) -> 
	Reversed [CExtDecl] -> HappyAbsSyn
happyIn8
		 (Reversed [CExtDecl]
happy_var_1 Reversed [CExtDecl] -> CExtDecl -> Reversed [CExtDecl]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CExtDecl
happy_var_2
	)}}

happyReduce_8 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_8 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_8 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  2# HappyAbsSyn -> HappyAbsSyn
happyReduction_8
happyReduction_8 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_8 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
happy_x_1 of { (HappyWrap10 happy_var_1 :: CFunDef
happy_var_1) -> 
	CExtDecl -> HappyAbsSyn
happyIn9
		 (CFunDef -> CExtDecl
forall a. CFunctionDef a -> CExternalDeclaration a
CFDefExt CFunDef
happy_var_1
	)}

happyReduce_9 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_9 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_9 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  2# HappyAbsSyn -> HappyAbsSyn
happyReduction_9
happyReduction_9 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_9 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap32
happyOut32 HappyAbsSyn
happy_x_1 of { (HappyWrap32 happy_var_1 :: CDecl
happy_var_1) -> 
	CExtDecl -> HappyAbsSyn
happyIn9
		 (CDecl -> CExtDecl
forall a. CDeclaration a -> CExternalDeclaration a
CDeclExt CDecl
happy_var_1
	)}

happyReduce_10 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_10 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_10 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  2# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_10
happyReduction_10 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_10 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
happy_x_2 of { (HappyWrap9 happy_var_2 :: CExtDecl
happy_var_2) -> 
	CExtDecl -> HappyAbsSyn
happyIn9
		 (CExtDecl
happy_var_2
	)}

happyReduce_11 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_11 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_11 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 2# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_11
happyReduction_11 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_11 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExtDecl -> (CExtDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap128
happyOut128 HappyAbsSyn
happy_x_3 of { (HappyWrap128 happy_var_3 :: CStrLit
happy_var_3) -> 
	( CToken -> (NodeInfo -> CExtDecl) -> P CExtDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExtDecl) -> P CExtDecl)
-> (NodeInfo -> CExtDecl) -> P CExtDecl
forall a b. (a -> b) -> a -> b
$ CStrLit -> NodeInfo -> CExtDecl
forall a. CStringLiteral a -> a -> CExternalDeclaration a
CAsmExt CStrLit
happy_var_3)}})
	) (\r :: CExtDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExtDecl -> HappyAbsSyn
happyIn9 CExtDecl
r))

happyReduce_12 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_12 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_12 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_12
happyReduction_12 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_12 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_1 of { (HappyWrap11 happy_var_1 :: CDeclr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_2 of { (HappyWrap14 happy_var_2 :: CStat
happy_var_2) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (CDeclr -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CDeclr
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [] CDeclr
happy_var_1 [] CStat
happy_var_2))}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))

happyReduce_13 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_13 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_13 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_13
happyReduction_13 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_13 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_1 of { (HappyWrap133 happy_var_1 :: [CAttr]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_2 of { (HappyWrap11 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 happy_var_3 :: CStat
happy_var_3) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CAttr] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CAttr]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))

happyReduce_14 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_14 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_14 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_14
happyReduction_14 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_14 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_1 of { (HappyWrap37 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_2 of { (HappyWrap11 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 happy_var_3 :: CStat
happy_var_3) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))

happyReduce_15 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_15 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_15 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_15
happyReduction_15 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_15 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_2 of { (HappyWrap11 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 happy_var_3 :: CStat
happy_var_3) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))

happyReduce_16 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_16 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_16 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_16
happyReduction_16 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_16 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_2 of { (HappyWrap11 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 happy_var_3 :: CStat
happy_var_3) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))

happyReduce_17 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_17 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_17 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_17
happyReduction_17 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_17 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_2 of { (HappyWrap11 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 happy_var_3 :: CStat
happy_var_3) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CTypeQual] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))

happyReduce_18 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_18 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_18 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_18
happyReduction_18 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_18 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_3 of { (HappyWrap11 happy_var_3 :: CDeclr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_4 of { (HappyWrap14 happy_var_4 :: CStat
happy_var_4) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CTypeQual] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) CDeclr
happy_var_3 [] CStat
happy_var_4))}}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))

happyReduce_19 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_19 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_19 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_19
happyReduction_19 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_19 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_1 of { (HappyWrap79 happy_var_1 :: CDeclr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_2 of { (HappyWrap33 happy_var_2 :: Reversed [CDecl]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 happy_var_3 :: CStat
happy_var_3) -> 
	( CDeclr -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CDeclr
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [] CDeclr
happy_var_1 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_2) CStat
happy_var_3)}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))

happyReduce_20 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_20 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_20 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_20
happyReduction_20 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_20 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_1 of { (HappyWrap133 happy_var_1 :: [CAttr]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_2 of { (HappyWrap79 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_3 of { (HappyWrap33 happy_var_3 :: Reversed [CDecl]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_4 of { (HappyWrap14 happy_var_4 :: CStat
happy_var_4) -> 
	( CDeclr -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CDeclr
happy_var_2 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))

happyReduce_21 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_21 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_21 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_21
happyReduction_21 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_21 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_1 of { (HappyWrap37 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_2 of { (HappyWrap79 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_3 of { (HappyWrap33 happy_var_3 :: Reversed [CDecl]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_4 of { (HappyWrap14 happy_var_4 :: CStat
happy_var_4) -> 
	( [CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))

happyReduce_22 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_22 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_22 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_22
happyReduction_22 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_22 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_2 of { (HappyWrap79 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_3 of { (HappyWrap33 happy_var_3 :: Reversed [CDecl]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_4 of { (HappyWrap14 happy_var_4 :: CStat
happy_var_4) -> 
	( [CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))

happyReduce_23 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_23 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_23 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_23
happyReduction_23 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_23 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_2 of { (HappyWrap79 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_3 of { (HappyWrap33 happy_var_3 :: Reversed [CDecl]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_4 of { (HappyWrap14 happy_var_4 :: CStat
happy_var_4) -> 
	( Reversed [CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))

happyReduce_24 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_24 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_24 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_24
happyReduction_24 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_24 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_2 of { (HappyWrap79 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_3 of { (HappyWrap33 happy_var_3 :: Reversed [CDecl]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_4 of { (HappyWrap14 happy_var_4 :: CStat
happy_var_4) -> 
	( Reversed [CTypeQual] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))

happyReduce_25 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_25 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_25 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_25
happyReduction_25 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_25 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_3 of { (HappyWrap79 happy_var_3 :: CDeclr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_4 of { (HappyWrap33 happy_var_4 :: Reversed [CDecl]
happy_var_4) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_5 of { (HappyWrap14 happy_var_5 :: CStat
happy_var_5) -> 
	( Reversed [CTypeQual] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1  [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) CDeclr
happy_var_3 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_4) CStat
happy_var_5)}}}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))

happyReduce_26 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_26 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_26 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 4# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_26
happyReduction_26 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_26 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_1 of { (HappyWrap75 happy_var_1 :: CDeclrR
happy_var_1) -> 
	( let declr :: CDeclr
declr = CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_1 in
  	   P ()
enterScope P () -> P () -> P ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> CDeclr -> P ()
doFuncParamDeclIdent CDeclr
declr P () -> P CDeclr -> P CDeclr
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> CDeclr -> P CDeclr
forall (m :: * -> *) a. Monad m => a -> m a
return CDeclr
declr)})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn11 CDeclr
r))

happyReduce_27 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_27 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_27 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  5# HappyAbsSyn -> HappyAbsSyn
happyReduction_27
happyReduction_27 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_27 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap13
happyOut13 HappyAbsSyn
happy_x_1 of { (HappyWrap13 happy_var_1 :: CStat
happy_var_1) -> 
	CStat -> HappyAbsSyn
happyIn12
		 (CStat
happy_var_1
	)}

happyReduce_28 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_28 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_28 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  5# HappyAbsSyn -> HappyAbsSyn
happyReduction_28
happyReduction_28 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_28 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_1 of { (HappyWrap14 happy_var_1 :: CStat
happy_var_1) -> 
	CStat -> HappyAbsSyn
happyIn12
		 (CStat
happy_var_1
	)}

happyReduce_29 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_29 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_29 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  5# HappyAbsSyn -> HappyAbsSyn
happyReduction_29
happyReduction_29 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_29 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap22
happyOut22 HappyAbsSyn
happy_x_1 of { (HappyWrap22 happy_var_1 :: CStat
happy_var_1) -> 
	CStat -> HappyAbsSyn
happyIn12
		 (CStat
happy_var_1
	)}

happyReduce_30 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_30 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_30 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  5# HappyAbsSyn -> HappyAbsSyn
happyReduction_30
happyReduction_30 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_30 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap23
happyOut23 HappyAbsSyn
happy_x_1 of { (HappyWrap23 happy_var_1 :: CStat
happy_var_1) -> 
	CStat -> HappyAbsSyn
happyIn12
		 (CStat
happy_var_1
	)}

happyReduce_31 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_31 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_31 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  5# HappyAbsSyn -> HappyAbsSyn
happyReduction_31
happyReduction_31 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_31 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 happy_var_1 :: CStat
happy_var_1) -> 
	CStat -> HappyAbsSyn
happyIn12
		 (CStat
happy_var_1
	)}

happyReduce_32 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_32 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_32 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  5# HappyAbsSyn -> HappyAbsSyn
happyReduction_32
happyReduction_32 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_32 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap25
happyOut25 HappyAbsSyn
happy_x_1 of { (HappyWrap25 happy_var_1 :: CStat
happy_var_1) -> 
	CStat -> HappyAbsSyn
happyIn12
		 (CStat
happy_var_1
	)}

happyReduce_33 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_33 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_33 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 5# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_33
happyReduction_33 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_33 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap26
happyOut26 HappyAbsSyn
happy_x_1 of { (HappyWrap26 happy_var_1 :: CAsmStmt
happy_var_1) -> 
	( CAsmStmt -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CAsmStmt
happy_var_1 (CAsmStmt -> NodeInfo -> CStat
forall a. CAssemblyStatement a -> a -> CStatement a
CAsm CAsmStmt
happy_var_1))})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn12 CStat
r))

happyReduce_34 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_34 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_34 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 6# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_34
happyReduction_34 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_34 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
happy_x_1 of { (HappyWrap131 happy_var_1 :: Ident
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 happy_var_3 :: [CAttr]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_4 of { (HappyWrap12 happy_var_4 :: CStat
happy_var_4) -> 
	( Ident -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Ident -> CStat -> [CAttr] -> NodeInfo -> CStat
forall a.
Ident -> CStatement a -> [CAttribute a] -> a -> CStatement a
CLabel Ident
happy_var_1 CStat
happy_var_4 [CAttr]
happy_var_3)}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn13 CStat
r))

happyReduce_35 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_35 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_35 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 6# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_35
happyReduction_35 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_35 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_2 of { (HappyWrap126 happy_var_2 :: CExpr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_4 of { (HappyWrap12 happy_var_4 :: CStat
happy_var_4) -> 
	( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> NodeInfo -> CStat
forall a. CExpression a -> CStatement a -> a -> CStatement a
CCase CExpr
happy_var_2 CStat
happy_var_4)}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn13 CStat
r))

happyReduce_36 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_36 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_36 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 6# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_36
happyReduction_36 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_36 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_3 of { (HappyWrap12 happy_var_3 :: CStat
happy_var_3) -> 
	( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CStat -> NodeInfo -> CStat
forall a. CStatement a -> a -> CStatement a
CDefault CStat
happy_var_3)}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn13 CStat
r))

happyReduce_37 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_37 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_37 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 6# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_37
happyReduction_37 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_37 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_2 of { (HappyWrap126 happy_var_2 :: CExpr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_4 of { (HappyWrap126 happy_var_4 :: CExpr
happy_var_4) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_6 of { (HappyWrap12 happy_var_6 :: CStat
happy_var_6) -> 
	( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CExpr -> CStat -> NodeInfo -> CStat
forall a.
CExpression a -> CExpression a -> CStatement a -> a -> CStatement a
CCases CExpr
happy_var_2 CExpr
happy_var_4 CStat
happy_var_6)}}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn13 CStat
r))

happyReduce_38 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_38 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_38 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 7# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_38
happyReduction_38 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_38 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap17
happyOut17 HappyAbsSyn
happy_x_3 of { (HappyWrap17 happy_var_3 :: Reversed [CBlockItem]
happy_var_3) -> 
	( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ [Ident] -> [CBlockItem] -> NodeInfo -> CStat
forall a. [Ident] -> [CCompoundBlockItem a] -> a -> CStatement a
CCompound [] (Reversed [CBlockItem] -> [CBlockItem]
forall a. Reversed [a] -> [a]
reverse Reversed [CBlockItem]
happy_var_3))}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn14 CStat
r))

happyReduce_39 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_39 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_39 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 7# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_39
happyReduction_39 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_39 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap21
happyOut21 HappyAbsSyn
happy_x_3 of { (HappyWrap21 happy_var_3 :: Reversed [Ident]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap17
happyOut17 HappyAbsSyn
happy_x_4 of { (HappyWrap17 happy_var_4 :: Reversed [CBlockItem]
happy_var_4) -> 
	( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ [Ident] -> [CBlockItem] -> NodeInfo -> CStat
forall a. [Ident] -> [CCompoundBlockItem a] -> a -> CStatement a
CCompound (Reversed [Ident] -> [Ident]
forall a. Reversed [a] -> [a]
reverse Reversed [Ident]
happy_var_3) (Reversed [CBlockItem] -> [CBlockItem]
forall a. Reversed [a] -> [a]
reverse Reversed [CBlockItem]
happy_var_4))}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn14 CStat
r))

happyReduce_40 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_40 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_40 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 0# 8# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p p. p -> p -> P HappyAbsSyn
happyReduction_40
happyReduction_40 :: p -> p -> P HappyAbsSyn
happyReduction_40 (p
happyRest) tk :: p
tk
	 = P () -> (() -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((( P ()
enterScope))
	) (\r :: ()
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (() -> HappyAbsSyn
happyIn15 ()
r))

happyReduce_41 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_41 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_41 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 0# 9# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p p. p -> p -> P HappyAbsSyn
happyReduction_41
happyReduction_41 :: p -> p -> P HappyAbsSyn
happyReduction_41 (p
happyRest) tk :: p
tk
	 = P () -> (() -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((( P ()
leaveScope))
	) (\r :: ()
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (() -> HappyAbsSyn
happyIn16 ()
r))

happyReduce_42 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_42 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_42 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  10# HappyAbsSyn
happyReduction_42
happyReduction_42 :: HappyAbsSyn
happyReduction_42  =  Reversed [CBlockItem] -> HappyAbsSyn
happyIn17
		 (Reversed [CBlockItem]
forall a. Reversed [a]
empty
	)

happyReduce_43 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_43 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_43 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  10# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_43
happyReduction_43 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_43 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap17
happyOut17 HappyAbsSyn
happy_x_1 of { (HappyWrap17 happy_var_1 :: Reversed [CBlockItem]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap18
happyOut18 HappyAbsSyn
happy_x_2 of { (HappyWrap18 happy_var_2 :: CBlockItem
happy_var_2) -> 
	Reversed [CBlockItem] -> HappyAbsSyn
happyIn17
		 (Reversed [CBlockItem]
happy_var_1 Reversed [CBlockItem] -> CBlockItem -> Reversed [CBlockItem]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CBlockItem
happy_var_2
	)}}

happyReduce_44 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_44 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_44 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  11# HappyAbsSyn -> HappyAbsSyn
happyReduction_44
happyReduction_44 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_44 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_1 of { (HappyWrap12 happy_var_1 :: CStat
happy_var_1) -> 
	CBlockItem -> HappyAbsSyn
happyIn18
		 (CStat -> CBlockItem
forall a. CStatement a -> CCompoundBlockItem a
CBlockStmt CStat
happy_var_1
	)}

happyReduce_45 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_45 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_45 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  11# HappyAbsSyn -> HappyAbsSyn
happyReduction_45
happyReduction_45 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_45 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap19
happyOut19 HappyAbsSyn
happy_x_1 of { (HappyWrap19 happy_var_1 :: CBlockItem
happy_var_1) -> 
	CBlockItem -> HappyAbsSyn
happyIn18
		 (CBlockItem
happy_var_1
	)}

happyReduce_46 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_46 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_46 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  12# HappyAbsSyn -> HappyAbsSyn
happyReduction_46
happyReduction_46 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_46 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap32
happyOut32 HappyAbsSyn
happy_x_1 of { (HappyWrap32 happy_var_1 :: CDecl
happy_var_1) -> 
	CBlockItem -> HappyAbsSyn
happyIn19
		 (CDecl -> CBlockItem
forall a. CDeclaration a -> CCompoundBlockItem a
CBlockDecl CDecl
happy_var_1
	)}

happyReduce_47 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_47 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_47 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  12# HappyAbsSyn -> HappyAbsSyn
happyReduction_47
happyReduction_47 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_47 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap20
happyOut20 HappyAbsSyn
happy_x_1 of { (HappyWrap20 happy_var_1 :: CFunDef
happy_var_1) -> 
	CBlockItem -> HappyAbsSyn
happyIn19
		 (CFunDef -> CBlockItem
forall a. CFunctionDef a -> CCompoundBlockItem a
CNestedFunDef CFunDef
happy_var_1
	)}

happyReduce_48 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_48 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_48 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  12# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_48
happyReduction_48 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_48 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap19
happyOut19 HappyAbsSyn
happy_x_2 of { (HappyWrap19 happy_var_2 :: CBlockItem
happy_var_2) -> 
	CBlockItem -> HappyAbsSyn
happyIn19
		 (CBlockItem
happy_var_2
	)}

happyReduce_49 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_49 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_49 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 13# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_49
happyReduction_49 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_49 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_1 of { (HappyWrap37 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_2 of { (HappyWrap11 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 happy_var_3 :: CStat
happy_var_3) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn20 CFunDef
r))

happyReduce_50 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_50 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_50 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 13# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_50
happyReduction_50 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_50 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_2 of { (HappyWrap11 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 happy_var_3 :: CStat
happy_var_3) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn20 CFunDef
r))

happyReduce_51 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_51 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_51 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 13# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_51
happyReduction_51 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_51 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_2 of { (HappyWrap11 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 happy_var_3 :: CStat
happy_var_3) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn20 CFunDef
r))

happyReduce_52 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_52 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_52 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 13# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_52
happyReduction_52 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_52 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_2 of { (HappyWrap11 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 happy_var_3 :: CStat
happy_var_3) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CTypeQual] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn20 CFunDef
r))

happyReduce_53 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_53 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_53 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 13# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_53
happyReduction_53 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_53 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_3 of { (HappyWrap11 happy_var_3 :: CDeclr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_4 of { (HappyWrap14 happy_var_4 :: CStat
happy_var_4) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CTypeQual] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) CDeclr
happy_var_3 [] CStat
happy_var_4))}}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn20 CFunDef
r))

happyReduce_54 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_54 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_54 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  14# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_54
happyReduction_54 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_54 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap85
happyOut85 HappyAbsSyn
happy_x_2 of { (HappyWrap85 happy_var_2 :: Reversed [Ident]
happy_var_2) -> 
	Reversed [Ident] -> HappyAbsSyn
happyIn21
		 (Reversed [Ident]
happy_var_2
	)}

happyReduce_55 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_55 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_55 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 14# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_55
happyReduction_55 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_55 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap21
happyOut21 HappyAbsSyn
happy_x_1 of { (HappyWrap21 happy_var_1 :: Reversed [Ident]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap85
happyOut85 HappyAbsSyn
happy_x_3 of { (HappyWrap85 happy_var_3 :: Reversed [Ident]
happy_var_3) -> 
	Reversed [Ident] -> HappyAbsSyn
happyIn21
		 (Reversed [Ident]
happy_var_1 Reversed [Ident] -> Reversed [Ident] -> Reversed [Ident]
forall a. Reversed [a] -> Reversed [a] -> Reversed [a]
`rappendr` Reversed [Ident]
happy_var_3
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_56 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_56 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_56 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 15# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_56
happyReduction_56 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_56 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Maybe CExpr -> NodeInfo -> CStat
forall a. Maybe (CExpression a) -> a -> CStatement a
CExpr Maybe CExpr
forall k1. Maybe k1
Nothing)})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn22 CStat
r))

happyReduce_57 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_57 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_57 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 15# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_57
happyReduction_57 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_57 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_1 of { (HappyWrap122 happy_var_1 :: CExpr
happy_var_1) -> 
	( CExpr -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Maybe CExpr -> NodeInfo -> CStat
forall a. Maybe (CExpression a) -> a -> CStatement a
CExpr (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_1))})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn22 CStat
r))

happyReduce_58 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_58 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_58 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 16# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_58
happyReduction_58 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_58 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_3 of { (HappyWrap122 happy_var_3 :: CExpr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_5 of { (HappyWrap12 happy_var_5 :: CStat
happy_var_5) -> 
	( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> Maybe CStat -> NodeInfo -> CStat
forall a.
CExpression a
-> CStatement a -> Maybe (CStatement a) -> a -> CStatement a
CIf CExpr
happy_var_3 CStat
happy_var_5 Maybe CStat
forall k1. Maybe k1
Nothing)}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn23 CStat
r))

happyReduce_59 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_59 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_59 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 16# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_59
happyReduction_59 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_59 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_3 of { (HappyWrap122 happy_var_3 :: CExpr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_5 of { (HappyWrap12 happy_var_5 :: CStat
happy_var_5) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_7 of { (HappyWrap12 happy_var_7 :: CStat
happy_var_7) -> 
	( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> Maybe CStat -> NodeInfo -> CStat
forall a.
CExpression a
-> CStatement a -> Maybe (CStatement a) -> a -> CStatement a
CIf CExpr
happy_var_3 CStat
happy_var_5 (CStat -> Maybe CStat
forall k1. k1 -> Maybe k1
Just CStat
happy_var_7))}}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn23 CStat
r))

happyReduce_60 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_60 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_60 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 16# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_60
happyReduction_60 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_60 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_3 of { (HappyWrap122 happy_var_3 :: CExpr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_5 of { (HappyWrap12 happy_var_5 :: CStat
happy_var_5) -> 
	( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> NodeInfo -> CStat
forall a. CExpression a -> CStatement a -> a -> CStatement a
CSwitch CExpr
happy_var_3 CStat
happy_var_5)}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn23 CStat
r))

happyReduce_61 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_61 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_61 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 17# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_61
happyReduction_61 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_61 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_3 of { (HappyWrap122 happy_var_3 :: CExpr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_5 of { (HappyWrap12 happy_var_5 :: CStat
happy_var_5) -> 
	( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> Bool -> NodeInfo -> CStat
forall a.
CExpression a -> CStatement a -> Bool -> a -> CStatement a
CWhile CExpr
happy_var_3 CStat
happy_var_5 Bool
False)}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn24 CStat
r))

happyReduce_62 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_62 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_62 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 17# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_62
happyReduction_62 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_62 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_2 of { (HappyWrap12 happy_var_2 :: CStat
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_5 of { (HappyWrap122 happy_var_5 :: CExpr
happy_var_5) -> 
	( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> Bool -> NodeInfo -> CStat
forall a.
CExpression a -> CStatement a -> Bool -> a -> CStatement a
CWhile CExpr
happy_var_5 CStat
happy_var_2 Bool
True)}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn24 CStat
r))

happyReduce_63 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_63 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_63 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 9# 17# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_63
happyReduction_63 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_63 (happy_x_9 :: HappyAbsSyn
happy_x_9 `HappyStk`
	happy_x_8 :: HappyAbsSyn
happy_x_8 `HappyStk`
	happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap124
happyOut124 HappyAbsSyn
happy_x_3 of { (HappyWrap124 happy_var_3 :: Maybe CExpr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap124
happyOut124 HappyAbsSyn
happy_x_5 of { (HappyWrap124 happy_var_5 :: Maybe CExpr
happy_var_5) -> 
	case HappyAbsSyn -> HappyWrap124
happyOut124 HappyAbsSyn
happy_x_7 of { (HappyWrap124 happy_var_7 :: Maybe CExpr
happy_var_7) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_9 of { (HappyWrap12 happy_var_9 :: CStat
happy_var_9) -> 
	( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Either (Maybe CExpr) CDecl
-> Maybe CExpr -> Maybe CExpr -> CStat -> NodeInfo -> CStat
forall a.
Either (Maybe (CExpression a)) (CDeclaration a)
-> Maybe (CExpression a)
-> Maybe (CExpression a)
-> CStatement a
-> a
-> CStatement a
CFor (Maybe CExpr -> Either (Maybe CExpr) CDecl
forall a b. a -> Either a b
Left Maybe CExpr
happy_var_3) Maybe CExpr
happy_var_5 Maybe CExpr
happy_var_7 CStat
happy_var_9)}}}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn24 CStat
r))

happyReduce_64 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_64 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_64 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 10# 17# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_64
happyReduction_64 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_64 (happy_x_10 :: HappyAbsSyn
happy_x_10 `HappyStk`
	happy_x_9 :: HappyAbsSyn
happy_x_9 `HappyStk`
	happy_x_8 :: HappyAbsSyn
happy_x_8 `HappyStk`
	happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap32
happyOut32 HappyAbsSyn
happy_x_4 of { (HappyWrap32 happy_var_4 :: CDecl
happy_var_4) -> 
	case HappyAbsSyn -> HappyWrap124
happyOut124 HappyAbsSyn
happy_x_5 of { (HappyWrap124 happy_var_5 :: Maybe CExpr
happy_var_5) -> 
	case HappyAbsSyn -> HappyWrap124
happyOut124 HappyAbsSyn
happy_x_7 of { (HappyWrap124 happy_var_7 :: Maybe CExpr
happy_var_7) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_9 of { (HappyWrap12 happy_var_9 :: CStat
happy_var_9) -> 
	( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Either (Maybe CExpr) CDecl
-> Maybe CExpr -> Maybe CExpr -> CStat -> NodeInfo -> CStat
forall a.
Either (Maybe (CExpression a)) (CDeclaration a)
-> Maybe (CExpression a)
-> Maybe (CExpression a)
-> CStatement a
-> a
-> CStatement a
CFor (CDecl -> Either (Maybe CExpr) CDecl
forall a b. b -> Either a b
Right CDecl
happy_var_4) Maybe CExpr
happy_var_5 Maybe CExpr
happy_var_7 CStat
happy_var_9)}}}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn24 CStat
r))

happyReduce_65 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_65 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_65 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_65
happyReduction_65 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_65 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
happy_x_2 of { (HappyWrap131 happy_var_2 :: Ident
happy_var_2) -> 
	( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CStat
forall a. Ident -> a -> CStatement a
CGoto Ident
happy_var_2)}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn25 CStat
r))

happyReduce_66 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_66 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_66 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_66
happyReduction_66 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_66 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_3 of { (HappyWrap122 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CStat
forall a. CExpression a -> a -> CStatement a
CGotoPtr CExpr
happy_var_3)}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn25 CStat
r))

happyReduce_67 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_67 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_67 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_67
happyReduction_67 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_67 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStat
forall a. a -> CStatement a
CCont)})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn25 CStat
r))

happyReduce_68 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_68 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_68 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_68
happyReduction_68 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_68 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStat
forall a. a -> CStatement a
CBreak)})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn25 CStat
r))

happyReduce_69 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_69 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_69 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_69
happyReduction_69 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_69 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap124
happyOut124 HappyAbsSyn
happy_x_2 of { (HappyWrap124 happy_var_2 :: Maybe CExpr
happy_var_2) -> 
	( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Maybe CExpr -> NodeInfo -> CStat
forall a. Maybe (CExpression a) -> a -> CStatement a
CReturn Maybe CExpr
happy_var_2)}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn25 CStat
r))

happyReduce_70 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_70 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_70 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 19# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_70
happyReduction_70 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_70 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CAsmStmt -> (CAsmStmt -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap27
happyOut27 HappyAbsSyn
happy_x_2 of { (HappyWrap27 happy_var_2 :: Maybe CTypeQual
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap128
happyOut128 HappyAbsSyn
happy_x_4 of { (HappyWrap128 happy_var_4 :: CStrLit
happy_var_4) -> 
	( CToken -> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAsmStmt) -> P CAsmStmt)
-> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall a b. (a -> b) -> a -> b
$ Maybe CTypeQual
-> CStrLit
-> [CAsmOperand]
-> [CAsmOperand]
-> [CStrLit]
-> NodeInfo
-> CAsmStmt
forall a.
Maybe (CTypeQualifier a)
-> CStringLiteral a
-> [CAssemblyOperand a]
-> [CAssemblyOperand a]
-> [CStringLiteral a]
-> a
-> CAssemblyStatement a
CAsmStmt Maybe CTypeQual
happy_var_2 CStrLit
happy_var_4 [] [] [])}}})
	) (\r :: CAsmStmt
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmStmt -> HappyAbsSyn
happyIn26 CAsmStmt
r))

happyReduce_71 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_71 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_71 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 8# 19# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_71
happyReduction_71 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_71 (happy_x_8 :: HappyAbsSyn
happy_x_8 `HappyStk`
	happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CAsmStmt -> (CAsmStmt -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap27
happyOut27 HappyAbsSyn
happy_x_2 of { (HappyWrap27 happy_var_2 :: Maybe CTypeQual
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap128
happyOut128 HappyAbsSyn
happy_x_4 of { (HappyWrap128 happy_var_4 :: CStrLit
happy_var_4) -> 
	case HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
happy_x_6 of { (HappyWrap28 happy_var_6 :: [CAsmOperand]
happy_var_6) -> 
	( CToken -> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAsmStmt) -> P CAsmStmt)
-> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall a b. (a -> b) -> a -> b
$ Maybe CTypeQual
-> CStrLit
-> [CAsmOperand]
-> [CAsmOperand]
-> [CStrLit]
-> NodeInfo
-> CAsmStmt
forall a.
Maybe (CTypeQualifier a)
-> CStringLiteral a
-> [CAssemblyOperand a]
-> [CAssemblyOperand a]
-> [CStringLiteral a]
-> a
-> CAssemblyStatement a
CAsmStmt Maybe CTypeQual
happy_var_2 CStrLit
happy_var_4 [CAsmOperand]
happy_var_6 [] [])}}}})
	) (\r :: CAsmStmt
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmStmt -> HappyAbsSyn
happyIn26 CAsmStmt
r))

happyReduce_72 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_72 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_72 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 10# 19# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_72
happyReduction_72 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_72 (happy_x_10 :: HappyAbsSyn
happy_x_10 `HappyStk`
	happy_x_9 :: HappyAbsSyn
happy_x_9 `HappyStk`
	happy_x_8 :: HappyAbsSyn
happy_x_8 `HappyStk`
	happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CAsmStmt -> (CAsmStmt -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap27
happyOut27 HappyAbsSyn
happy_x_2 of { (HappyWrap27 happy_var_2 :: Maybe CTypeQual
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap128
happyOut128 HappyAbsSyn
happy_x_4 of { (HappyWrap128 happy_var_4 :: CStrLit
happy_var_4) -> 
	case HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
happy_x_6 of { (HappyWrap28 happy_var_6 :: [CAsmOperand]
happy_var_6) -> 
	case HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
happy_x_8 of { (HappyWrap28 happy_var_8 :: [CAsmOperand]
happy_var_8) -> 
	( CToken -> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAsmStmt) -> P CAsmStmt)
-> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall a b. (a -> b) -> a -> b
$ Maybe CTypeQual
-> CStrLit
-> [CAsmOperand]
-> [CAsmOperand]
-> [CStrLit]
-> NodeInfo
-> CAsmStmt
forall a.
Maybe (CTypeQualifier a)
-> CStringLiteral a
-> [CAssemblyOperand a]
-> [CAssemblyOperand a]
-> [CStringLiteral a]
-> a
-> CAssemblyStatement a
CAsmStmt Maybe CTypeQual
happy_var_2 CStrLit
happy_var_4 [CAsmOperand]
happy_var_6 [CAsmOperand]
happy_var_8 [])}}}}})
	) (\r :: CAsmStmt
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmStmt -> HappyAbsSyn
happyIn26 CAsmStmt
r))

happyReduce_73 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_73 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_73 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 12# 19# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_73
happyReduction_73 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_73 (happy_x_12 :: HappyAbsSyn
happy_x_12 `HappyStk`
	happy_x_11 :: HappyAbsSyn
happy_x_11 `HappyStk`
	happy_x_10 :: HappyAbsSyn
happy_x_10 `HappyStk`
	happy_x_9 :: HappyAbsSyn
happy_x_9 `HappyStk`
	happy_x_8 :: HappyAbsSyn
happy_x_8 `HappyStk`
	happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CAsmStmt -> (CAsmStmt -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap27
happyOut27 HappyAbsSyn
happy_x_2 of { (HappyWrap27 happy_var_2 :: Maybe CTypeQual
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap128
happyOut128 HappyAbsSyn
happy_x_4 of { (HappyWrap128 happy_var_4 :: CStrLit
happy_var_4) -> 
	case HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
happy_x_6 of { (HappyWrap28 happy_var_6 :: [CAsmOperand]
happy_var_6) -> 
	case HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
happy_x_8 of { (HappyWrap28 happy_var_8 :: [CAsmOperand]
happy_var_8) -> 
	case HappyAbsSyn -> HappyWrap31
happyOut31 HappyAbsSyn
happy_x_10 of { (HappyWrap31 happy_var_10 :: Reversed [CStrLit]
happy_var_10) -> 
	( CToken -> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAsmStmt) -> P CAsmStmt)
-> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall a b. (a -> b) -> a -> b
$ Maybe CTypeQual
-> CStrLit
-> [CAsmOperand]
-> [CAsmOperand]
-> [CStrLit]
-> NodeInfo
-> CAsmStmt
forall a.
Maybe (CTypeQualifier a)
-> CStringLiteral a
-> [CAssemblyOperand a]
-> [CAssemblyOperand a]
-> [CStringLiteral a]
-> a
-> CAssemblyStatement a
CAsmStmt Maybe CTypeQual
happy_var_2 CStrLit
happy_var_4 [CAsmOperand]
happy_var_6 [CAsmOperand]
happy_var_8 (Reversed [CStrLit] -> [CStrLit]
forall a. Reversed [a] -> [a]
reverse Reversed [CStrLit]
happy_var_10))}}}}}})
	) (\r :: CAsmStmt
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmStmt -> HappyAbsSyn
happyIn26 CAsmStmt
r))

happyReduce_74 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_74 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_74 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  20# HappyAbsSyn
happyReduction_74
happyReduction_74 :: HappyAbsSyn
happyReduction_74  =  Maybe CTypeQual -> HappyAbsSyn
happyIn27
		 (Maybe CTypeQual
forall k1. Maybe k1
Nothing
	)

happyReduce_75 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_75 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_75 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  20# HappyAbsSyn -> HappyAbsSyn
happyReduction_75
happyReduction_75 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_75 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
happy_x_1 of { (HappyWrap64 happy_var_1 :: CTypeQual
happy_var_1) -> 
	Maybe CTypeQual -> HappyAbsSyn
happyIn27
		 (CTypeQual -> Maybe CTypeQual
forall k1. k1 -> Maybe k1
Just CTypeQual
happy_var_1
	)}

happyReduce_76 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_76 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_76 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  21# HappyAbsSyn
happyReduction_76
happyReduction_76 :: HappyAbsSyn
happyReduction_76  =  [CAsmOperand] -> HappyAbsSyn
happyIn28
		 ([]
	)

happyReduce_77 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_77 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_77 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  21# HappyAbsSyn -> HappyAbsSyn
happyReduction_77
happyReduction_77 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_77 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap29
happyOut29 HappyAbsSyn
happy_x_1 of { (HappyWrap29 happy_var_1 :: Reversed [CAsmOperand]
happy_var_1) -> 
	[CAsmOperand] -> HappyAbsSyn
happyIn28
		 (Reversed [CAsmOperand] -> [CAsmOperand]
forall a. Reversed [a] -> [a]
reverse Reversed [CAsmOperand]
happy_var_1
	)}

happyReduce_78 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_78 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_78 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  22# HappyAbsSyn -> HappyAbsSyn
happyReduction_78
happyReduction_78 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_78 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap30
happyOut30 HappyAbsSyn
happy_x_1 of { (HappyWrap30 happy_var_1 :: CAsmOperand
happy_var_1) -> 
	Reversed [CAsmOperand] -> HappyAbsSyn
happyIn29
		 (CAsmOperand -> Reversed [CAsmOperand]
forall a. a -> Reversed [a]
singleton CAsmOperand
happy_var_1
	)}

happyReduce_79 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_79 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_79 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  22# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_79
happyReduction_79 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_79 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap29
happyOut29 HappyAbsSyn
happy_x_1 of { (HappyWrap29 happy_var_1 :: Reversed [CAsmOperand]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap30
happyOut30 HappyAbsSyn
happy_x_3 of { (HappyWrap30 happy_var_3 :: CAsmOperand
happy_var_3) -> 
	Reversed [CAsmOperand] -> HappyAbsSyn
happyIn29
		 (Reversed [CAsmOperand]
happy_var_1 Reversed [CAsmOperand] -> CAsmOperand -> Reversed [CAsmOperand]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CAsmOperand
happy_var_3
	)}}

happyReduce_80 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_80 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_80 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 23# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_80
happyReduction_80 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_80 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CAsmOperand -> (CAsmOperand -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap128
happyOut128 HappyAbsSyn
happy_x_1 of { (HappyWrap128 happy_var_1 :: CStrLit
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_3 of { (HappyWrap122 happy_var_3 :: CExpr
happy_var_3) -> 
	( CStrLit -> (NodeInfo -> CAsmOperand) -> P CAsmOperand
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CStrLit
happy_var_1 ((NodeInfo -> CAsmOperand) -> P CAsmOperand)
-> (NodeInfo -> CAsmOperand) -> P CAsmOperand
forall a b. (a -> b) -> a -> b
$ Maybe Ident -> CStrLit -> CExpr -> NodeInfo -> CAsmOperand
forall a.
Maybe Ident
-> CStringLiteral a -> CExpression a -> a -> CAssemblyOperand a
CAsmOperand Maybe Ident
forall k1. Maybe k1
Nothing CStrLit
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CAsmOperand
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmOperand -> HappyAbsSyn
happyIn30 CAsmOperand
r))

happyReduce_81 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_81 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_81 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 23# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_81
happyReduction_81 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_81 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CAsmOperand -> (CAsmOperand -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { (CTokIdent  _ happy_var_2 :: Ident
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap128
happyOut128 HappyAbsSyn
happy_x_4 of { (HappyWrap128 happy_var_4 :: CStrLit
happy_var_4) -> 
	case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_6 of { (HappyWrap122 happy_var_6 :: CExpr
happy_var_6) -> 
	( CToken -> (NodeInfo -> CAsmOperand) -> P CAsmOperand
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAsmOperand) -> P CAsmOperand)
-> (NodeInfo -> CAsmOperand) -> P CAsmOperand
forall a b. (a -> b) -> a -> b
$ Maybe Ident -> CStrLit -> CExpr -> NodeInfo -> CAsmOperand
forall a.
Maybe Ident
-> CStringLiteral a -> CExpression a -> a -> CAssemblyOperand a
CAsmOperand (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_2) CStrLit
happy_var_4 CExpr
happy_var_6)}}}})
	) (\r :: CAsmOperand
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmOperand -> HappyAbsSyn
happyIn30 CAsmOperand
r))

happyReduce_82 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_82 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_82 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 23# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_82
happyReduction_82 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_82 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CAsmOperand -> (CAsmOperand -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { (CTokTyIdent _ happy_var_2 :: Ident
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap128
happyOut128 HappyAbsSyn
happy_x_4 of { (HappyWrap128 happy_var_4 :: CStrLit
happy_var_4) -> 
	case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_6 of { (HappyWrap122 happy_var_6 :: CExpr
happy_var_6) -> 
	( CToken -> (NodeInfo -> CAsmOperand) -> P CAsmOperand
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAsmOperand) -> P CAsmOperand)
-> (NodeInfo -> CAsmOperand) -> P CAsmOperand
forall a b. (a -> b) -> a -> b
$ Maybe Ident -> CStrLit -> CExpr -> NodeInfo -> CAsmOperand
forall a.
Maybe Ident
-> CStringLiteral a -> CExpression a -> a -> CAssemblyOperand a
CAsmOperand (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_2) CStrLit
happy_var_4 CExpr
happy_var_6)}}}})
	) (\r :: CAsmOperand
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmOperand -> HappyAbsSyn
happyIn30 CAsmOperand
r))

happyReduce_83 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_83 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_83 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  24# HappyAbsSyn -> HappyAbsSyn
happyReduction_83
happyReduction_83 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_83 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap128
happyOut128 HappyAbsSyn
happy_x_1 of { (HappyWrap128 happy_var_1 :: CStrLit
happy_var_1) -> 
	Reversed [CStrLit] -> HappyAbsSyn
happyIn31
		 (CStrLit -> Reversed [CStrLit]
forall a. a -> Reversed [a]
singleton CStrLit
happy_var_1
	)}

happyReduce_84 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_84 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_84 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  24# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_84
happyReduction_84 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_84 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap31
happyOut31 HappyAbsSyn
happy_x_1 of { (HappyWrap31 happy_var_1 :: Reversed [CStrLit]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap128
happyOut128 HappyAbsSyn
happy_x_3 of { (HappyWrap128 happy_var_3 :: CStrLit
happy_var_3) -> 
	Reversed [CStrLit] -> HappyAbsSyn
happyIn31
		 (Reversed [CStrLit]
happy_var_1 Reversed [CStrLit] -> CStrLit -> Reversed [CStrLit]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CStrLit
happy_var_3
	)}}

happyReduce_85 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_85 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_85 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 25# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_85
happyReduction_85 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_85 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap48
happyOut48 HappyAbsSyn
happy_x_1 of { (HappyWrap48 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	( Reversed [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) [])})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn32 CDecl
r))

happyReduce_86 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_86 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_86 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 25# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_86
happyReduction_86 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_86 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap49
happyOut49 HappyAbsSyn
happy_x_1 of { (HappyWrap49 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	( Reversed [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) [])})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn32 CDecl
r))

happyReduce_87 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_87 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_87 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 25# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_87
happyReduction_87 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_87 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
happy_x_1 of { (HappyWrap36 happy_var_1 :: CDecl
happy_var_1) -> 
	( case CDecl
happy_var_1 of CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies at :: NodeInfo
at -> NodeInfo -> (NodeInfo -> CDecl) -> P CDecl
forall a. NodeInfo -> (NodeInfo -> a) -> P a
withLength NodeInfo
at ([CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ([(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. [a] -> [a]
List.reverse [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies)))})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn32 CDecl
r))

happyReduce_88 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_88 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_88 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 25# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_88
happyReduction_88 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_88 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_1 of { (HappyWrap34 happy_var_1 :: CDecl
happy_var_1) -> 
	( case CDecl
happy_var_1 of CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies at :: NodeInfo
at -> NodeInfo -> (NodeInfo -> CDecl) -> P CDecl
forall a. NodeInfo -> (NodeInfo -> a) -> P a
withLength NodeInfo
at ([CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ([(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. [a] -> [a]
List.reverse [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies)))})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn32 CDecl
r))

happyReduce_89 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_89 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_89 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 25# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_89
happyReduction_89 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_89 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_3 of { (HappyWrap126 happy_var_3 :: CExpr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap128
happyOut128 HappyAbsSyn
happy_x_5 of { (HappyWrap128 happy_var_5 :: CStrLit
happy_var_5) -> 
	( CToken -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ CExpr -> CStrLit -> NodeInfo -> CDecl
forall a. CExpression a -> CStringLiteral a -> a -> CDeclaration a
CStaticAssert CExpr
happy_var_3 CStrLit
happy_var_5)}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn32 CDecl
r))

happyReduce_90 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_90 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_90 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  26# HappyAbsSyn
happyReduction_90
happyReduction_90 :: HappyAbsSyn
happyReduction_90  =  Reversed [CDecl] -> HappyAbsSyn
happyIn33
		 (Reversed [CDecl]
forall a. Reversed [a]
empty
	)

happyReduce_91 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_91 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_91 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  26# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_91
happyReduction_91 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_91 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_1 of { (HappyWrap33 happy_var_1 :: Reversed [CDecl]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap32
happyOut32 HappyAbsSyn
happy_x_2 of { (HappyWrap32 happy_var_2 :: CDecl
happy_var_2) -> 
	Reversed [CDecl] -> HappyAbsSyn
happyIn33
		 (Reversed [CDecl]
happy_var_1 Reversed [CDecl] -> CDecl -> Reversed [CDecl]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDecl
happy_var_2
	)}}

happyReduce_92 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_92 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_92 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 27# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_92
happyReduction_92 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_92 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_2 of { (HappyWrap75 happy_var_2 :: CDeclrR
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap35
happyOut35 HappyAbsSyn
happy_x_3 of { (HappyWrap35 happy_var_3 :: (Maybe CStrLit, [CAttr])
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_4 of { (HappyWrap94 happy_var_4 :: Maybe CInit
happy_var_4) -> 
	( let declspecs :: [CDeclSpec]
declspecs = Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1 in
  	   do{ CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit, [CAttr])
happy_var_3 CDeclrR
happy_var_2
           ; [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclrR
declr
           ; Reversed [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$
                [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_4, Maybe CExpr
forall k1. Maybe k1
Nothing)] })}}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn34 CDecl
r))

happyReduce_93 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_93 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_93 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 27# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_93
happyReduction_93 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_93 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_2 of { (HappyWrap75 happy_var_2 :: CDeclrR
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap35
happyOut35 HappyAbsSyn
happy_x_3 of { (HappyWrap35 happy_var_3 :: (Maybe CStrLit, [CAttr])
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_4 of { (HappyWrap94 happy_var_4 :: Maybe CInit
happy_var_4) -> 
	( let declspecs :: [CDeclSpec]
declspecs = Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 in
  	   do{ CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit, [CAttr])
happy_var_3 CDeclrR
happy_var_2
           ; [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclrR
declr
           ; Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_4, Maybe CExpr
forall k1. Maybe k1
Nothing)] })}}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn34 CDecl
r))

happyReduce_94 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_94 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_94 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 27# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_94
happyReduction_94 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_94 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_3 of { (HappyWrap75 happy_var_3 :: CDeclrR
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap35
happyOut35 HappyAbsSyn
happy_x_4 of { (HappyWrap35 happy_var_4 :: (Maybe CStrLit, [CAttr])
happy_var_4) -> 
	case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_5 of { (HappyWrap94 happy_var_5 :: Maybe CInit
happy_var_5) -> 
	( let declspecs :: [CDeclSpec]
declspecs = Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 in
  	   do{ CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit, [CAttr])
happy_var_4 CDeclrR
happy_var_3
           ; [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclrR
declr
           ; Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl ([CDeclSpec]
declspecs [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_5, Maybe CExpr
forall k1. Maybe k1
Nothing)] })}}}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn34 CDecl
r))

happyReduce_95 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_95 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_95 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 27# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_95
happyReduction_95 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_95 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_1 of { (HappyWrap133 happy_var_1 :: [CAttr]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_2 of { (HappyWrap75 happy_var_2 :: CDeclrR
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap35
happyOut35 HappyAbsSyn
happy_x_3 of { (HappyWrap35 happy_var_3 :: (Maybe CStrLit, [CAttr])
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_4 of { (HappyWrap94 happy_var_4 :: Maybe CInit
happy_var_4) -> 
	( let declspecs :: [CDeclSpec]
declspecs = [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1 in
       do{ CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit, [CAttr])
happy_var_3 CDeclrR
happy_var_2
           ; [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclrR
declr
           ; [CAttr] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CAttr]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_4, Maybe CExpr
forall k1. Maybe k1
Nothing)] })}}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn34 CDecl
r))

happyReduce_96 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_96 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_96 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 27# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_96
happyReduction_96 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_96 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_1 of { (HappyWrap34 happy_var_1 :: CDecl
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 happy_var_3 :: [CAttr]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_4 of { (HappyWrap75 happy_var_4 :: CDeclrR
happy_var_4) -> 
	case HappyAbsSyn -> HappyWrap35
happyOut35 HappyAbsSyn
happy_x_5 of { (HappyWrap35 happy_var_5 :: (Maybe CStrLit, [CAttr])
happy_var_5) -> 
	case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_6 of { (HappyWrap94 happy_var_6 :: Maybe CInit
happy_var_6) -> 
	( case CDecl
happy_var_1 of
             CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies at :: NodeInfo
at -> do
               CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs ((Maybe CStrLit, [CAttr]) -> Maybe CStrLit
forall a b. (a, b) -> a
fst (Maybe CStrLit, [CAttr])
happy_var_5, (Maybe CStrLit, [CAttr]) -> [CAttr]
forall a b. (a, b) -> b
snd (Maybe CStrLit, [CAttr])
happy_var_5 [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
happy_var_3) CDeclrR
happy_var_4
               [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclrR
declr
               NodeInfo -> (NodeInfo -> CDecl) -> P CDecl
forall a. NodeInfo -> (NodeInfo -> a) -> P a
withLength NodeInfo
at ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_6, Maybe CExpr
forall k1. Maybe k1
Nothing) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall k1. k1 -> [k1] -> [k1]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies))}}}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn34 CDecl
r))

happyReduce_97 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_97 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_97 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  28# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_97
happyReduction_97 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_97 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_1 of { (HappyWrap67 happy_var_1 :: Maybe CStrLit
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_2 of { (HappyWrap132 happy_var_2 :: [CAttr]
happy_var_2) -> 
	(Maybe CStrLit, [CAttr]) -> HappyAbsSyn
happyIn35
		 ((Maybe CStrLit
happy_var_1,[CAttr]
happy_var_2)
	)}}

happyReduce_98 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_98 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_98 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 29# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_98
happyReduction_98 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_98 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_1 of { (HappyWrap37 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 happy_var_2 :: CDeclrR
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap35
happyOut35 HappyAbsSyn
happy_x_3 of { (HappyWrap35 happy_var_3 :: (Maybe CStrLit, [CAttr])
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_4 of { (HappyWrap94 happy_var_4 :: Maybe CInit
happy_var_4) -> 
	( do{
  	   CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit, [CAttr])
happy_var_3 CDeclrR
happy_var_2;
  	   [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
happy_var_1 CDeclrR
declr;
       [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_4, Maybe CExpr
forall k1. Maybe k1
Nothing)] })}}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn36 CDecl
r))

happyReduce_99 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_99 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_99 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 29# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_99
happyReduction_99 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_99 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 happy_var_2 :: CDeclrR
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap35
happyOut35 HappyAbsSyn
happy_x_3 of { (HappyWrap35 happy_var_3 :: (Maybe CStrLit, [CAttr])
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_4 of { (HappyWrap94 happy_var_4 :: Maybe CInit
happy_var_4) -> 
	( do{
  	   CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit, [CAttr])
happy_var_3 CDeclrR
happy_var_2;
  	   [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
happy_var_1 CDeclrR
declr;
       [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_4, Maybe CExpr
forall k1. Maybe k1
Nothing)] })}}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn36 CDecl
r))

happyReduce_100 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_100 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_100 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 29# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_100
happyReduction_100 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_100 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
happy_x_1 of { (HappyWrap36 happy_var_1 :: CDecl
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 happy_var_3 :: [CAttr]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_4 of { (HappyWrap66 happy_var_4 :: CDeclrR
happy_var_4) -> 
	case HappyAbsSyn -> HappyWrap35
happyOut35 HappyAbsSyn
happy_x_5 of { (HappyWrap35 happy_var_5 :: (Maybe CStrLit, [CAttr])
happy_var_5) -> 
	case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_6 of { (HappyWrap94 happy_var_6 :: Maybe CInit
happy_var_6) -> 
	( case CDecl
happy_var_1 of
             CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies at :: NodeInfo
at -> do
               CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs ((Maybe CStrLit, [CAttr]) -> Maybe CStrLit
forall a b. (a, b) -> a
fst (Maybe CStrLit, [CAttr])
happy_var_5, (Maybe CStrLit, [CAttr]) -> [CAttr]
forall a b. (a, b) -> b
snd (Maybe CStrLit, [CAttr])
happy_var_5 [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
happy_var_3) CDeclrR
happy_var_4
               [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclrR
declr
               CDecl -> P CDecl
forall (m :: * -> *) a. Monad m => a -> m a
return ([CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_6, Maybe CExpr
forall k1. Maybe k1
Nothing) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall k1. k1 -> [k1] -> [k1]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
at))}}}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn36 CDecl
r))

happyReduce_101 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_101 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_101 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  30# HappyAbsSyn -> HappyAbsSyn
happyReduction_101
happyReduction_101 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_101 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_1 of { (HappyWrap46 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	[CDeclSpec] -> HappyAbsSyn
happyIn37
		 (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_102 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_102 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_102 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  30# HappyAbsSyn -> HappyAbsSyn
happyReduction_102
happyReduction_102 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_102 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap48
happyOut48 HappyAbsSyn
happy_x_1 of { (HappyWrap48 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	[CDeclSpec] -> HappyAbsSyn
happyIn37
		 (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_103 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_103 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_103 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  30# HappyAbsSyn -> HappyAbsSyn
happyReduction_103
happyReduction_103 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_103 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap50
happyOut50 HappyAbsSyn
happy_x_1 of { (HappyWrap50 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	[CDeclSpec] -> HappyAbsSyn
happyIn37
		 (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_104 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_104 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_104 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  31# HappyAbsSyn -> HappyAbsSyn
happyReduction_104
happyReduction_104 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_104 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap40
happyOut40 HappyAbsSyn
happy_x_1 of { (HappyWrap40 happy_var_1 :: CDeclSpec
happy_var_1) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn38
		 (CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
singleton CDeclSpec
happy_var_1
	)}

happyReduce_105 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_105 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_105 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  31# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_105
happyReduction_105 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_105 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_1 of { (HappyWrap133 happy_var_1 :: [CAttr]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap40
happyOut40 HappyAbsSyn
happy_x_2 of { (HappyWrap40 happy_var_2 :: CDeclSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn38
		 ([CDeclSpec] -> Reversed [CDeclSpec]
forall a. [a] -> Reversed [a]
reverseList ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDeclSpec
happy_var_2
	)}}

happyReduce_106 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_106 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_106 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  31# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_106
happyReduction_106 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_106 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap40
happyOut40 HappyAbsSyn
happy_x_2 of { (HappyWrap40 happy_var_2 :: CDeclSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn38
		 ((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDeclSpec
happy_var_2
	)}}

happyReduce_107 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_107 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_107 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  31# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_107
happyReduction_107 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_107 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap40
happyOut40 HappyAbsSyn
happy_x_3 of { (HappyWrap40 happy_var_3 :: CDeclSpec
happy_var_3) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn38
		 (((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`rappend` [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDeclSpec
happy_var_3
	)}}}

happyReduce_108 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_108 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_108 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  31# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_108
happyReduction_108 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_108 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_2 of { (HappyWrap39 happy_var_2 :: CDeclSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn38
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDeclSpec
happy_var_2
	)}}

happyReduce_109 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_109 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_109 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  31# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_109
happyReduction_109 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_109 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 happy_var_2 :: [CAttr]
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn38
		 (Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
	)}}

happyReduce_110 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_110 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_110 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  32# HappyAbsSyn -> HappyAbsSyn
happyReduction_110
happyReduction_110 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_110 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_1 of { (HappyWrap41 happy_var_1 :: CStorageSpec
happy_var_1) -> 
	CDeclSpec -> HappyAbsSyn
happyIn39
		 (CStorageSpec -> CDeclSpec
forall a. CStorageSpecifier a -> CDeclarationSpecifier a
CStorageSpec CStorageSpec
happy_var_1
	)}

happyReduce_111 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_111 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_111 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  32# HappyAbsSyn -> HappyAbsSyn
happyReduction_111
happyReduction_111 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_111 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
happy_x_1 of { (HappyWrap64 happy_var_1 :: CTypeQual
happy_var_1) -> 
	CDeclSpec -> HappyAbsSyn
happyIn39
		 (CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual CTypeQual
happy_var_1
	)}

happyReduce_112 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_112 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_112 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  32# HappyAbsSyn -> HappyAbsSyn
happyReduction_112
happyReduction_112 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_112 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap42
happyOut42 HappyAbsSyn
happy_x_1 of { (HappyWrap42 happy_var_1 :: CFunSpec
happy_var_1) -> 
	CDeclSpec -> HappyAbsSyn
happyIn39
		 (CFunSpec -> CDeclSpec
forall a. CFunctionSpecifier a -> CDeclarationSpecifier a
CFunSpec CFunSpec
happy_var_1
	)}

happyReduce_113 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_113 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_113 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  32# HappyAbsSyn -> HappyAbsSyn
happyReduction_113
happyReduction_113 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_113 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap43
happyOut43 HappyAbsSyn
happy_x_1 of { (HappyWrap43 happy_var_1 :: CAlignSpec
happy_var_1) -> 
	CDeclSpec -> HappyAbsSyn
happyIn39
		 (CAlignSpec -> CDeclSpec
forall a. CAlignmentSpecifier a -> CDeclarationSpecifier a
CAlignSpec CAlignSpec
happy_var_1
	)}

happyReduce_114 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_114 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_114 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  33# HappyAbsSyn -> HappyAbsSyn
happyReduction_114
happyReduction_114 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_114 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_1 of { (HappyWrap41 happy_var_1 :: CStorageSpec
happy_var_1) -> 
	CDeclSpec -> HappyAbsSyn
happyIn40
		 (CStorageSpec -> CDeclSpec
forall a. CStorageSpecifier a -> CDeclarationSpecifier a
CStorageSpec CStorageSpec
happy_var_1
	)}

happyReduce_115 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_115 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_115 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  33# HappyAbsSyn -> HappyAbsSyn
happyReduction_115
happyReduction_115 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_115 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap42
happyOut42 HappyAbsSyn
happy_x_1 of { (HappyWrap42 happy_var_1 :: CFunSpec
happy_var_1) -> 
	CDeclSpec -> HappyAbsSyn
happyIn40
		 (CFunSpec -> CDeclSpec
forall a. CFunctionSpecifier a -> CDeclarationSpecifier a
CFunSpec CFunSpec
happy_var_1
	)}

happyReduce_116 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_116 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_116 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  33# HappyAbsSyn -> HappyAbsSyn
happyReduction_116
happyReduction_116 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_116 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap43
happyOut43 HappyAbsSyn
happy_x_1 of { (HappyWrap43 happy_var_1 :: CAlignSpec
happy_var_1) -> 
	CDeclSpec -> HappyAbsSyn
happyIn40
		 (CAlignSpec -> CDeclSpec
forall a. CAlignmentSpecifier a -> CDeclarationSpecifier a
CAlignSpec CAlignSpec
happy_var_1
	)}

happyReduce_117 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_117 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_117 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_117
happyReduction_117 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_117 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CTypedef)})
	) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn41 CStorageSpec
r))

happyReduce_118 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_118 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_118 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_118
happyReduction_118 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_118 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CExtern)})
	) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn41 CStorageSpec
r))

happyReduce_119 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_119 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_119 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_119
happyReduction_119 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_119 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CStatic)})
	) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn41 CStorageSpec
r))

happyReduce_120 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_120 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_120 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_120
happyReduction_120 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_120 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CAuto)})
	) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn41 CStorageSpec
r))

happyReduce_121 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_121 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_121 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_121
happyReduction_121 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_121 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CRegister)})
	) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn41 CStorageSpec
r))

happyReduce_122 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_122 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_122 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_122
happyReduction_122 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_122 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CThread)})
	) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn41 CStorageSpec
r))

happyReduce_123 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_123 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_123 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_123
happyReduction_123 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_123 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CClKernel)})
	) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn41 CStorageSpec
r))

happyReduce_124 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_124 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_124 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_124
happyReduction_124 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_124 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CClGlobal)})
	) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn41 CStorageSpec
r))

happyReduce_125 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_125 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_125 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_125
happyReduction_125 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_125 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CClLocal)})
	) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn41 CStorageSpec
r))

happyReduce_126 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_126 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_126 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 35# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_126
happyReduction_126 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_126 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunSpec -> (CFunSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CFunSpec) -> P CFunSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CFunSpec) -> P CFunSpec)
-> (NodeInfo -> CFunSpec) -> P CFunSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CFunSpec
forall a. a -> CFunctionSpecifier a
CInlineQual)})
	) (\r :: CFunSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunSpec -> HappyAbsSyn
happyIn42 CFunSpec
r))

happyReduce_127 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_127 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_127 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 35# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_127
happyReduction_127 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_127 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunSpec -> (CFunSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CFunSpec) -> P CFunSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CFunSpec) -> P CFunSpec)
-> (NodeInfo -> CFunSpec) -> P CFunSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CFunSpec
forall a. a -> CFunctionSpecifier a
CNoreturnQual)})
	) (\r :: CFunSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunSpec -> HappyAbsSyn
happyIn42 CFunSpec
r))

happyReduce_128 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_128 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_128 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 36# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_128
happyReduction_128 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_128 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CAlignSpec -> (CAlignSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_3 of { (HappyWrap86 happy_var_3 :: CDecl
happy_var_3) -> 
	( CToken -> (NodeInfo -> CAlignSpec) -> P CAlignSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAlignSpec) -> P CAlignSpec)
-> (NodeInfo -> CAlignSpec) -> P CAlignSpec
forall a b. (a -> b) -> a -> b
$ CDecl -> NodeInfo -> CAlignSpec
forall a. CDeclaration a -> a -> CAlignmentSpecifier a
CAlignAsType CDecl
happy_var_3)}})
	) (\r :: CAlignSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAlignSpec -> HappyAbsSyn
happyIn43 CAlignSpec
r))

happyReduce_129 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_129 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_129 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 36# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_129
happyReduction_129 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_129 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CAlignSpec -> (CAlignSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_3 of { (HappyWrap126 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (NodeInfo -> CAlignSpec) -> P CAlignSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAlignSpec) -> P CAlignSpec)
-> (NodeInfo -> CAlignSpec) -> P CAlignSpec
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CAlignSpec
forall a. CExpression a -> a -> CAlignmentSpecifier a
CAlignAsExpr CExpr
happy_var_3)}})
	) (\r :: CAlignSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAlignSpec -> HappyAbsSyn
happyIn43 CAlignSpec
r))

happyReduce_130 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_130 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_130 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  37# HappyAbsSyn -> HappyAbsSyn
happyReduction_130
happyReduction_130 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_130 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap47
happyOut47 HappyAbsSyn
happy_x_1 of { (HappyWrap47 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	[CDeclSpec] -> HappyAbsSyn
happyIn44
		 (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_131 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_131 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_131 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  37# HappyAbsSyn -> HappyAbsSyn
happyReduction_131
happyReduction_131 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_131 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap49
happyOut49 HappyAbsSyn
happy_x_1 of { (HappyWrap49 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	[CDeclSpec] -> HappyAbsSyn
happyIn44
		 (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_132 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_132 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_132 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  37# HappyAbsSyn -> HappyAbsSyn
happyReduction_132
happyReduction_132 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_132 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap51
happyOut51 HappyAbsSyn
happy_x_1 of { (HappyWrap51 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	[CDeclSpec] -> HappyAbsSyn
happyIn44
		 (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_133 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_133 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_133 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_133
happyReduction_133 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_133 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CVoidType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_134 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_134 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_134 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_134
happyReduction_134 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_134 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CCharType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_135 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_135 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_135 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_135
happyReduction_135 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_135 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CShortType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_136 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_136 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_136 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_136
happyReduction_136 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_136 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CIntType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_137 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_137 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_137 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_137
happyReduction_137 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_137 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CLongType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_138 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_138 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_138 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_138
happyReduction_138 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_138 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CFloatType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_139 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_139 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_139 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_139
happyReduction_139 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_139 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CDoubleType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_140 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_140 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_140 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_140
happyReduction_140 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_140 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CSignedType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_141 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_141 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_141 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_141
happyReduction_141 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_141 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CUnsigType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_142 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_142 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_142 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_142
happyReduction_142 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_142 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CBoolType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_143 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_143 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_143 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_143
happyReduction_143 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_143 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CComplexType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_144 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_144 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_144 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_144
happyReduction_144 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_144 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CInt128Type)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_145 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_145 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_145 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_145
happyReduction_145 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_145 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType 32 Bool
False))})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_146 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_146 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_146 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_146
happyReduction_146 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_146 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType 32 Bool
True))})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_147 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_147 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_147 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_147
happyReduction_147 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_147 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType 64 Bool
False))})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_148 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_148 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_148 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_148
happyReduction_148 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_148 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType 64 Bool
True))})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_149 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_149 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_149 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_149
happyReduction_149 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_149 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType 128 Bool
False))})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_150 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_150 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_150 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_150
happyReduction_150 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_150 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType 128 Bool
True))})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_151 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_151 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_151 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 38# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_151
happyReduction_151 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_151 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType 128 Bool
False))})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_152 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_152 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_152 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  39# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_152
happyReduction_152 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_152 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_2 of { (HappyWrap45 happy_var_2 :: CTypeSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn46
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2
	)}}

happyReduce_153 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_153 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_153 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  39# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_153
happyReduction_153 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_153 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap47
happyOut47 HappyAbsSyn
happy_x_1 of { (HappyWrap47 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_2 of { (HappyWrap41 happy_var_2 :: CStorageSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn46
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CStorageSpec -> CDeclSpec
forall a. CStorageSpecifier a -> CDeclarationSpecifier a
CStorageSpec CStorageSpec
happy_var_2
	)}}

happyReduce_154 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_154 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_154 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  39# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_154
happyReduction_154 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_154 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_1 of { (HappyWrap46 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_2 of { (HappyWrap39 happy_var_2 :: CDeclSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn46
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDeclSpec
happy_var_2
	)}}

happyReduce_155 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_155 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_155 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  39# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_155
happyReduction_155 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_155 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_1 of { (HappyWrap46 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_2 of { (HappyWrap45 happy_var_2 :: CTypeSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn46
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2
	)}}

happyReduce_156 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_156 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_156 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  39# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_156
happyReduction_156 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_156 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_1 of { (HappyWrap46 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 happy_var_2 :: [CAttr]
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn46
		 (Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
	)}}

happyReduce_157 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_157 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_157 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  40# HappyAbsSyn -> HappyAbsSyn
happyReduction_157
happyReduction_157 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_157 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_1 of { (HappyWrap45 happy_var_1 :: CTypeSpec
happy_var_1) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
		 (CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
singleton (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_1)
	)}

happyReduce_158 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_158 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_158 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_158
happyReduction_158 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_158 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_1 of { (HappyWrap133 happy_var_1 :: [CAttr]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_2 of { (HappyWrap45 happy_var_2 :: CTypeSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
		 (([CDeclSpec] -> Reversed [CDeclSpec]
forall a. [a] -> Reversed [a]
reverseList ([CDeclSpec] -> Reversed [CDeclSpec])
-> [CDeclSpec] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> a -> b
$ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2)
	)}}

happyReduce_159 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_159 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_159 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_159
happyReduction_159 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_159 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_2 of { (HappyWrap45 happy_var_2 :: CTypeSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
		 ((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2
	)}}

happyReduce_160 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_160 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_160 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_160
happyReduction_160 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_160 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_3 of { (HappyWrap45 happy_var_3 :: CTypeSpec
happy_var_3) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
		 ((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`rappend` ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_3
	)}}}

happyReduce_161 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_161 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_161 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_161
happyReduction_161 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_161 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap47
happyOut47 HappyAbsSyn
happy_x_1 of { (HappyWrap47 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
happy_x_2 of { (HappyWrap64 happy_var_2 :: CTypeQual
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual CTypeQual
happy_var_2
	)}}

happyReduce_162 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_162 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_162 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_162
happyReduction_162 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_162 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap47
happyOut47 HappyAbsSyn
happy_x_1 of { (HappyWrap47 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_2 of { (HappyWrap45 happy_var_2 :: CTypeSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2
	)}}

happyReduce_163 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_163 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_163 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_163
happyReduction_163 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_163 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap47
happyOut47 HappyAbsSyn
happy_x_1 of { (HappyWrap47 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 happy_var_2 :: [CAttr]
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
		 (Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
	)}}

happyReduce_164 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_164 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_164 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  41# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_164
happyReduction_164 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_164 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap52
happyOut52 HappyAbsSyn
happy_x_2 of { (HappyWrap52 happy_var_2 :: CTypeSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn48
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2
	)}}

happyReduce_165 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_165 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_165 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  41# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_165
happyReduction_165 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_165 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap49
happyOut49 HappyAbsSyn
happy_x_1 of { (HappyWrap49 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_2 of { (HappyWrap41 happy_var_2 :: CStorageSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn48
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CStorageSpec -> CDeclSpec
forall a. CStorageSpecifier a -> CDeclarationSpecifier a
CStorageSpec CStorageSpec
happy_var_2
	)}}

happyReduce_166 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_166 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_166 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  41# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_166
happyReduction_166 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_166 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap48
happyOut48 HappyAbsSyn
happy_x_1 of { (HappyWrap48 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_2 of { (HappyWrap39 happy_var_2 :: CDeclSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn48
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDeclSpec
happy_var_2
	)}}

happyReduce_167 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_167 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_167 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  41# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_167
happyReduction_167 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_167 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap48
happyOut48 HappyAbsSyn
happy_x_1 of { (HappyWrap48 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 happy_var_2 :: [CAttr]
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn48
		 (Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
	)}}

happyReduce_168 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_168 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_168 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  42# HappyAbsSyn -> HappyAbsSyn
happyReduction_168
happyReduction_168 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_168 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap52
happyOut52 HappyAbsSyn
happy_x_1 of { (HappyWrap52 happy_var_1 :: CTypeSpec
happy_var_1) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49
		 (CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
singleton (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_1)
	)}

happyReduce_169 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_169 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_169 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  42# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_169
happyReduction_169 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_169 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_1 of { (HappyWrap133 happy_var_1 :: [CAttr]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap52
happyOut52 HappyAbsSyn
happy_x_2 of { (HappyWrap52 happy_var_2 :: CTypeSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49
		 (([CDeclSpec] -> Reversed [CDeclSpec]
forall a. [a] -> Reversed [a]
reverseList ([CDeclSpec] -> Reversed [CDeclSpec])
-> [CDeclSpec] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> a -> b
$ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2)
	)}}

happyReduce_170 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_170 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_170 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  42# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_170
happyReduction_170 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_170 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap52
happyOut52 HappyAbsSyn
happy_x_2 of { (HappyWrap52 happy_var_2 :: CTypeSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49
		 ((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2
	)}}

happyReduce_171 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_171 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_171 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  42# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_171
happyReduction_171 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_171 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap52
happyOut52 HappyAbsSyn
happy_x_3 of { (HappyWrap52 happy_var_3 :: CTypeSpec
happy_var_3) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49
		 ((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual  Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`rappend` ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_3
	)}}}

happyReduce_172 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_172 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_172 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  42# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_172
happyReduction_172 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_172 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap49
happyOut49 HappyAbsSyn
happy_x_1 of { (HappyWrap49 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
happy_x_2 of { (HappyWrap64 happy_var_2 :: CTypeQual
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual CTypeQual
happy_var_2
	)}}

happyReduce_173 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_173 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_173 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  42# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_173
happyReduction_173 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_173 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap49
happyOut49 HappyAbsSyn
happy_x_1 of { (HappyWrap49 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 happy_var_2 :: [CAttr]
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49
		 (Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
	)}}

happyReduce_174 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_174 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_174 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  43# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_174
happyReduction_174 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_174 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap51
happyOut51 HappyAbsSyn
happy_x_1 of { (HappyWrap51 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_2 of { (HappyWrap41 happy_var_2 :: CStorageSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CStorageSpec -> CDeclSpec
forall a. CStorageSpecifier a -> CDeclarationSpecifier a
CStorageSpec CStorageSpec
happy_var_2
	)}}

happyReduce_175 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_175 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_175 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 43# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_175
happyReduction_175 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_175 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { (CTokTyIdent _ happy_var_2 :: Ident
happy_var_2) -> 
	( Ident
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (Ident -> NodeInfo -> CTypeSpec
forall a. Ident -> a -> CTypeSpecifier a
CTypeDef Ident
happy_var_2 NodeInfo
at))}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50 Reversed [CDeclSpec]
r))

happyReduce_176 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_176 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_176 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 43# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_176
happyReduction_176 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_176 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_4 of { (HappyWrap122 happy_var_4 :: CExpr
happy_var_4) -> 
	( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CExpr -> NodeInfo -> CTypeSpec
forall a. CExpression a -> a -> CTypeSpecifier a
CTypeOfExpr CExpr
happy_var_4 NodeInfo
at))}}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50 Reversed [CDeclSpec]
r))

happyReduce_177 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_177 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_177 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 43# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_177
happyReduction_177 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_177 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_4 of { (HappyWrap86 happy_var_4 :: CDecl
happy_var_4) -> 
	( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CDecl -> NodeInfo -> CTypeSpec
forall a. CDeclaration a -> a -> CTypeSpecifier a
CTypeOfType CDecl
happy_var_4 NodeInfo
at))}}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50 Reversed [CDeclSpec]
r))

happyReduce_178 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_178 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_178 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  43# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_178
happyReduction_178 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_178 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap50
happyOut50 HappyAbsSyn
happy_x_1 of { (HappyWrap50 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_2 of { (HappyWrap39 happy_var_2 :: CDeclSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDeclSpec
happy_var_2
	)}}

happyReduce_179 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_179 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_179 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  43# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_179
happyReduction_179 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_179 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap50
happyOut50 HappyAbsSyn
happy_x_1 of { (HappyWrap50 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 happy_var_2 :: [CAttr]
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50
		 (Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
	)}}

happyReduce_180 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_180 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_180 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_180
happyReduction_180 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_180 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent _ happy_var_1 :: Ident
happy_var_1) -> 
	( Ident
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
singleton (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (Ident -> NodeInfo -> CTypeSpec
forall a. Ident -> a -> CTypeSpecifier a
CTypeDef Ident
happy_var_1 NodeInfo
at)))})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))

happyReduce_181 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_181 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_181 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_181
happyReduction_181 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_181 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_3 of { (HappyWrap122 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
singleton (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CExpr -> NodeInfo -> CTypeSpec
forall a. CExpression a -> a -> CTypeSpecifier a
CTypeOfExpr CExpr
happy_var_3 NodeInfo
at)))}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))

happyReduce_182 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_182 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_182 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_182
happyReduction_182 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_182 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_3 of { (HappyWrap86 happy_var_3 :: CDecl
happy_var_3) -> 
	( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
singleton (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CDecl -> NodeInfo -> CTypeSpec
forall a. CDeclaration a -> a -> CTypeSpecifier a
CTypeOfType CDecl
happy_var_3 NodeInfo
at)))}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))

happyReduce_183 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_183 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_183 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_183
happyReduction_183 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_183 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { (CTokTyIdent _ happy_var_2 :: Ident
happy_var_2) -> 
	( Ident
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual  Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (Ident -> NodeInfo -> CTypeSpec
forall a. Ident -> a -> CTypeSpecifier a
CTypeDef Ident
happy_var_2 NodeInfo
at))}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))

happyReduce_184 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_184 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_184 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_184
happyReduction_184 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_184 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_4 of { (HappyWrap122 happy_var_4 :: CExpr
happy_var_4) -> 
	( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual  Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CExpr -> NodeInfo -> CTypeSpec
forall a. CExpression a -> a -> CTypeSpecifier a
CTypeOfExpr CExpr
happy_var_4 NodeInfo
at))}}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))

happyReduce_185 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_185 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_185 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_185
happyReduction_185 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_185 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_4 of { (HappyWrap86 happy_var_4 :: CDecl
happy_var_4) -> 
	( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual  Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CDecl -> NodeInfo -> CTypeSpec
forall a. CDeclaration a -> a -> CTypeSpecifier a
CTypeOfType CDecl
happy_var_4 NodeInfo
at))}}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))

happyReduce_186 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_186 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_186 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_186
happyReduction_186 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_186 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_1 of { (HappyWrap133 happy_var_1 :: [CAttr]
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { (CTokTyIdent _ happy_var_2 :: Ident
happy_var_2) -> 
	( Ident
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. [a] -> Reversed [a]
reverseList ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (Ident -> NodeInfo -> CTypeSpec
forall a. Ident -> a -> CTypeSpecifier a
CTypeDef Ident
happy_var_2 NodeInfo
at)))}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))

happyReduce_187 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_187 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_187 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_187
happyReduction_187 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_187 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_1 of { (HappyWrap133 happy_var_1 :: [CAttr]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_4 of { (HappyWrap122 happy_var_4 :: CExpr
happy_var_4) -> 
	( [CAttr]
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CAttr]
happy_var_1 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. [a] -> Reversed [a]
reverseList ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc`  (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CExpr -> NodeInfo -> CTypeSpec
forall a. CExpression a -> a -> CTypeSpecifier a
CTypeOfExpr CExpr
happy_var_4 NodeInfo
at)))}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))

happyReduce_188 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_188 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_188 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_188
happyReduction_188 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_188 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_1 of { (HappyWrap133 happy_var_1 :: [CAttr]
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_4 of { (HappyWrap86 happy_var_4 :: CDecl
happy_var_4) -> 
	( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. [a] -> Reversed [a]
reverseList ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc`  (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CDecl -> NodeInfo -> CTypeSpec
forall a. CDeclaration a -> a -> CTypeSpecifier a
CTypeOfType CDecl
happy_var_4 NodeInfo
at)))}}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))

happyReduce_189 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_189 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_189 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_189
happyReduction_189 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_189 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_3 of { (CTokTyIdent _ happy_var_3 :: Ident
happy_var_3) -> 
	( Ident
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_3 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual  Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`rappend` ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (Ident -> NodeInfo -> CTypeSpec
forall a. Ident -> a -> CTypeSpecifier a
CTypeDef Ident
happy_var_3 NodeInfo
at))}}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))

happyReduce_190 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_190 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_190 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_190
happyReduction_190 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_190 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_3 of { happy_var_3 :: CToken
happy_var_3 -> 
	case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_5 of { (HappyWrap122 happy_var_5 :: CExpr
happy_var_5) -> 
	( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_3 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual  Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`rappend` ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CExpr -> NodeInfo -> CTypeSpec
forall a. CExpression a -> a -> CTypeSpecifier a
CTypeOfExpr CExpr
happy_var_5 NodeInfo
at))}}}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))

happyReduce_191 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_191 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_191 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_191
happyReduction_191 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_191 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_3 of { happy_var_3 :: CToken
happy_var_3 -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_5 of { (HappyWrap86 happy_var_5 :: CDecl
happy_var_5) -> 
	( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_3 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual  Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`rappend` ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CDecl -> NodeInfo -> CTypeSpec
forall a. CDeclaration a -> a -> CTypeSpecifier a
CTypeOfType CDecl
happy_var_5 NodeInfo
at))}}}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))

happyReduce_192 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_192 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_192 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  44# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_192
happyReduction_192 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_192 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap51
happyOut51 HappyAbsSyn
happy_x_1 of { (HappyWrap51 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
happy_x_2 of { (HappyWrap64 happy_var_2 :: CTypeQual
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual CTypeQual
happy_var_2
	)}}

happyReduce_193 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_193 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_193 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  44# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_193
happyReduction_193 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_193 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap51
happyOut51 HappyAbsSyn
happy_x_1 of { (HappyWrap51 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 happy_var_2 :: [CAttr]
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51
		 (Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
	)}}

happyReduce_194 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_194 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_194 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 45# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_194
happyReduction_194 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_194 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap53
happyOut53 HappyAbsSyn
happy_x_1 of { (HappyWrap53 happy_var_1 :: CStructUnion
happy_var_1) -> 
	( CStructUnion -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CStructUnion
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ CStructUnion -> NodeInfo -> CTypeSpec
forall a. CStructureUnion a -> a -> CTypeSpecifier a
CSUType CStructUnion
happy_var_1)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn52 CTypeSpec
r))

happyReduce_195 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_195 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_195 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 45# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_195
happyReduction_195 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_195 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap61
happyOut61 HappyAbsSyn
happy_x_1 of { (HappyWrap61 happy_var_1 :: CEnum
happy_var_1) -> 
	( CEnum -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CEnum
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ CEnum -> NodeInfo -> CTypeSpec
forall a. CEnumeration a -> a -> CTypeSpecifier a
CEnumType CEnum
happy_var_1)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn52 CTypeSpec
r))

happyReduce_196 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_196 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_196 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 46# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_196
happyReduction_196 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_196 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStructUnion -> (CStructUnion -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap54
happyOut54 HappyAbsSyn
happy_x_1 of { (HappyWrap54 happy_var_1 :: Located CStructTag
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_2 of { (HappyWrap132 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
happy_x_3 of { (HappyWrap131 happy_var_3 :: Ident
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap55
happyOut55 HappyAbsSyn
happy_x_5 of { (HappyWrap55 happy_var_5 :: Reversed [CDecl]
happy_var_5) -> 
	( Located CStructTag -> (NodeInfo -> CStructUnion) -> P CStructUnion
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Located CStructTag
happy_var_1 ((NodeInfo -> CStructUnion) -> P CStructUnion)
-> (NodeInfo -> CStructUnion) -> P CStructUnion
forall a b. (a -> b) -> a -> b
$ CStructTag
-> Maybe Ident
-> Maybe [CDecl]
-> [CAttr]
-> NodeInfo
-> CStructUnion
forall a.
CStructTag
-> Maybe Ident
-> Maybe [CDeclaration a]
-> [CAttribute a]
-> a
-> CStructureUnion a
CStruct (Located CStructTag -> CStructTag
forall a. Located a -> a
unL Located CStructTag
happy_var_1) (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_3) ([CDecl] -> Maybe [CDecl]
forall k1. k1 -> Maybe k1
Just([CDecl] -> Maybe [CDecl]) -> [CDecl] -> Maybe [CDecl]
forall a b. (a -> b) -> a -> b
$ Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_5) [CAttr]
happy_var_2)}}}})
	) (\r :: CStructUnion
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStructUnion -> HappyAbsSyn
happyIn53 CStructUnion
r))

happyReduce_197 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_197 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_197 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 46# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_197
happyReduction_197 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_197 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStructUnion -> (CStructUnion -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap54
happyOut54 HappyAbsSyn
happy_x_1 of { (HappyWrap54 happy_var_1 :: Located CStructTag
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_2 of { (HappyWrap132 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap55
happyOut55 HappyAbsSyn
happy_x_4 of { (HappyWrap55 happy_var_4 :: Reversed [CDecl]
happy_var_4) -> 
	( Located CStructTag -> (NodeInfo -> CStructUnion) -> P CStructUnion
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Located CStructTag
happy_var_1 ((NodeInfo -> CStructUnion) -> P CStructUnion)
-> (NodeInfo -> CStructUnion) -> P CStructUnion
forall a b. (a -> b) -> a -> b
$ CStructTag
-> Maybe Ident
-> Maybe [CDecl]
-> [CAttr]
-> NodeInfo
-> CStructUnion
forall a.
CStructTag
-> Maybe Ident
-> Maybe [CDeclaration a]
-> [CAttribute a]
-> a
-> CStructureUnion a
CStruct (Located CStructTag -> CStructTag
forall a. Located a -> a
unL Located CStructTag
happy_var_1) Maybe Ident
forall k1. Maybe k1
Nothing   ([CDecl] -> Maybe [CDecl]
forall k1. k1 -> Maybe k1
Just([CDecl] -> Maybe [CDecl]) -> [CDecl] -> Maybe [CDecl]
forall a b. (a -> b) -> a -> b
$ Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_4) [CAttr]
happy_var_2)}}})
	) (\r :: CStructUnion
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStructUnion -> HappyAbsSyn
happyIn53 CStructUnion
r))

happyReduce_198 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_198 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_198 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 46# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_198
happyReduction_198 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_198 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStructUnion -> (CStructUnion -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap54
happyOut54 HappyAbsSyn
happy_x_1 of { (HappyWrap54 happy_var_1 :: Located CStructTag
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_2 of { (HappyWrap132 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
happy_x_3 of { (HappyWrap131 happy_var_3 :: Ident
happy_var_3) -> 
	( Located CStructTag -> (NodeInfo -> CStructUnion) -> P CStructUnion
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Located CStructTag
happy_var_1 ((NodeInfo -> CStructUnion) -> P CStructUnion)
-> (NodeInfo -> CStructUnion) -> P CStructUnion
forall a b. (a -> b) -> a -> b
$ CStructTag
-> Maybe Ident
-> Maybe [CDecl]
-> [CAttr]
-> NodeInfo
-> CStructUnion
forall a.
CStructTag
-> Maybe Ident
-> Maybe [CDeclaration a]
-> [CAttribute a]
-> a
-> CStructureUnion a
CStruct (Located CStructTag -> CStructTag
forall a. Located a -> a
unL Located CStructTag
happy_var_1) (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_3) Maybe [CDecl]
forall k1. Maybe k1
Nothing [CAttr]
happy_var_2)}}})
	) (\r :: CStructUnion
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStructUnion -> HappyAbsSyn
happyIn53 CStructUnion
r))

happyReduce_199 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_199 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_199 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  47# HappyAbsSyn -> HappyAbsSyn
happyReduction_199
happyReduction_199 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_199 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CStructTag -> HappyAbsSyn
happyIn54
		 (CStructTag -> Position -> Located CStructTag
forall a. a -> Position -> Located a
L CStructTag
CStructTag (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_200 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_200 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_200 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  47# HappyAbsSyn -> HappyAbsSyn
happyReduction_200
happyReduction_200 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_200 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CStructTag -> HappyAbsSyn
happyIn54
		 (CStructTag -> Position -> Located CStructTag
forall a. a -> Position -> Located a
L CStructTag
CUnionTag (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_201 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_201 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_201 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  48# HappyAbsSyn
happyReduction_201
happyReduction_201 :: HappyAbsSyn
happyReduction_201  =  Reversed [CDecl] -> HappyAbsSyn
happyIn55
		 (Reversed [CDecl]
forall a. Reversed [a]
empty
	)

happyReduce_202 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_202 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_202 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  48# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_202
happyReduction_202 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_202 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap55
happyOut55 HappyAbsSyn
happy_x_1 of { (HappyWrap55 happy_var_1 :: Reversed [CDecl]
happy_var_1) -> 
	Reversed [CDecl] -> HappyAbsSyn
happyIn55
		 (Reversed [CDecl]
happy_var_1
	)}

happyReduce_203 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_203 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_203 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  48# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_203
happyReduction_203 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_203 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap55
happyOut55 HappyAbsSyn
happy_x_1 of { (HappyWrap55 happy_var_1 :: Reversed [CDecl]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap56
happyOut56 HappyAbsSyn
happy_x_2 of { (HappyWrap56 happy_var_2 :: CDecl
happy_var_2) -> 
	Reversed [CDecl] -> HappyAbsSyn
happyIn55
		 (Reversed [CDecl]
happy_var_1 Reversed [CDecl] -> CDecl -> Reversed [CDecl]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDecl
happy_var_2
	)}}

happyReduce_204 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_204 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_204 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  49# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_204
happyReduction_204 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_204 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap58
happyOut58 HappyAbsSyn
happy_x_1 of { (HappyWrap58 happy_var_1 :: CDecl
happy_var_1) -> 
	CDecl -> HappyAbsSyn
happyIn56
		 (case CDecl
happy_var_1 of CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies at :: NodeInfo
at -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ([(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. [a] -> [a]
List.reverse [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
at
	)}

happyReduce_205 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_205 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_205 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  49# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_205
happyReduction_205 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_205 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_1 of { (HappyWrap57 happy_var_1 :: CDecl
happy_var_1) -> 
	CDecl -> HappyAbsSyn
happyIn56
		 (case CDecl
happy_var_1 of CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies at :: NodeInfo
at -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ([(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. [a] -> [a]
List.reverse [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
at
	)}

happyReduce_206 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_206 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_206 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  49# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_206
happyReduction_206 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_206 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap56
happyOut56 HappyAbsSyn
happy_x_2 of { (HappyWrap56 happy_var_2 :: CDecl
happy_var_2) -> 
	CDecl -> HappyAbsSyn
happyIn56
		 (CDecl
happy_var_2
	)}

happyReduce_207 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_207 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_207 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 50# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_207
happyReduction_207 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_207 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_2 of { (HappyWrap132 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap60
happyOut60 HappyAbsSyn
happy_x_3 of { (HappyWrap60 happy_var_3 :: (Maybe CDeclr, Maybe CExpr)
happy_var_3) -> 
	( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ case (Maybe CDeclr, Maybe CExpr)
happy_var_3 of (d :: Maybe CDeclr
d,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) [(Maybe CDeclr
d,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s)])}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn57 CDecl
r))

happyReduce_208 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_208 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_208 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 50# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_208
happyReduction_208 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_208 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_1 of { (HappyWrap133 happy_var_1 :: [CAttr]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap60
happyOut60 HappyAbsSyn
happy_x_2 of { (HappyWrap60 happy_var_2 :: (Maybe CDeclr, Maybe CExpr)
happy_var_2) -> 
	( [CAttr] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CAttr]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ case (Maybe CDeclr, Maybe CExpr)
happy_var_2 of (d :: Maybe CDeclr
d,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) [(Maybe CDeclr
d,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn57 CDecl
r))

happyReduce_209 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_209 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_209 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 50# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_209
happyReduction_209 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_209 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_1 of { (HappyWrap57 happy_var_1 :: CDecl
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 happy_var_3 :: [CAttr]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap60
happyOut60 HappyAbsSyn
happy_x_4 of { (HappyWrap60 happy_var_4 :: (Maybe CDeclr, Maybe CExpr)
happy_var_4) -> 
	CDecl -> HappyAbsSyn
happyIn57
		 (case CDecl
happy_var_1 of
            CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies at :: NodeInfo
at ->
              case (Maybe CDeclr, Maybe CExpr)
happy_var_4 of
                (Just d :: CDeclr
d,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclr -> Maybe CDeclr) -> CDeclr -> Maybe CDeclr
forall a b. (a -> b) -> a -> b
$ [CAttr] -> CDeclr -> CDeclr
appendObjAttrs [CAttr]
happy_var_3 CDeclr
d,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall k1. k1 -> [k1] -> [k1]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
at
                (Nothing,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ((Maybe CDeclr
forall k1. Maybe k1
Nothing,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall k1. k1 -> [k1] -> [k1]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
at
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}

happyReduce_210 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_210 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_210 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 51# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_210
happyReduction_210 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_210 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap59
happyOut59 HappyAbsSyn
happy_x_2 of { (HappyWrap59 happy_var_2 :: (Maybe CDeclr, Maybe CExpr)
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 happy_var_3 :: [CAttr]
happy_var_3) -> 
	( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ case (Maybe CDeclr, Maybe CExpr)
happy_var_2 of { (Just d :: CDeclr
d,s :: Maybe CExpr
s)  -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclr -> Maybe CDeclr) -> CDeclr -> Maybe CDeclr
forall a b. (a -> b) -> a -> b
$! [CAttr] -> CDeclr -> CDeclr
appendObjAttrs [CAttr]
happy_var_3 CDeclr
d,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s)]
                                    ; (Nothing,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(Maybe CDeclr
forall k1. Maybe k1
Nothing,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s)]  })}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn58 CDecl
r))

happyReduce_211 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_211 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_211 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 5# 51# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_211
happyReduction_211 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_211 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap58
happyOut58 HappyAbsSyn
happy_x_1 of { (HappyWrap58 happy_var_1 :: CDecl
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 happy_var_3 :: [CAttr]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap59
happyOut59 HappyAbsSyn
happy_x_4 of { (HappyWrap59 happy_var_4 :: (Maybe CDeclr, Maybe CExpr)
happy_var_4) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_5 of { (HappyWrap132 happy_var_5 :: [CAttr]
happy_var_5) -> 
	CDecl -> HappyAbsSyn
happyIn58
		 (case CDecl
happy_var_1 of
            CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies attr :: NodeInfo
attr ->
              case (Maybe CDeclr, Maybe CExpr)
happy_var_4 of
                (Just d :: CDeclr
d,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just(CDeclr -> Maybe CDeclr) -> CDeclr -> Maybe CDeclr
forall a b. (a -> b) -> a -> b
$ [CAttr] -> CDeclr -> CDeclr
appendObjAttrs ([CAttr]
happy_var_3[CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++[CAttr]
happy_var_5) CDeclr
d,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall k1. k1 -> [k1] -> [k1]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
attr
                (Nothing,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ((Maybe CDeclr
forall k1. Maybe k1
Nothing,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall k1. k1 -> [k1] -> [k1]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
attr
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}}

happyReduce_212 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_212 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_212 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 51# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_212
happyReduction_212 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_212 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [])})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn58 CDecl
r))

happyReduce_213 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_213 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_213 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  52# HappyAbsSyn -> HappyAbsSyn
happyReduction_213
happyReduction_213 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_213 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 happy_var_1 :: CDeclrR
happy_var_1) -> 
	(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn59
		 ((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_1), Maybe CExpr
forall k1. Maybe k1
Nothing)
	)}

happyReduce_214 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_214 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_214 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  52# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_214
happyReduction_214 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_214 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_2 of { (HappyWrap126 happy_var_2 :: CExpr
happy_var_2) -> 
	(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn59
		 ((Maybe CDeclr
forall k1. Maybe k1
Nothing, CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_2)
	)}

happyReduce_215 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_215 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_215 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  52# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_215
happyReduction_215 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_215 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 happy_var_1 :: CDeclrR
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_3 of { (HappyWrap126 happy_var_3 :: CExpr
happy_var_3) -> 
	(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn59
		 ((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_1), CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_3)
	)}}

happyReduce_216 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_216 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_216 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  53# HappyAbsSyn -> HappyAbsSyn
happyReduction_216
happyReduction_216 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_216 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_1 of { (HappyWrap75 happy_var_1 :: CDeclrR
happy_var_1) -> 
	(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn60
		 ((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_1), Maybe CExpr
forall k1. Maybe k1
Nothing)
	)}

happyReduce_217 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_217 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_217 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  53# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_217
happyReduction_217 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_217 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_2 of { (HappyWrap126 happy_var_2 :: CExpr
happy_var_2) -> 
	(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn60
		 ((Maybe CDeclr
forall k1. Maybe k1
Nothing, CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_2)
	)}

happyReduce_218 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_218 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_218 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  53# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_218
happyReduction_218 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_218 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_1 of { (HappyWrap75 happy_var_1 :: CDeclrR
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_3 of { (HappyWrap126 happy_var_3 :: CExpr
happy_var_3) -> 
	(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn60
		 ((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_1), CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_3)
	)}}

happyReduce_219 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_219 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_219 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  53# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_219
happyReduction_219 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_219 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap60
happyOut60 HappyAbsSyn
happy_x_1 of { (HappyWrap60 happy_var_1 :: (Maybe CDeclr, Maybe CExpr)
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 happy_var_2 :: [CAttr]
happy_var_2) -> 
	(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn60
		 (case (Maybe CDeclr, Maybe CExpr)
happy_var_1 of {   (Nothing,expr :: Maybe CExpr
expr) -> (Maybe CDeclr
forall k1. Maybe k1
Nothing,Maybe CExpr
expr) {- FIXME -}
                    ; (Just (CDeclr name :: Maybe Ident
name derived :: [CDerivedDeclarator NodeInfo]
derived asmname :: Maybe CStrLit
asmname attrs :: [CAttr]
attrs node :: NodeInfo
node), bsz :: Maybe CExpr
bsz) ->
                                        (CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (Maybe Ident
-> [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclr
forall a.
Maybe Ident
-> [CDerivedDeclarator a]
-> Maybe (CStringLiteral a)
-> [CAttribute a]
-> a
-> CDeclarator a
CDeclr Maybe Ident
name [CDerivedDeclarator NodeInfo]
derived Maybe CStrLit
asmname ([CAttr]
attrs[CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++[CAttr]
happy_var_2) NodeInfo
node),Maybe CExpr
bsz)
                  }
	)}}

happyReduce_220 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_220 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_220 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 54# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_220
happyReduction_220 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_220 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_2 of { (HappyWrap132 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap62
happyOut62 HappyAbsSyn
happy_x_4 of { (HappyWrap62 happy_var_4 :: Reversed [(Ident, Maybe CExpr)]
happy_var_4) -> 
	( CToken -> (NodeInfo -> CEnum) -> P CEnum
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CEnum) -> P CEnum) -> (NodeInfo -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident
-> Maybe [(Ident, Maybe CExpr)] -> [CAttr] -> NodeInfo -> CEnum
forall a.
Maybe Ident
-> Maybe [(Ident, Maybe (CExpression a))]
-> [CAttribute a]
-> a
-> CEnumeration a
CEnum Maybe Ident
forall k1. Maybe k1
Nothing   ([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall k1. k1 -> Maybe k1
Just([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)])
-> [(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall a b. (a -> b) -> a -> b
$ Reversed [(Ident, Maybe CExpr)] -> [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> [a]
reverse Reversed [(Ident, Maybe CExpr)]
happy_var_4) [CAttr]
happy_var_2)}}})
	) (\r :: CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn61 CEnum
r))

happyReduce_221 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_221 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_221 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 54# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_221
happyReduction_221 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_221 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_2 of { (HappyWrap132 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap62
happyOut62 HappyAbsSyn
happy_x_4 of { (HappyWrap62 happy_var_4 :: Reversed [(Ident, Maybe CExpr)]
happy_var_4) -> 
	( CToken -> (NodeInfo -> CEnum) -> P CEnum
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CEnum) -> P CEnum) -> (NodeInfo -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident
-> Maybe [(Ident, Maybe CExpr)] -> [CAttr] -> NodeInfo -> CEnum
forall a.
Maybe Ident
-> Maybe [(Ident, Maybe (CExpression a))]
-> [CAttribute a]
-> a
-> CEnumeration a
CEnum Maybe Ident
forall k1. Maybe k1
Nothing   ([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall k1. k1 -> Maybe k1
Just([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)])
-> [(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall a b. (a -> b) -> a -> b
$ Reversed [(Ident, Maybe CExpr)] -> [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> [a]
reverse Reversed [(Ident, Maybe CExpr)]
happy_var_4) [CAttr]
happy_var_2)}}})
	) (\r :: CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn61 CEnum
r))

happyReduce_222 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_222 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_222 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 54# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_222
happyReduction_222 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_222 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_2 of { (HappyWrap132 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
happy_x_3 of { (HappyWrap131 happy_var_3 :: Ident
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap62
happyOut62 HappyAbsSyn
happy_x_5 of { (HappyWrap62 happy_var_5 :: Reversed [(Ident, Maybe CExpr)]
happy_var_5) -> 
	( CToken -> (NodeInfo -> CEnum) -> P CEnum
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CEnum) -> P CEnum) -> (NodeInfo -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident
-> Maybe [(Ident, Maybe CExpr)] -> [CAttr] -> NodeInfo -> CEnum
forall a.
Maybe Ident
-> Maybe [(Ident, Maybe (CExpression a))]
-> [CAttribute a]
-> a
-> CEnumeration a
CEnum (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_3) ([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall k1. k1 -> Maybe k1
Just([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)])
-> [(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall a b. (a -> b) -> a -> b
$ Reversed [(Ident, Maybe CExpr)] -> [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> [a]
reverse Reversed [(Ident, Maybe CExpr)]
happy_var_5) [CAttr]
happy_var_2)}}}})
	) (\r :: CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn61 CEnum
r))

happyReduce_223 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_223 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_223 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 54# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_223
happyReduction_223 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_223 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_2 of { (HappyWrap132 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
happy_x_3 of { (HappyWrap131 happy_var_3 :: Ident
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap62
happyOut62 HappyAbsSyn
happy_x_5 of { (HappyWrap62 happy_var_5 :: Reversed [(Ident, Maybe CExpr)]
happy_var_5) -> 
	( CToken -> (NodeInfo -> CEnum) -> P CEnum
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CEnum) -> P CEnum) -> (NodeInfo -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident
-> Maybe [(Ident, Maybe CExpr)] -> [CAttr] -> NodeInfo -> CEnum
forall a.
Maybe Ident
-> Maybe [(Ident, Maybe (CExpression a))]
-> [CAttribute a]
-> a
-> CEnumeration a
CEnum (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_3) ([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall k1. k1 -> Maybe k1
Just([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)])
-> [(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall a b. (a -> b) -> a -> b
$ Reversed [(Ident, Maybe CExpr)] -> [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> [a]
reverse Reversed [(Ident, Maybe CExpr)]
happy_var_5) [CAttr]
happy_var_2)}}}})
	) (\r :: CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn61 CEnum
r))

happyReduce_224 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_224 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_224 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 54# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_224
happyReduction_224 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_224 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_2 of { (HappyWrap132 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
happy_x_3 of { (HappyWrap131 happy_var_3 :: Ident
happy_var_3) -> 
	( CToken -> (NodeInfo -> CEnum) -> P CEnum
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CEnum) -> P CEnum) -> (NodeInfo -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident
-> Maybe [(Ident, Maybe CExpr)] -> [CAttr] -> NodeInfo -> CEnum
forall a.
Maybe Ident
-> Maybe [(Ident, Maybe (CExpression a))]
-> [CAttribute a]
-> a
-> CEnumeration a
CEnum (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_3) Maybe [(Ident, Maybe CExpr)]
forall k1. Maybe k1
Nothing [CAttr]
happy_var_2)}}})
	) (\r :: CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn61 CEnum
r))

happyReduce_225 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_225 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_225 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  55# HappyAbsSyn -> HappyAbsSyn
happyReduction_225
happyReduction_225 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_225 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap63
happyOut63 HappyAbsSyn
happy_x_1 of { (HappyWrap63 happy_var_1 :: (Ident, Maybe CExpr)
happy_var_1) -> 
	Reversed [(Ident, Maybe CExpr)] -> HappyAbsSyn
happyIn62
		 ((Ident, Maybe CExpr) -> Reversed [(Ident, Maybe CExpr)]
forall a. a -> Reversed [a]
singleton (Ident, Maybe CExpr)
happy_var_1
	)}

happyReduce_226 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_226 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_226 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  55# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_226
happyReduction_226 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_226 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap62
happyOut62 HappyAbsSyn
happy_x_1 of { (HappyWrap62 happy_var_1 :: Reversed [(Ident, Maybe CExpr)]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap63
happyOut63 HappyAbsSyn
happy_x_3 of { (HappyWrap63 happy_var_3 :: (Ident, Maybe CExpr)
happy_var_3) -> 
	Reversed [(Ident, Maybe CExpr)] -> HappyAbsSyn
happyIn62
		 (Reversed [(Ident, Maybe CExpr)]
happy_var_1 Reversed [(Ident, Maybe CExpr)]
-> (Ident, Maybe CExpr) -> Reversed [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` (Ident, Maybe CExpr)
happy_var_3
	)}}

happyReduce_227 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_227 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_227 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  56# HappyAbsSyn -> HappyAbsSyn
happyReduction_227
happyReduction_227 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_227 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
happy_x_1 of { (HappyWrap131 happy_var_1 :: Ident
happy_var_1) -> 
	(Ident, Maybe CExpr) -> HappyAbsSyn
happyIn63
		 ((Ident
happy_var_1, Maybe CExpr
forall k1. Maybe k1
Nothing)
	)}

happyReduce_228 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_228 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_228 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  56# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_228
happyReduction_228 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_228 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
happy_x_1 of { (HappyWrap131 happy_var_1 :: Ident
happy_var_1) -> 
	(Ident, Maybe CExpr) -> HappyAbsSyn
happyIn63
		 ((Ident
happy_var_1, Maybe CExpr
forall k1. Maybe k1
Nothing)
	)}

happyReduce_229 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_229 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_229 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 56# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_229
happyReduction_229 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_229 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
happy_x_1 of { (HappyWrap131 happy_var_1 :: Ident
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_4 of { (HappyWrap126 happy_var_4 :: CExpr
happy_var_4) -> 
	(Ident, Maybe CExpr) -> HappyAbsSyn
happyIn63
		 ((Ident
happy_var_1, CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_4)
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_230 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_230 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_230 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  56# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_230
happyReduction_230 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_230 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
happy_x_1 of { (HappyWrap131 happy_var_1 :: Ident
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_3 of { (HappyWrap126 happy_var_3 :: CExpr
happy_var_3) -> 
	(Ident, Maybe CExpr) -> HappyAbsSyn
happyIn63
		 ((Ident
happy_var_1, CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_3)
	)}}

happyReduce_231 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_231 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_231 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 57# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_231
happyReduction_231 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_231 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CConstQual)})
	) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn64 CTypeQual
r))

happyReduce_232 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_232 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_232 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 57# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_232
happyReduction_232 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_232 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CVolatQual)})
	) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn64 CTypeQual
r))

happyReduce_233 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_233 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_233 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 57# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_233
happyReduction_233 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_233 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CRestrQual)})
	) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn64 CTypeQual
r))

happyReduce_234 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_234 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_234 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 57# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_234
happyReduction_234 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_234 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CNullableQual)})
	) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn64 CTypeQual
r))

happyReduce_235 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_235 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_235 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 57# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_235
happyReduction_235 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_235 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CNonnullQual)})
	) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn64 CTypeQual
r))

happyReduce_236 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_236 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_236 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 57# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_236
happyReduction_236 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_236 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CAtomicQual)})
	) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn64 CTypeQual
r))

happyReduce_237 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_237 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_237 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 57# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_237
happyReduction_237 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_237 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CClRdOnlyQual)})
	) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn64 CTypeQual
r))

happyReduce_238 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_238 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_238 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 57# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_238
happyReduction_238 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_238 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CClWrOnlyQual)})
	) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn64 CTypeQual
r))

happyReduce_239 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_239 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_239 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  58# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_239
happyReduction_239 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_239 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_1 of { (HappyWrap132 happy_var_1 :: [CAttr]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
happy_x_2 of { (HappyWrap64 happy_var_2 :: CTypeQual
happy_var_2) -> 
	Reversed [CTypeQual] -> HappyAbsSyn
happyIn65
		 ([CTypeQual] -> Reversed [CTypeQual]
forall a. [a] -> Reversed [a]
reverseList ((CAttr -> CTypeQual) -> [CAttr] -> [CTypeQual]
forall a b. (a -> b) -> [a] -> [b]
map CAttr -> CTypeQual
forall a. CAttribute a -> CTypeQualifier a
CAttrQual [CAttr]
happy_var_1) Reversed [CTypeQual] -> CTypeQual -> Reversed [CTypeQual]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeQual
happy_var_2
	)}}

happyReduce_240 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_240 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_240 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  58# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_240
happyReduction_240 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_240 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
happy_x_2 of { (HappyWrap64 happy_var_2 :: CTypeQual
happy_var_2) -> 
	Reversed [CTypeQual] -> HappyAbsSyn
happyIn65
		 (Reversed [CTypeQual]
happy_var_1 Reversed [CTypeQual] -> CTypeQual -> Reversed [CTypeQual]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeQual
happy_var_2
	)}}

happyReduce_241 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_241 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_241 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  58# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_241
happyReduction_241 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_241 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
happy_x_3 of { (HappyWrap64 happy_var_3 :: CTypeQual
happy_var_3) -> 
	Reversed [CTypeQual] -> HappyAbsSyn
happyIn65
		 ((Reversed [CTypeQual]
happy_var_1 Reversed [CTypeQual] -> [CTypeQual] -> Reversed [CTypeQual]
forall a. Reversed [a] -> [a] -> Reversed [a]
`rappend` (CAttr -> CTypeQual) -> [CAttr] -> [CTypeQual]
forall a b. (a -> b) -> [a] -> [b]
map CAttr -> CTypeQual
forall a. CAttribute a -> CTypeQualifier a
CAttrQual [CAttr]
happy_var_2) Reversed [CTypeQual] -> CTypeQual -> Reversed [CTypeQual]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeQual
happy_var_3
	)}}}

happyReduce_242 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_242 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_242 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  59# HappyAbsSyn -> HappyAbsSyn
happyReduction_242
happyReduction_242 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_242 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_1 of { (HappyWrap75 happy_var_1 :: CDeclrR
happy_var_1) -> 
	CDeclrR -> HappyAbsSyn
happyIn66
		 (CDeclrR
happy_var_1
	)}

happyReduce_243 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_243 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_243 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  59# HappyAbsSyn -> HappyAbsSyn
happyReduction_243
happyReduction_243 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_243 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap68
happyOut68 HappyAbsSyn
happy_x_1 of { (HappyWrap68 happy_var_1 :: CDeclrR
happy_var_1) -> 
	CDeclrR -> HappyAbsSyn
happyIn66
		 (CDeclrR
happy_var_1
	)}

happyReduce_244 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_244 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_244 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  60# HappyAbsSyn
happyReduction_244
happyReduction_244 :: HappyAbsSyn
happyReduction_244  =  Maybe CStrLit -> HappyAbsSyn
happyIn67
		 (Maybe CStrLit
forall k1. Maybe k1
Nothing
	)

happyReduce_245 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_245 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_245 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 60# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_245
happyReduction_245 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_245 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap128
happyOut128 HappyAbsSyn
happy_x_3 of { (HappyWrap128 happy_var_3 :: CStrLit
happy_var_3) -> 
	Maybe CStrLit -> HappyAbsSyn
happyIn67
		 (CStrLit -> Maybe CStrLit
forall k1. k1 -> Maybe k1
Just CStrLit
happy_var_3
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}

happyReduce_246 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_246 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_246 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  61# HappyAbsSyn -> HappyAbsSyn
happyReduction_246
happyReduction_246 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_246 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap72
happyOut72 HappyAbsSyn
happy_x_1 of { (HappyWrap72 happy_var_1 :: CDeclrR
happy_var_1) -> 
	CDeclrR -> HappyAbsSyn
happyIn68
		 (CDeclrR
happy_var_1
	)}

happyReduce_247 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_247 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_247 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  61# HappyAbsSyn -> HappyAbsSyn
happyReduction_247
happyReduction_247 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_247 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap69
happyOut69 HappyAbsSyn
happy_x_1 of { (HappyWrap69 happy_var_1 :: CDeclrR
happy_var_1) -> 
	CDeclrR -> HappyAbsSyn
happyIn68
		 (CDeclrR
happy_var_1
	)}

happyReduce_248 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_248 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_248 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 62# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_248
happyReduction_248 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_248 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent _ happy_var_1 :: Ident
happy_var_1) -> 
	( Ident -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CDeclrR
mkVarDeclr Ident
happy_var_1)})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn69 CDeclrR
r))

happyReduce_249 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_249 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_249 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 62# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_249
happyReduction_249 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_249 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent _ happy_var_1 :: Ident
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_2 of { (HappyWrap88 happy_var_2 :: CDeclrR -> CDeclrR
happy_var_2) -> 
	( Ident -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> CDeclrR -> CDeclrR
happy_var_2 (Ident -> NodeInfo -> CDeclrR
mkVarDeclr Ident
happy_var_1 NodeInfo
at))}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn69 CDeclrR
r))

happyReduce_250 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_250 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_250 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  62# HappyAbsSyn -> HappyAbsSyn
happyReduction_250
happyReduction_250 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_250 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap70
happyOut70 HappyAbsSyn
happy_x_1 of { (HappyWrap70 happy_var_1 :: CDeclrR
happy_var_1) -> 
	CDeclrR -> HappyAbsSyn
happyIn69
		 (CDeclrR
happy_var_1
	)}

happyReduce_251 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_251 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_251 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  63# HappyAbsSyn -> HappyAbsSyn
happyReduction_251
happyReduction_251 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_251 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap71
happyOut71 HappyAbsSyn
happy_x_1 of { (HappyWrap71 happy_var_1 :: CDeclrR
happy_var_1) -> 
	CDeclrR -> HappyAbsSyn
happyIn70
		 (CDeclrR
happy_var_1
	)}

happyReduce_252 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_252 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_252 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 63# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_252
happyReduction_252 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_252 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap69
happyOut69 HappyAbsSyn
happy_x_2 of { (HappyWrap69 happy_var_2 :: CDeclrR
happy_var_2) -> 
	( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_2 [])}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn70 CDeclrR
r))

happyReduce_253 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_253 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_253 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 63# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_253
happyReduction_253 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_253 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap69
happyOut69 HappyAbsSyn
happy_x_3 of { (HappyWrap69 happy_var_3 :: CDeclrR
happy_var_3) -> 
	( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_2 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 [])}}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn70 CDeclrR
r))

happyReduce_254 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_254 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_254 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 63# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_254
happyReduction_254 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_254 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap69
happyOut69 HappyAbsSyn
happy_x_3 of { (HappyWrap69 happy_var_3 :: CDeclrR
happy_var_3) -> 
	( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn70 CDeclrR
r))

happyReduce_255 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_255 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_255 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 63# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_255
happyReduction_255 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_255 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 happy_var_3 :: [CAttr]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap69
happyOut69 HappyAbsSyn
happy_x_4 of { (HappyWrap69 happy_var_4 :: CDeclrR
happy_var_4) -> 
	( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_4 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn70 CDeclrR
r))

happyReduce_256 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_256 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_256 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  64# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_256
happyReduction_256 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_256 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap70
happyOut70 HappyAbsSyn
happy_x_2 of { (HappyWrap70 happy_var_2 :: CDeclrR
happy_var_2) -> 
	CDeclrR -> HappyAbsSyn
happyIn71
		 (CDeclrR
happy_var_2
	)}

happyReduce_257 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_257 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_257 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 64# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_257
happyReduction_257 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_257 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap70
happyOut70 HappyAbsSyn
happy_x_2 of { (HappyWrap70 happy_var_2 :: CDeclrR
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_4 of { (HappyWrap88 happy_var_4 :: CDeclrR -> CDeclrR
happy_var_4) -> 
	CDeclrR -> HappyAbsSyn
happyIn71
		 (CDeclrR -> CDeclrR
happy_var_4 CDeclrR
happy_var_2
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_258 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_258 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_258 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 64# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_258
happyReduction_258 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_258 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap70
happyOut70 HappyAbsSyn
happy_x_3 of { (HappyWrap70 happy_var_3 :: CDeclrR
happy_var_3) -> 
	CDeclrR -> HappyAbsSyn
happyIn71
		 ([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 CDeclrR
happy_var_3
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_259 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_259 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_259 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 5# 64# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_259
happyReduction_259 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_259 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap70
happyOut70 HappyAbsSyn
happy_x_3 of { (HappyWrap70 happy_var_3 :: CDeclrR
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_5 of { (HappyWrap88 happy_var_5 :: CDeclrR -> CDeclrR
happy_var_5) -> 
	CDeclrR -> HappyAbsSyn
happyIn71
		 ([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 (CDeclrR -> CDeclrR
happy_var_5 CDeclrR
happy_var_3)
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}

happyReduce_260 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_260 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_260 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  65# HappyAbsSyn -> HappyAbsSyn
happyReduction_260
happyReduction_260 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_260 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_1 of { (HappyWrap73 happy_var_1 :: CDeclrR
happy_var_1) -> 
	CDeclrR -> HappyAbsSyn
happyIn72
		 (CDeclrR
happy_var_1
	)}

happyReduce_261 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_261 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_261 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 65# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_261
happyReduction_261 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_261 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap74
happyOut74 HappyAbsSyn
happy_x_3 of { (HappyWrap74 happy_var_3 :: CDeclrR
happy_var_3) -> 
	( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 [])}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn72 CDeclrR
r))

happyReduce_262 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_262 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_262 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 65# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_262
happyReduction_262 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_262 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap74
happyOut74 HappyAbsSyn
happy_x_4 of { (HappyWrap74 happy_var_4 :: CDeclrR
happy_var_4) -> 
	( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_4 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn72 CDeclrR
r))

happyReduce_263 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_263 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_263 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 65# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_263
happyReduction_263 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_263 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 happy_var_3 :: [CAttr]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap74
happyOut74 HappyAbsSyn
happy_x_5 of { (HappyWrap74 happy_var_5 :: CDeclrR
happy_var_5) -> 
	( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_5 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn72 CDeclrR
r))

happyReduce_264 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_264 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_264 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 65# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_264
happyReduction_264 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_264 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap72
happyOut72 HappyAbsSyn
happy_x_2 of { (HappyWrap72 happy_var_2 :: CDeclrR
happy_var_2) -> 
	( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_2 [])}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn72 CDeclrR
r))

happyReduce_265 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_265 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_265 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 65# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_265
happyReduction_265 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_265 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap72
happyOut72 HappyAbsSyn
happy_x_3 of { (HappyWrap72 happy_var_3 :: CDeclrR
happy_var_3) -> 
	( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn72 CDeclrR
r))

happyReduce_266 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_266 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_266 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 65# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_266
happyReduction_266 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_266 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 happy_var_3 :: [CAttr]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap72
happyOut72 HappyAbsSyn
happy_x_4 of { (HappyWrap72 happy_var_4 :: CDeclrR
happy_var_4) -> 
	( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_4 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn72 CDeclrR
r))

happyReduce_267 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_267 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_267 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  66# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_267
happyReduction_267 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_267 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap72
happyOut72 HappyAbsSyn
happy_x_2 of { (HappyWrap72 happy_var_2 :: CDeclrR
happy_var_2) -> 
	CDeclrR -> HappyAbsSyn
happyIn73
		 (CDeclrR
happy_var_2
	)}

happyReduce_268 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_268 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_268 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 66# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_268
happyReduction_268 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_268 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap74
happyOut74 HappyAbsSyn
happy_x_2 of { (HappyWrap74 happy_var_2 :: CDeclrR
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_3 of { (HappyWrap88 happy_var_3 :: CDeclrR -> CDeclrR
happy_var_3) -> 
	CDeclrR -> HappyAbsSyn
happyIn73
		 (CDeclrR -> CDeclrR
happy_var_3 CDeclrR
happy_var_2
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_269 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_269 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_269 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 66# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_269
happyReduction_269 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_269 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap72
happyOut72 HappyAbsSyn
happy_x_2 of { (HappyWrap72 happy_var_2 :: CDeclrR
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_4 of { (HappyWrap88 happy_var_4 :: CDeclrR -> CDeclrR
happy_var_4) -> 
	CDeclrR -> HappyAbsSyn
happyIn73
		 (CDeclrR -> CDeclrR
happy_var_4 CDeclrR
happy_var_2
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_270 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_270 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_270 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 67# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_270
happyReduction_270 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_270 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent _ happy_var_1 :: Ident
happy_var_1) -> 
	( Ident -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CDeclrR
mkVarDeclr Ident
happy_var_1)})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn74 CDeclrR
r))

happyReduce_271 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_271 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_271 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  67# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_271
happyReduction_271 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_271 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap74
happyOut74 HappyAbsSyn
happy_x_2 of { (HappyWrap74 happy_var_2 :: CDeclrR
happy_var_2) -> 
	CDeclrR -> HappyAbsSyn
happyIn74
		 (CDeclrR
happy_var_2
	)}

happyReduce_272 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_272 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_272 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  68# HappyAbsSyn -> HappyAbsSyn
happyReduction_272
happyReduction_272 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_272 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_1 of { (HappyWrap76 happy_var_1 :: CDeclrR
happy_var_1) -> 
	CDeclrR -> HappyAbsSyn
happyIn75
		 (CDeclrR
happy_var_1
	)}

happyReduce_273 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_273 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_273 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  68# HappyAbsSyn -> HappyAbsSyn
happyReduction_273
happyReduction_273 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_273 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap78
happyOut78 HappyAbsSyn
happy_x_1 of { (HappyWrap78 happy_var_1 :: CDeclrR
happy_var_1) -> 
	CDeclrR -> HappyAbsSyn
happyIn75
		 (CDeclrR
happy_var_1
	)}

happyReduce_274 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_274 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_274 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  69# HappyAbsSyn -> HappyAbsSyn
happyReduction_274
happyReduction_274 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_274 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap77
happyOut77 HappyAbsSyn
happy_x_1 of { (HappyWrap77 happy_var_1 :: CDeclrR
happy_var_1) -> 
	CDeclrR -> HappyAbsSyn
happyIn76
		 (CDeclrR
happy_var_1
	)}

happyReduce_275 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_275 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_275 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 69# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_275
happyReduction_275 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_275 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_2 of { (HappyWrap75 happy_var_2 :: CDeclrR
happy_var_2) -> 
	( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_2 [])}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn76 CDeclrR
r))

happyReduce_276 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_276 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_276 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 69# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_276
happyReduction_276 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_276 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_3 of { (HappyWrap75 happy_var_3 :: CDeclrR
happy_var_3) -> 
	( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_2 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 [])}}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn76 CDeclrR
r))

happyReduce_277 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_277 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_277 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 69# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_277
happyReduction_277 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_277 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_3 of { (HappyWrap75 happy_var_3 :: CDeclrR
happy_var_3) -> 
	( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn76 CDeclrR
r))

happyReduce_278 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_278 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_278 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 69# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_278
happyReduction_278 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_278 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 happy_var_3 :: [CAttr]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_4 of { (HappyWrap75 happy_var_4 :: CDeclrR
happy_var_4) -> 
	( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_4 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn76 CDeclrR
r))

happyReduce_279 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_279 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_279 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  70# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_279
happyReduction_279 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_279 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap78
happyOut78 HappyAbsSyn
happy_x_1 of { (HappyWrap78 happy_var_1 :: CDeclrR
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_2 of { (HappyWrap88 happy_var_2 :: CDeclrR -> CDeclrR
happy_var_2) -> 
	CDeclrR -> HappyAbsSyn
happyIn77
		 (CDeclrR -> CDeclrR
happy_var_2 CDeclrR
happy_var_1
	)}}

happyReduce_280 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_280 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_280 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  70# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_280
happyReduction_280 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_280 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_2 of { (HappyWrap76 happy_var_2 :: CDeclrR
happy_var_2) -> 
	CDeclrR -> HappyAbsSyn
happyIn77
		 (CDeclrR
happy_var_2
	)}

happyReduce_281 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_281 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_281 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 70# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_281
happyReduction_281 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_281 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_2 of { (HappyWrap76 happy_var_2 :: CDeclrR
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_4 of { (HappyWrap88 happy_var_4 :: CDeclrR -> CDeclrR
happy_var_4) -> 
	CDeclrR -> HappyAbsSyn
happyIn77
		 (CDeclrR -> CDeclrR
happy_var_4 CDeclrR
happy_var_2
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_282 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_282 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_282 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 70# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_282
happyReduction_282 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_282 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_3 of { (HappyWrap76 happy_var_3 :: CDeclrR
happy_var_3) -> 
	CDeclrR -> HappyAbsSyn
happyIn77
		 ([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 CDeclrR
happy_var_3
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_283 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_283 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_283 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 5# 70# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_283
happyReduction_283 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_283 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_3 of { (HappyWrap76 happy_var_3 :: CDeclrR
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_5 of { (HappyWrap88 happy_var_5 :: CDeclrR -> CDeclrR
happy_var_5) -> 
	CDeclrR -> HappyAbsSyn
happyIn77
		 ([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 (CDeclrR -> CDeclrR
happy_var_5 CDeclrR
happy_var_3)
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}

happyReduce_284 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_284 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_284 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 71# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_284
happyReduction_284 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_284 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent  _ happy_var_1 :: Ident
happy_var_1) -> 
	( Ident -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CDeclrR
mkVarDeclr Ident
happy_var_1)})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn78 CDeclrR
r))

happyReduce_285 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_285 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_285 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  71# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_285
happyReduction_285 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_285 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap78
happyOut78 HappyAbsSyn
happy_x_2 of { (HappyWrap78 happy_var_2 :: CDeclrR
happy_var_2) -> 
	CDeclrR -> HappyAbsSyn
happyIn78
		 (CDeclrR
happy_var_2
	)}

happyReduce_286 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_286 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_286 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 71# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_286
happyReduction_286 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_286 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap78
happyOut78 HappyAbsSyn
happy_x_3 of { (HappyWrap78 happy_var_3 :: CDeclrR
happy_var_3) -> 
	CDeclrR -> HappyAbsSyn
happyIn78
		 ([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 CDeclrR
happy_var_3
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_287 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_287 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_287 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  72# HappyAbsSyn -> HappyAbsSyn
happyReduction_287
happyReduction_287 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_287 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_1 of { (HappyWrap80 happy_var_1 :: CDeclrR
happy_var_1) -> 
	CDeclr -> HappyAbsSyn
happyIn79
		 (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_1
	)}

happyReduce_288 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_288 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_288 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  73# HappyAbsSyn -> HappyAbsSyn
happyReduction_288
happyReduction_288 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_288 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap81
happyOut81 HappyAbsSyn
happy_x_1 of { (HappyWrap81 happy_var_1 :: CDeclrR
happy_var_1) -> 
	CDeclrR -> HappyAbsSyn
happyIn80
		 (CDeclrR
happy_var_1
	)}

happyReduce_289 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_289 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_289 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 73# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_289
happyReduction_289 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_289 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_2 of { (HappyWrap80 happy_var_2 :: CDeclrR
happy_var_2) -> 
	( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_2 [])}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn80 CDeclrR
r))

happyReduce_290 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_290 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_290 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 73# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_290
happyReduction_290 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_290 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_3 of { (HappyWrap80 happy_var_3 :: CDeclrR
happy_var_3) -> 
	( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn80 CDeclrR
r))

happyReduce_291 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_291 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_291 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 74# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_291
happyReduction_291 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_291 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap78
happyOut78 HappyAbsSyn
happy_x_1 of { (HappyWrap78 happy_var_1 :: CDeclrR
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap85
happyOut85 HappyAbsSyn
happy_x_3 of { (HappyWrap85 happy_var_3 :: Reversed [Ident]
happy_var_3) -> 
	( CDeclrR -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CDeclrR
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR
-> Either [Ident] ([CDecl], Bool) -> [CAttr] -> NodeInfo -> CDeclrR
funDeclr CDeclrR
happy_var_1 ([Ident] -> Either [Ident] ([CDecl], Bool)
forall a b. a -> Either a b
Left ([Ident] -> Either [Ident] ([CDecl], Bool))
-> [Ident] -> Either [Ident] ([CDecl], Bool)
forall a b. (a -> b) -> a -> b
$ Reversed [Ident] -> [Ident]
forall a. Reversed [a] -> [a]
reverse Reversed [Ident]
happy_var_3) [])}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn81 CDeclrR
r))

happyReduce_292 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_292 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_292 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  74# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_292
happyReduction_292 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_292 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_2 of { (HappyWrap80 happy_var_2 :: CDeclrR
happy_var_2) -> 
	CDeclrR -> HappyAbsSyn
happyIn81
		 (CDeclrR
happy_var_2
	)}

happyReduce_293 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_293 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_293 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 74# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_293
happyReduction_293 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_293 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_2 of { (HappyWrap80 happy_var_2 :: CDeclrR
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_4 of { (HappyWrap88 happy_var_4 :: CDeclrR -> CDeclrR
happy_var_4) -> 
	CDeclrR -> HappyAbsSyn
happyIn81
		 (CDeclrR -> CDeclrR
happy_var_4 CDeclrR
happy_var_2
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_294 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_294 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_294 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  75# HappyAbsSyn
happyReduction_294
happyReduction_294 :: HappyAbsSyn
happyReduction_294  =  ([CDecl], Bool) -> HappyAbsSyn
happyIn82
		 (([], Bool
False)
	)

happyReduce_295 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_295 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_295 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  75# HappyAbsSyn -> HappyAbsSyn
happyReduction_295
happyReduction_295 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_295 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap83
happyOut83 HappyAbsSyn
happy_x_1 of { (HappyWrap83 happy_var_1 :: Reversed [CDecl]
happy_var_1) -> 
	([CDecl], Bool) -> HappyAbsSyn
happyIn82
		 ((Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_1, Bool
False)
	)}

happyReduce_296 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_296 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_296 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  75# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_296
happyReduction_296 :: p -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_296 happy_x_3 :: p
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap83
happyOut83 HappyAbsSyn
happy_x_1 of { (HappyWrap83 happy_var_1 :: Reversed [CDecl]
happy_var_1) -> 
	([CDecl], Bool) -> HappyAbsSyn
happyIn82
		 ((Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_1, Bool
True)
	)}

happyReduce_297 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_297 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_297 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  76# HappyAbsSyn -> HappyAbsSyn
happyReduction_297
happyReduction_297 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_297 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap84
happyOut84 HappyAbsSyn
happy_x_1 of { (HappyWrap84 happy_var_1 :: CDecl
happy_var_1) -> 
	Reversed [CDecl] -> HappyAbsSyn
happyIn83
		 (CDecl -> Reversed [CDecl]
forall a. a -> Reversed [a]
singleton CDecl
happy_var_1
	)}

happyReduce_298 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_298 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_298 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  76# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_298
happyReduction_298 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_298 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap83
happyOut83 HappyAbsSyn
happy_x_1 of { (HappyWrap83 happy_var_1 :: Reversed [CDecl]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap84
happyOut84 HappyAbsSyn
happy_x_3 of { (HappyWrap84 happy_var_3 :: CDecl
happy_var_3) -> 
	Reversed [CDecl] -> HappyAbsSyn
happyIn83
		 (Reversed [CDecl]
happy_var_1 Reversed [CDecl] -> CDecl -> Reversed [CDecl]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDecl
happy_var_3
	)}}

happyReduce_299 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_299 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_299 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_299
happyReduction_299 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_299 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_1 of { (HappyWrap37 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [])})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))

happyReduce_300 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_300 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_300 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_300
happyReduction_300 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_300 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_1 of { (HappyWrap37 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_2 of { (HappyWrap87 happy_var_2 :: CDeclrR
happy_var_2) -> 
	( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))

happyReduce_301 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_301 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_301 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_301
happyReduction_301 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_301 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_1 of { (HappyWrap37 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_2 of { (HappyWrap75 happy_var_2 :: CDeclrR
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 happy_var_3 :: [CAttr]
happy_var_3) -> 
	( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr (CDeclrR -> CDeclr) -> CDeclrR -> CDeclr
forall a b. (a -> b) -> a -> b
$! [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_3 CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))

happyReduce_302 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_302 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_302 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_302
happyReduction_302 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_302 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_1 of { (HappyWrap37 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap69
happyOut69 HappyAbsSyn
happy_x_2 of { (HappyWrap69 happy_var_2 :: CDeclrR
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 happy_var_3 :: [CAttr]
happy_var_3) -> 
	( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr (CDeclrR -> CDeclr) -> CDeclrR -> CDeclr
forall a b. (a -> b) -> a -> b
$! [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_3 CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))

happyReduce_303 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_303 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_303 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_303
happyReduction_303 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_303 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	( Reversed [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) [])})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))

happyReduce_304 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_304 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_304 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_304
happyReduction_304 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_304 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_2 of { (HappyWrap87 happy_var_2 :: CDeclrR
happy_var_2) -> 
	( Reversed [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))

happyReduce_305 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_305 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_305 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_305
happyReduction_305 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_305 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_2 of { (HappyWrap75 happy_var_2 :: CDeclrR
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 happy_var_3 :: [CAttr]
happy_var_3) -> 
	( Reversed [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr (CDeclrR -> CDeclr) -> CDeclrR -> CDeclr
forall a b. (a -> b) -> a -> b
$! [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_3 CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))

happyReduce_306 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_306 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_306 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_306
happyReduction_306 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_306 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [])})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))

happyReduce_307 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_307 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_307 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_307
happyReduction_307 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_307 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_2 of { (HappyWrap87 happy_var_2 :: CDeclrR
happy_var_2) -> 
	( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))

happyReduce_308 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_308 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_308 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_308
happyReduction_308 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_308 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_2 of { (HappyWrap75 happy_var_2 :: CDeclrR
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 happy_var_3 :: [CAttr]
happy_var_3) -> 
	( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr (CDeclrR -> CDeclr) -> CDeclrR -> CDeclr
forall a b. (a -> b) -> a -> b
$! [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_3 CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))

happyReduce_309 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_309 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_309 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_309
happyReduction_309 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_309 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap69
happyOut69 HappyAbsSyn
happy_x_2 of { (HappyWrap69 happy_var_2 :: CDeclrR
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 happy_var_3 :: [CAttr]
happy_var_3) -> 
	( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr (CDeclrR -> CDeclr) -> CDeclrR -> CDeclr
forall a b. (a -> b) -> a -> b
$! [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_3 CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))

happyReduce_310 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_310 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_310 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_310
happyReduction_310 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_310 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) [])})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))

happyReduce_311 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_311 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_311 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_311
happyReduction_311 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_311 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 happy_var_2 :: [CAttr]
happy_var_2) -> 
	( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) [])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))

happyReduce_312 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_312 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_312 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_312
happyReduction_312 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_312 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_2 of { (HappyWrap87 happy_var_2 :: CDeclrR
happy_var_2) -> 
	( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))

happyReduce_313 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_313 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_313 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 77# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_313
happyReduction_313 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_313 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_2 of { (HappyWrap75 happy_var_2 :: CDeclrR
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 happy_var_3 :: [CAttr]
happy_var_3) -> 
	( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr(CDeclrR -> CDeclr) -> CDeclrR -> CDeclr
forall a b. (a -> b) -> a -> b
$ [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_3 CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn84 CDecl
r))

happyReduce_314 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_314 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_314 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  78# HappyAbsSyn -> HappyAbsSyn
happyReduction_314
happyReduction_314 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_314 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent  _ happy_var_1 :: Ident
happy_var_1) -> 
	Reversed [Ident] -> HappyAbsSyn
happyIn85
		 (Ident -> Reversed [Ident]
forall a. a -> Reversed [a]
singleton Ident
happy_var_1
	)}

happyReduce_315 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_315 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_315 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  78# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_315
happyReduction_315 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_315 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap85
happyOut85 HappyAbsSyn
happy_x_1 of { (HappyWrap85 happy_var_1 :: Reversed [Ident]
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_3 of { (CTokIdent  _ happy_var_3 :: Ident
happy_var_3) -> 
	Reversed [Ident] -> HappyAbsSyn
happyIn85
		 (Reversed [Ident]
happy_var_1 Reversed [Ident] -> Ident -> Reversed [Ident]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` Ident
happy_var_3
	)}}

happyReduce_316 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_316 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_316 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 79# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_316
happyReduction_316 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_316 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [])})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn86 CDecl
r))

happyReduce_317 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_317 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_317 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 79# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_317
happyReduction_317 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_317 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_2 of { (HappyWrap87 happy_var_2 :: CDeclrR
happy_var_2) -> 
	( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn86 CDecl
r))

happyReduce_318 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_318 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_318 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 79# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_318
happyReduction_318 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_318 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 happy_var_2 :: [CAttr]
happy_var_2) -> 
	( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) [])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn86 CDecl
r))

happyReduce_319 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_319 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_319 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 79# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_319
happyReduction_319 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_319 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_2 of { (HappyWrap87 happy_var_2 :: CDeclrR
happy_var_2) -> 
	( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
     Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_2), Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn86 CDecl
r))

happyReduce_320 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_320 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_320 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  80# HappyAbsSyn -> HappyAbsSyn
happyReduction_320
happyReduction_320 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_320 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap91
happyOut91 HappyAbsSyn
happy_x_1 of { (HappyWrap91 happy_var_1 :: CDeclrR
happy_var_1) -> 
	CDeclrR -> HappyAbsSyn
happyIn87
		 (CDeclrR
happy_var_1
	)}

happyReduce_321 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_321 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_321 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  80# HappyAbsSyn -> HappyAbsSyn
happyReduction_321
happyReduction_321 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_321 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap92
happyOut92 HappyAbsSyn
happy_x_1 of { (HappyWrap92 happy_var_1 :: CDeclrR
happy_var_1) -> 
	CDeclrR -> HappyAbsSyn
happyIn87
		 (CDeclrR
happy_var_1
	)}

happyReduce_322 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_322 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_322 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  80# HappyAbsSyn -> HappyAbsSyn
happyReduction_322
happyReduction_322 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_322 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_1 of { (HappyWrap88 happy_var_1 :: CDeclrR -> CDeclrR
happy_var_1) -> 
	CDeclrR -> HappyAbsSyn
happyIn87
		 (CDeclrR -> CDeclrR
happy_var_1 CDeclrR
emptyDeclr
	)}

happyReduce_323 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_323 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_323 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  81# HappyAbsSyn -> HappyAbsSyn
happyReduction_323
happyReduction_323 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_323 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
happy_x_1 of { (HappyWrap89 happy_var_1 :: CDeclrR -> CDeclrR
happy_var_1) -> 
	(CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn88
		 (CDeclrR -> CDeclrR
happy_var_1
	)}

happyReduce_324 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_324 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_324 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 81# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_324
happyReduction_324 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_324 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap82
happyOut82 HappyAbsSyn
happy_x_2 of { (HappyWrap82 happy_var_2 :: ([CDecl], Bool)
happy_var_2) -> 
	( CToken
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> case ([CDecl], Bool)
happy_var_2 of
             (params :: [CDecl]
params, variadic :: Bool
variadic) -> CDeclrR
-> Either [Ident] ([CDecl], Bool) -> [CAttr] -> NodeInfo -> CDeclrR
funDeclr CDeclrR
declr (([CDecl], Bool) -> Either [Ident] ([CDecl], Bool)
forall a b. b -> Either a b
Right ([CDecl]
params,Bool
variadic)) [] NodeInfo
at)}})
	) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn88 CDeclrR -> CDeclrR
r))

happyReduce_325 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_325 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_325 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  82# HappyAbsSyn -> HappyAbsSyn
happyReduction_325
happyReduction_325 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_325 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap90
happyOut90 HappyAbsSyn
happy_x_1 of { (HappyWrap90 happy_var_1 :: CDeclrR -> CDeclrR
happy_var_1) -> 
	(CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn89
		 (CDeclrR -> CDeclrR
happy_var_1
	)}

happyReduce_326 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_326 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_326 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  82# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_326
happyReduction_326 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_326 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
happy_x_1 of { (HappyWrap89 happy_var_1 :: CDeclrR -> CDeclrR
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap90
happyOut90 HappyAbsSyn
happy_x_2 of { (HappyWrap90 happy_var_2 :: CDeclrR -> CDeclrR
happy_var_2) -> 
	(CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn89
		 (\decl :: CDeclrR
decl -> CDeclrR -> CDeclrR
happy_var_2 (CDeclrR -> CDeclrR
happy_var_1 CDeclrR
decl)
	)}}

happyReduce_327 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_327 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_327 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_327
happyReduction_327 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_327 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap125
happyOut125 HappyAbsSyn
happy_x_2 of { (HappyWrap125 happy_var_2 :: Maybe CExpr
happy_var_2) -> 
	( CToken
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr [] Bool
False Bool
False Maybe CExpr
happy_var_2 NodeInfo
at)}})
	) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))

happyReduce_328 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_328 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_328 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_328
happyReduction_328 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_328 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap125
happyOut125 HappyAbsSyn
happy_x_3 of { (HappyWrap125 happy_var_3 :: Maybe CExpr
happy_var_3) -> 
	( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 [CAttr]
happy_var_2 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr [] Bool
False Bool
False Maybe CExpr
happy_var_3 NodeInfo
at)}}})
	) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))

happyReduce_329 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_329 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_329 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_329
happyReduction_329 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_329 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap125
happyOut125 HappyAbsSyn
happy_x_3 of { (HappyWrap125 happy_var_3 :: Maybe CExpr
happy_var_3) -> 
	( CToken
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) Bool
False Bool
False Maybe CExpr
happy_var_3 NodeInfo
at)}}})
	) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))

happyReduce_330 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_330 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_330 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_330
happyReduction_330 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_330 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 happy_var_3 :: [CAttr]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap125
happyOut125 HappyAbsSyn
happy_x_4 of { (HappyWrap125 happy_var_4 :: Maybe CExpr
happy_var_4) -> 
	( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) Bool
False Bool
False Maybe CExpr
happy_var_4 NodeInfo
at)}}}})
	) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))

happyReduce_331 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_331 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_331 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_331
happyReduction_331 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_331 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 happy_var_3 :: [CAttr]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_4 of { (HappyWrap120 happy_var_4 :: CExpr
happy_var_4) -> 
	( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr [] Bool
False Bool
True (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_4) NodeInfo
at)}}})
	) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))

happyReduce_332 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_332 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_332 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_332
happyReduction_332 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_332 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_3 of { (HappyWrap65 happy_var_3 :: Reversed [CTypeQual]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_4 of { (HappyWrap132 happy_var_4 :: [CAttr]
happy_var_4) -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_5 of { (HappyWrap120 happy_var_5 :: CExpr
happy_var_5) -> 
	( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 [CAttr]
happy_var_4 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_3) Bool
False Bool
True (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_5) NodeInfo
at)}}}})
	) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))

happyReduce_333 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_333 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_333 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_333
happyReduction_333 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_333 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 happy_var_3 :: [CAttr]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_5 of { (HappyWrap132 happy_var_5 :: [CAttr]
happy_var_5) -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_6 of { (HappyWrap120 happy_var_6 :: CExpr
happy_var_6) -> 
	( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 ([CAttr]
happy_var_3 [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
happy_var_5) ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) Bool
False Bool
True  (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_6) NodeInfo
at)}}}}})
	) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))

happyReduce_334 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_334 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_334 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_334
happyReduction_334 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_334 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 happy_var_3 :: [CAttr]
happy_var_3) -> 
	( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr [] Bool
True Bool
False Maybe CExpr
forall k1. Maybe k1
Nothing NodeInfo
at)}})
	) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))

happyReduce_335 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_335 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_335 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_335
happyReduction_335 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_335 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_4 of { (HappyWrap132 happy_var_4 :: [CAttr]
happy_var_4) -> 
	( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 ([CAttr]
happy_var_2 [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
happy_var_4) ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr [] Bool
True Bool
False Maybe CExpr
forall k1. Maybe k1
Nothing NodeInfo
at)}}})
	) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))

happyReduce_336 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_336 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_336 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_336
happyReduction_336 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_336 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_4 of { (HappyWrap132 happy_var_4 :: [CAttr]
happy_var_4) -> 
	( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 [CAttr]
happy_var_4 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) Bool
True Bool
False Maybe CExpr
forall k1. Maybe k1
Nothing NodeInfo
at)}}})
	) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))

happyReduce_337 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_337 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_337 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 83# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_337
happyReduction_337 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_337 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 happy_var_3 :: [CAttr]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_5 of { (HappyWrap132 happy_var_5 :: [CAttr]
happy_var_5) -> 
	( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 ([CAttr]
happy_var_3 [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
happy_var_5) ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at declr :: CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) Bool
True Bool
False Maybe CExpr
forall k1. Maybe k1
Nothing NodeInfo
at)}}}})
	) (\r :: CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
r))

happyReduce_338 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_338 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_338 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_338
happyReduction_338 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_338 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
emptyDeclr [])})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn91 CDeclrR
r))

happyReduce_339 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_339 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_339 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_339
happyReduction_339 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_339 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 happy_var_3 :: [CAttr]
happy_var_3) -> 
	( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
emptyDeclr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn91 CDeclrR
r))

happyReduce_340 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_340 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_340 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_340
happyReduction_340 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_340 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_2 of { (HappyWrap87 happy_var_2 :: CDeclrR
happy_var_2) -> 
	( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_2 [])}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn91 CDeclrR
r))

happyReduce_341 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_341 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_341 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_341
happyReduction_341 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_341 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_3 of { (HappyWrap87 happy_var_3 :: CDeclrR
happy_var_3) -> 
	( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2))}}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn91 CDeclrR
r))

happyReduce_342 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_342 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_342 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_342
happyReduction_342 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_342 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_2 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
emptyDeclr [])}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn91 CDeclrR
r))

happyReduce_343 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_343 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_343 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_343
happyReduction_343 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_343 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_3 of { (HappyWrap87 happy_var_3 :: CDeclrR
happy_var_3) -> 
	( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_2 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 [])}}})
	) (\r :: CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn91 CDeclrR
r))

happyReduce_344 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_344 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_344 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  85# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_344
happyReduction_344 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_344 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap91
happyOut91 HappyAbsSyn
happy_x_2 of { (HappyWrap91 happy_var_2 :: CDeclrR
happy_var_2) -> 
	CDeclrR -> HappyAbsSyn
happyIn92
		 (CDeclrR
happy_var_2
	)}

happyReduce_345 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_345 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_345 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  85# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_345
happyReduction_345 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_345 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap92
happyOut92 HappyAbsSyn
happy_x_2 of { (HappyWrap92 happy_var_2 :: CDeclrR
happy_var_2) -> 
	CDeclrR -> HappyAbsSyn
happyIn92
		 (CDeclrR
happy_var_2
	)}

happyReduce_346 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_346 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_346 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  85# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_346
happyReduction_346 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_346 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_2 of { (HappyWrap88 happy_var_2 :: CDeclrR -> CDeclrR
happy_var_2) -> 
	CDeclrR -> HappyAbsSyn
happyIn92
		 (CDeclrR -> CDeclrR
happy_var_2 CDeclrR
emptyDeclr
	)}

happyReduce_347 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_347 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_347 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 85# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_347
happyReduction_347 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_347 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap91
happyOut91 HappyAbsSyn
happy_x_2 of { (HappyWrap91 happy_var_2 :: CDeclrR
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_4 of { (HappyWrap88 happy_var_4 :: CDeclrR -> CDeclrR
happy_var_4) -> 
	CDeclrR -> HappyAbsSyn
happyIn92
		 (CDeclrR -> CDeclrR
happy_var_4 CDeclrR
happy_var_2
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_348 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_348 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_348 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 85# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_348
happyReduction_348 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_348 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap91
happyOut91 HappyAbsSyn
happy_x_3 of { (HappyWrap91 happy_var_3 :: CDeclrR
happy_var_3) -> 
	CDeclrR -> HappyAbsSyn
happyIn92
		 ([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 CDeclrR
happy_var_3
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_349 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_349 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_349 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 85# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_349
happyReduction_349 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_349 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap92
happyOut92 HappyAbsSyn
happy_x_3 of { (HappyWrap92 happy_var_3 :: CDeclrR
happy_var_3) -> 
	CDeclrR -> HappyAbsSyn
happyIn92
		 ([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 CDeclrR
happy_var_3
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_350 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_350 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_350 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 85# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_350
happyReduction_350 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_350 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_3 of { (HappyWrap88 happy_var_3 :: CDeclrR -> CDeclrR
happy_var_3) -> 
	CDeclrR -> HappyAbsSyn
happyIn92
		 ([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 (CDeclrR -> CDeclrR
happy_var_3 CDeclrR
emptyDeclr)
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_351 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_351 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_351 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 5# 85# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_351
happyReduction_351 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_351 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 happy_var_2 :: [CAttr]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap91
happyOut91 HappyAbsSyn
happy_x_3 of { (HappyWrap91 happy_var_3 :: CDeclrR
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_5 of { (HappyWrap88 happy_var_5 :: CDeclrR -> CDeclrR
happy_var_5) -> 
	CDeclrR -> HappyAbsSyn
happyIn92
		 ([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 (CDeclrR -> CDeclrR
happy_var_5 CDeclrR
happy_var_3)
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}

happyReduce_352 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_352 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_352 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  85# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_352
happyReduction_352 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_352 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap92
happyOut92 HappyAbsSyn
happy_x_1 of { (HappyWrap92 happy_var_1 :: CDeclrR
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 happy_var_2 :: [CAttr]
happy_var_2) -> 
	CDeclrR -> HappyAbsSyn
happyIn92
		 ([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 CDeclrR
happy_var_1
	)}}

happyReduce_353 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_353 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_353 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 86# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_353
happyReduction_353 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_353 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CInit -> (CInit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_1 of { (HappyWrap120 happy_var_1 :: CExpr
happy_var_1) -> 
	( CExpr -> (NodeInfo -> CInit) -> P CInit
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CInit) -> P CInit) -> (NodeInfo -> CInit) -> P CInit
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CInit
forall a. CExpression a -> a -> CInitializer a
CInitExpr CExpr
happy_var_1)})
	) (\r :: CInit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CInit -> HappyAbsSyn
happyIn93 CInit
r))

happyReduce_354 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_354 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_354 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 86# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_354
happyReduction_354 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_354 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CInit -> (CInit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap95
happyOut95 HappyAbsSyn
happy_x_2 of { (HappyWrap95 happy_var_2 :: Reversed CInitList
happy_var_2) -> 
	( CToken -> (NodeInfo -> CInit) -> P CInit
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CInit) -> P CInit) -> (NodeInfo -> CInit) -> P CInit
forall a b. (a -> b) -> a -> b
$ CInitList -> NodeInfo -> CInit
forall a. CInitializerList a -> a -> CInitializer a
CInitList (Reversed CInitList -> CInitList
forall a. Reversed [a] -> [a]
reverse Reversed CInitList
happy_var_2))}})
	) (\r :: CInit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CInit -> HappyAbsSyn
happyIn93 CInit
r))

happyReduce_355 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_355 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_355 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 86# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_355
happyReduction_355 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_355 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CInit -> (CInit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap95
happyOut95 HappyAbsSyn
happy_x_2 of { (HappyWrap95 happy_var_2 :: Reversed CInitList
happy_var_2) -> 
	( CToken -> (NodeInfo -> CInit) -> P CInit
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CInit) -> P CInit) -> (NodeInfo -> CInit) -> P CInit
forall a b. (a -> b) -> a -> b
$ CInitList -> NodeInfo -> CInit
forall a. CInitializerList a -> a -> CInitializer a
CInitList (Reversed CInitList -> CInitList
forall a. Reversed [a] -> [a]
reverse Reversed CInitList
happy_var_2))}})
	) (\r :: CInit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CInit -> HappyAbsSyn
happyIn93 CInit
r))

happyReduce_356 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_356 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_356 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  87# HappyAbsSyn
happyReduction_356
happyReduction_356 :: HappyAbsSyn
happyReduction_356  =  Maybe CInit -> HappyAbsSyn
happyIn94
		 (Maybe CInit
forall k1. Maybe k1
Nothing
	)

happyReduce_357 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_357 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_357 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  87# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_357
happyReduction_357 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_357 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap93
happyOut93 HappyAbsSyn
happy_x_2 of { (HappyWrap93 happy_var_2 :: CInit
happy_var_2) -> 
	Maybe CInit -> HappyAbsSyn
happyIn94
		 (CInit -> Maybe CInit
forall k1. k1 -> Maybe k1
Just CInit
happy_var_2
	)}

happyReduce_358 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_358 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_358 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  88# HappyAbsSyn
happyReduction_358
happyReduction_358 :: HappyAbsSyn
happyReduction_358  =  Reversed CInitList -> HappyAbsSyn
happyIn95
		 (Reversed CInitList
forall a. Reversed [a]
empty
	)

happyReduce_359 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_359 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_359 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  88# HappyAbsSyn -> HappyAbsSyn
happyReduction_359
happyReduction_359 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_359 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap93
happyOut93 HappyAbsSyn
happy_x_1 of { (HappyWrap93 happy_var_1 :: CInit
happy_var_1) -> 
	Reversed CInitList -> HappyAbsSyn
happyIn95
		 (([CDesignator], CInit) -> Reversed CInitList
forall a. a -> Reversed [a]
singleton ([],CInit
happy_var_1)
	)}

happyReduce_360 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_360 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_360 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  88# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_360
happyReduction_360 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_360 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap96
happyOut96 HappyAbsSyn
happy_x_1 of { (HappyWrap96 happy_var_1 :: [CDesignator]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap93
happyOut93 HappyAbsSyn
happy_x_2 of { (HappyWrap93 happy_var_2 :: CInit
happy_var_2) -> 
	Reversed CInitList -> HappyAbsSyn
happyIn95
		 (([CDesignator], CInit) -> Reversed CInitList
forall a. a -> Reversed [a]
singleton ([CDesignator]
happy_var_1,CInit
happy_var_2)
	)}}

happyReduce_361 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_361 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_361 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  88# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_361
happyReduction_361 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_361 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap95
happyOut95 HappyAbsSyn
happy_x_1 of { (HappyWrap95 happy_var_1 :: Reversed CInitList
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap93
happyOut93 HappyAbsSyn
happy_x_3 of { (HappyWrap93 happy_var_3 :: CInit
happy_var_3) -> 
	Reversed CInitList -> HappyAbsSyn
happyIn95
		 (Reversed CInitList
happy_var_1 Reversed CInitList -> ([CDesignator], CInit) -> Reversed CInitList
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` ([],CInit
happy_var_3)
	)}}

happyReduce_362 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_362 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_362 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 88# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_362
happyReduction_362 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_362 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap95
happyOut95 HappyAbsSyn
happy_x_1 of { (HappyWrap95 happy_var_1 :: Reversed CInitList
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap96
happyOut96 HappyAbsSyn
happy_x_3 of { (HappyWrap96 happy_var_3 :: [CDesignator]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap93
happyOut93 HappyAbsSyn
happy_x_4 of { (HappyWrap93 happy_var_4 :: CInit
happy_var_4) -> 
	Reversed CInitList -> HappyAbsSyn
happyIn95
		 (Reversed CInitList
happy_var_1 Reversed CInitList -> ([CDesignator], CInit) -> Reversed CInitList
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` ([CDesignator]
happy_var_3,CInit
happy_var_4)
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}

happyReduce_363 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_363 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_363 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  89# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_363
happyReduction_363 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_363 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap97
happyOut97 HappyAbsSyn
happy_x_1 of { (HappyWrap97 happy_var_1 :: Reversed [CDesignator]
happy_var_1) -> 
	[CDesignator] -> HappyAbsSyn
happyIn96
		 (Reversed [CDesignator] -> [CDesignator]
forall a. Reversed [a] -> [a]
reverse Reversed [CDesignator]
happy_var_1
	)}

happyReduce_364 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_364 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_364 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 89# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_364
happyReduction_364 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_364 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P [CDesignator]
-> ([CDesignator] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
happy_x_1 of { (HappyWrap131 happy_var_1 :: Ident
happy_var_1) -> 
	( Ident -> (NodeInfo -> [CDesignator]) -> P [CDesignator]
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> [CDesignator]) -> P [CDesignator])
-> (NodeInfo -> [CDesignator]) -> P [CDesignator]
forall a b. (a -> b) -> a -> b
$ \at :: NodeInfo
at -> [Ident -> NodeInfo -> CDesignator
forall a. Ident -> a -> CPartDesignator a
CMemberDesig Ident
happy_var_1 NodeInfo
at])})
	) (\r :: [CDesignator]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ([CDesignator] -> HappyAbsSyn
happyIn96 [CDesignator]
r))

happyReduce_365 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_365 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_365 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  89# HappyAbsSyn -> HappyAbsSyn
happyReduction_365
happyReduction_365 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_365 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap99
happyOut99 HappyAbsSyn
happy_x_1 of { (HappyWrap99 happy_var_1 :: CDesignator
happy_var_1) -> 
	[CDesignator] -> HappyAbsSyn
happyIn96
		 ([CDesignator
happy_var_1]
	)}

happyReduce_366 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_366 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_366 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  90# HappyAbsSyn -> HappyAbsSyn
happyReduction_366
happyReduction_366 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_366 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap98
happyOut98 HappyAbsSyn
happy_x_1 of { (HappyWrap98 happy_var_1 :: CDesignator
happy_var_1) -> 
	Reversed [CDesignator] -> HappyAbsSyn
happyIn97
		 (CDesignator -> Reversed [CDesignator]
forall a. a -> Reversed [a]
singleton CDesignator
happy_var_1
	)}

happyReduce_367 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_367 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_367 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  90# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_367
happyReduction_367 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_367 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap97
happyOut97 HappyAbsSyn
happy_x_1 of { (HappyWrap97 happy_var_1 :: Reversed [CDesignator]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap98
happyOut98 HappyAbsSyn
happy_x_2 of { (HappyWrap98 happy_var_2 :: CDesignator
happy_var_2) -> 
	Reversed [CDesignator] -> HappyAbsSyn
happyIn97
		 (Reversed [CDesignator]
happy_var_1 Reversed [CDesignator] -> CDesignator -> Reversed [CDesignator]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDesignator
happy_var_2
	)}}

happyReduce_368 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_368 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_368 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 91# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_368
happyReduction_368 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_368 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDesignator -> (CDesignator -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_2 of { (HappyWrap126 happy_var_2 :: CExpr
happy_var_2) -> 
	( CToken -> (NodeInfo -> CDesignator) -> P CDesignator
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDesignator) -> P CDesignator)
-> (NodeInfo -> CDesignator) -> P CDesignator
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CDesignator
forall a. CExpression a -> a -> CPartDesignator a
CArrDesig CExpr
happy_var_2)}})
	) (\r :: CDesignator
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDesignator -> HappyAbsSyn
happyIn98 CDesignator
r))

happyReduce_369 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_369 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_369 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 91# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_369
happyReduction_369 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_369 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDesignator -> (CDesignator -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
happy_x_2 of { (HappyWrap131 happy_var_2 :: Ident
happy_var_2) -> 
	( CToken -> (NodeInfo -> CDesignator) -> P CDesignator
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDesignator) -> P CDesignator)
-> (NodeInfo -> CDesignator) -> P CDesignator
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CDesignator
forall a. Ident -> a -> CPartDesignator a
CMemberDesig Ident
happy_var_2)}})
	) (\r :: CDesignator
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDesignator -> HappyAbsSyn
happyIn98 CDesignator
r))

happyReduce_370 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_370 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_370 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  91# HappyAbsSyn -> HappyAbsSyn
happyReduction_370
happyReduction_370 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_370 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap99
happyOut99 HappyAbsSyn
happy_x_1 of { (HappyWrap99 happy_var_1 :: CDesignator
happy_var_1) -> 
	CDesignator -> HappyAbsSyn
happyIn98
		 (CDesignator
happy_var_1
	)}

happyReduce_371 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_371 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_371 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 92# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_371
happyReduction_371 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_371 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDesignator -> (CDesignator -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_2 of { (HappyWrap126 happy_var_2 :: CExpr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_4 of { (HappyWrap126 happy_var_4 :: CExpr
happy_var_4) -> 
	( CToken -> (NodeInfo -> CDesignator) -> P CDesignator
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDesignator) -> P CDesignator)
-> (NodeInfo -> CDesignator) -> P CDesignator
forall a b. (a -> b) -> a -> b
$ CExpr -> CExpr -> NodeInfo -> CDesignator
forall a. CExpression a -> CExpression a -> a -> CPartDesignator a
CRangeDesig CExpr
happy_var_2 CExpr
happy_var_4)}}})
	) (\r :: CDesignator
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDesignator -> HappyAbsSyn
happyIn99 CDesignator
r))

happyReduce_372 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_372 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_372 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 93# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_372
happyReduction_372 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_372 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent  _ happy_var_1 :: Ident
happy_var_1) -> 
	( Ident -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CExpr
forall a. Ident -> a -> CExpression a
CVar Ident
happy_var_1)})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn100 CExpr
r))

happyReduce_373 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_373 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_373 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  93# HappyAbsSyn -> HappyAbsSyn
happyReduction_373
happyReduction_373 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_373 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap127
happyOut127 HappyAbsSyn
happy_x_1 of { (HappyWrap127 happy_var_1 :: CConst
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn100
		 (CConst -> CExpr
forall a. CConstant a -> CExpression a
CConst CConst
happy_var_1
	)}

happyReduce_374 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_374 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_374 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  93# HappyAbsSyn -> HappyAbsSyn
happyReduction_374
happyReduction_374 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_374 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap128
happyOut128 HappyAbsSyn
happy_x_1 of { (HappyWrap128 happy_var_1 :: CStrLit
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn100
		 (CConst -> CExpr
forall a. CConstant a -> CExpression a
CConst (CStrLit -> CConst
forall a. CStringLiteral a -> CConstant a
liftStrLit CStrLit
happy_var_1)
	)}

happyReduce_375 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_375 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_375 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  93# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_375
happyReduction_375 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_375 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_2 of { (HappyWrap122 happy_var_2 :: CExpr
happy_var_2) -> 
	CExpr -> HappyAbsSyn
happyIn100
		 (CExpr
happy_var_2
	)}

happyReduce_376 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_376 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_376 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 93# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_376
happyReduction_376 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_376 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_3 of { (HappyWrap120 happy_var_3 :: CExpr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap101
happyOut101 HappyAbsSyn
happy_x_5 of { (HappyWrap101 happy_var_5 :: Reversed [(Maybe CDecl, CExpr)]
happy_var_5) -> 
	( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> [(Maybe CDecl, CExpr)] -> NodeInfo -> CExpr
forall a.
CExpression a
-> [(Maybe (CDeclaration a), CExpression a)] -> a -> CExpression a
CGenericSelection CExpr
happy_var_3 (Reversed [(Maybe CDecl, CExpr)] -> [(Maybe CDecl, CExpr)]
forall a. Reversed [a] -> [a]
reverse Reversed [(Maybe CDecl, CExpr)]
happy_var_5))}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn100 CExpr
r))

happyReduce_377 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_377 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_377 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 93# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_377
happyReduction_377 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_377 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_2 of { (HappyWrap14 happy_var_2 :: CStat
happy_var_2) -> 
	( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CStat -> NodeInfo -> CExpr
forall a. CStatement a -> a -> CExpression a
CStatExpr CStat
happy_var_2)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn100 CExpr
r))

happyReduce_378 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_378 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_378 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 93# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_378
happyReduction_378 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_378 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_3 of { (HappyWrap120 happy_var_3 :: CExpr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_5 of { (HappyWrap86 happy_var_5 :: CDecl
happy_var_5) -> 
	( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBuiltinThing NodeInfo -> CExpr
forall a. CBuiltinThing a -> CExpression a
CBuiltinExpr (CBuiltinThing NodeInfo -> CExpr)
-> (NodeInfo -> CBuiltinThing NodeInfo) -> NodeInfo -> CExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CExpr -> CDecl -> NodeInfo -> CBuiltinThing NodeInfo
forall a. CExpression a -> CDeclaration a -> a -> CBuiltinThing a
CBuiltinVaArg CExpr
happy_var_3 CDecl
happy_var_5)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn100 CExpr
r))

happyReduce_379 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_379 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_379 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 93# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_379
happyReduction_379 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_379 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_3 of { (HappyWrap86 happy_var_3 :: CDecl
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap103
happyOut103 HappyAbsSyn
happy_x_5 of { (HappyWrap103 happy_var_5 :: Reversed [CDesignator]
happy_var_5) -> 
	( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBuiltinThing NodeInfo -> CExpr
forall a. CBuiltinThing a -> CExpression a
CBuiltinExpr (CBuiltinThing NodeInfo -> CExpr)
-> (NodeInfo -> CBuiltinThing NodeInfo) -> NodeInfo -> CExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CDecl -> [CDesignator] -> NodeInfo -> CBuiltinThing NodeInfo
forall a.
CDeclaration a -> [CPartDesignator a] -> a -> CBuiltinThing a
CBuiltinOffsetOf CDecl
happy_var_3 (Reversed [CDesignator] -> [CDesignator]
forall a. Reversed [a] -> [a]
reverse Reversed [CDesignator]
happy_var_5))}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn100 CExpr
r))

happyReduce_380 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_380 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_380 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 93# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_380
happyReduction_380 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_380 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_3 of { (HappyWrap86 happy_var_3 :: CDecl
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_5 of { (HappyWrap86 happy_var_5 :: CDecl
happy_var_5) -> 
	( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBuiltinThing NodeInfo -> CExpr
forall a. CBuiltinThing a -> CExpression a
CBuiltinExpr (CBuiltinThing NodeInfo -> CExpr)
-> (NodeInfo -> CBuiltinThing NodeInfo) -> NodeInfo -> CExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CDecl -> CDecl -> NodeInfo -> CBuiltinThing NodeInfo
forall a. CDeclaration a -> CDeclaration a -> a -> CBuiltinThing a
CBuiltinTypesCompatible CDecl
happy_var_3 CDecl
happy_var_5)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn100 CExpr
r))

happyReduce_381 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_381 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_381 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 93# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_381
happyReduction_381 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_381 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_3 of { (HappyWrap120 happy_var_3 :: CExpr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_5 of { (HappyWrap86 happy_var_5 :: CDecl
happy_var_5) -> 
	( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBuiltinThing NodeInfo -> CExpr
forall a. CBuiltinThing a -> CExpression a
CBuiltinExpr (CBuiltinThing NodeInfo -> CExpr)
-> (NodeInfo -> CBuiltinThing NodeInfo) -> NodeInfo -> CExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CExpr -> CDecl -> NodeInfo -> CBuiltinThing NodeInfo
forall a. CExpression a -> CDeclaration a -> a -> CBuiltinThing a
CBuiltinConvertVector CExpr
happy_var_3 CDecl
happy_var_5)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn100 CExpr
r))

happyReduce_382 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_382 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_382 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  94# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_382
happyReduction_382 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_382 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap101
happyOut101 HappyAbsSyn
happy_x_1 of { (HappyWrap101 happy_var_1 :: Reversed [(Maybe CDecl, CExpr)]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap102
happyOut102 HappyAbsSyn
happy_x_3 of { (HappyWrap102 happy_var_3 :: (Maybe CDecl, CExpr)
happy_var_3) -> 
	Reversed [(Maybe CDecl, CExpr)] -> HappyAbsSyn
happyIn101
		 (Reversed [(Maybe CDecl, CExpr)]
happy_var_1 Reversed [(Maybe CDecl, CExpr)]
-> (Maybe CDecl, CExpr) -> Reversed [(Maybe CDecl, CExpr)]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` (Maybe CDecl, CExpr)
happy_var_3
	)}}

happyReduce_383 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_383 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_383 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  94# HappyAbsSyn -> HappyAbsSyn
happyReduction_383
happyReduction_383 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_383 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap102
happyOut102 HappyAbsSyn
happy_x_1 of { (HappyWrap102 happy_var_1 :: (Maybe CDecl, CExpr)
happy_var_1) -> 
	Reversed [(Maybe CDecl, CExpr)] -> HappyAbsSyn
happyIn101
		 ((Maybe CDecl, CExpr) -> Reversed [(Maybe CDecl, CExpr)]
forall a. a -> Reversed [a]
singleton (Maybe CDecl, CExpr)
happy_var_1
	)}

happyReduce_384 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_384 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_384 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  95# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_384
happyReduction_384 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_384 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_1 of { (HappyWrap86 happy_var_1 :: CDecl
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_3 of { (HappyWrap120 happy_var_3 :: CExpr
happy_var_3) -> 
	(Maybe CDecl, CExpr) -> HappyAbsSyn
happyIn102
		 ((CDecl -> Maybe CDecl
forall k1. k1 -> Maybe k1
Just CDecl
happy_var_1, CExpr
happy_var_3)
	)}}

happyReduce_385 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_385 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_385 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  95# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. HappyAbsSyn -> p -> p -> HappyAbsSyn
happyReduction_385
happyReduction_385 :: HappyAbsSyn -> p -> p -> HappyAbsSyn
happyReduction_385 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_3 of { (HappyWrap120 happy_var_3 :: CExpr
happy_var_3) -> 
	(Maybe CDecl, CExpr) -> HappyAbsSyn
happyIn102
		 ((Maybe CDecl
forall k1. Maybe k1
Nothing, CExpr
happy_var_3)
	)}

happyReduce_386 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_386 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_386 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 96# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_386
happyReduction_386 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_386 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDesignator])
-> (Reversed [CDesignator] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
happy_x_1 of { (HappyWrap131 happy_var_1 :: Ident
happy_var_1) -> 
	( Ident
-> (NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> Reversed [CDesignator])
 -> P (Reversed [CDesignator]))
-> (NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator])
forall a b. (a -> b) -> a -> b
$ CDesignator -> Reversed [CDesignator]
forall a. a -> Reversed [a]
singleton (CDesignator -> Reversed [CDesignator])
-> (NodeInfo -> CDesignator) -> NodeInfo -> Reversed [CDesignator]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ident -> NodeInfo -> CDesignator
forall a. Ident -> a -> CPartDesignator a
CMemberDesig Ident
happy_var_1)})
	) (\r :: Reversed [CDesignator]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDesignator] -> HappyAbsSyn
happyIn103 Reversed [CDesignator]
r))

happyReduce_387 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_387 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_387 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 96# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_387
happyReduction_387 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_387 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDesignator])
-> (Reversed [CDesignator] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap103
happyOut103 HappyAbsSyn
happy_x_1 of { (HappyWrap103 happy_var_1 :: Reversed [CDesignator]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
happy_x_3 of { (HappyWrap131 happy_var_3 :: Ident
happy_var_3) -> 
	( Ident
-> (NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_3 ((NodeInfo -> Reversed [CDesignator])
 -> P (Reversed [CDesignator]))
-> (NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator])
forall a b. (a -> b) -> a -> b
$ (Reversed [CDesignator]
happy_var_1 Reversed [CDesignator] -> CDesignator -> Reversed [CDesignator]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc`) (CDesignator -> Reversed [CDesignator])
-> (NodeInfo -> CDesignator) -> NodeInfo -> Reversed [CDesignator]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ident -> NodeInfo -> CDesignator
forall a. Ident -> a -> CPartDesignator a
CMemberDesig Ident
happy_var_3)}})
	) (\r :: Reversed [CDesignator]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDesignator] -> HappyAbsSyn
happyIn103 Reversed [CDesignator]
r))

happyReduce_388 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_388 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_388 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 96# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_388
happyReduction_388 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_388 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDesignator])
-> (Reversed [CDesignator] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap103
happyOut103 HappyAbsSyn
happy_x_1 of { (HappyWrap103 happy_var_1 :: Reversed [CDesignator]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_3 of { (HappyWrap122 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr
-> (NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_3 ((NodeInfo -> Reversed [CDesignator])
 -> P (Reversed [CDesignator]))
-> (NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator])
forall a b. (a -> b) -> a -> b
$ (Reversed [CDesignator]
happy_var_1 Reversed [CDesignator] -> CDesignator -> Reversed [CDesignator]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc`) (CDesignator -> Reversed [CDesignator])
-> (NodeInfo -> CDesignator) -> NodeInfo -> Reversed [CDesignator]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CExpr -> NodeInfo -> CDesignator
forall a. CExpression a -> a -> CPartDesignator a
CArrDesig CExpr
happy_var_3)}})
	) (\r :: Reversed [CDesignator]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDesignator] -> HappyAbsSyn
happyIn103 Reversed [CDesignator]
r))

happyReduce_389 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_389 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_389 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  97# HappyAbsSyn -> HappyAbsSyn
happyReduction_389
happyReduction_389 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_389 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap100
happyOut100 HappyAbsSyn
happy_x_1 of { (HappyWrap100 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn104
		 (CExpr
happy_var_1
	)}

happyReduce_390 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_390 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_390 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_390
happyReduction_390 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_390 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap104
happyOut104 HappyAbsSyn
happy_x_1 of { (HappyWrap104 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_3 of { (HappyWrap122 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> CExpr -> NodeInfo -> CExpr
forall a. CExpression a -> CExpression a -> a -> CExpression a
CIndex CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))

happyReduce_391 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_391 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_391 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_391
happyReduction_391 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_391 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap104
happyOut104 HappyAbsSyn
happy_x_1 of { (HappyWrap104 happy_var_1 :: CExpr
happy_var_1) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> [CExpr] -> NodeInfo -> CExpr
forall a. CExpression a -> [CExpression a] -> a -> CExpression a
CCall CExpr
happy_var_1 [])})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))

happyReduce_392 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_392 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_392 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_392
happyReduction_392 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_392 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap104
happyOut104 HappyAbsSyn
happy_x_1 of { (HappyWrap104 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap105
happyOut105 HappyAbsSyn
happy_x_3 of { (HappyWrap105 happy_var_3 :: Reversed [CExpr]
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> [CExpr] -> NodeInfo -> CExpr
forall a. CExpression a -> [CExpression a] -> a -> CExpression a
CCall CExpr
happy_var_1 (Reversed [CExpr] -> [CExpr]
forall a. Reversed [a] -> [a]
reverse Reversed [CExpr]
happy_var_3))}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))

happyReduce_393 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_393 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_393 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_393
happyReduction_393 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_393 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap104
happyOut104 HappyAbsSyn
happy_x_1 of { (HappyWrap104 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
happy_x_3 of { (HappyWrap131 happy_var_3 :: Ident
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> Ident -> Bool -> NodeInfo -> CExpr
forall a. CExpression a -> Ident -> Bool -> a -> CExpression a
CMember CExpr
happy_var_1 Ident
happy_var_3 Bool
False)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))

happyReduce_394 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_394 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_394 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_394
happyReduction_394 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_394 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap104
happyOut104 HappyAbsSyn
happy_x_1 of { (HappyWrap104 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
happy_x_3 of { (HappyWrap131 happy_var_3 :: Ident
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> Ident -> Bool -> NodeInfo -> CExpr
forall a. CExpression a -> Ident -> Bool -> a -> CExpression a
CMember CExpr
happy_var_1 Ident
happy_var_3 Bool
True)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))

happyReduce_395 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_395 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_395 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_395
happyReduction_395 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_395 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap104
happyOut104 HappyAbsSyn
happy_x_1 of { (HappyWrap104 happy_var_1 :: CExpr
happy_var_1) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> NodeInfo -> CExpr
forall a. CUnaryOp -> CExpression a -> a -> CExpression a
CUnary CUnaryOp
CPostIncOp CExpr
happy_var_1)})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))

happyReduce_396 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_396 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_396 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_396
happyReduction_396 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_396 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap104
happyOut104 HappyAbsSyn
happy_x_1 of { (HappyWrap104 happy_var_1 :: CExpr
happy_var_1) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> NodeInfo -> CExpr
forall a. CUnaryOp -> CExpression a -> a -> CExpression a
CUnary CUnaryOp
CPostDecOp CExpr
happy_var_1)})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))

happyReduce_397 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_397 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_397 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_397
happyReduction_397 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_397 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_2 of { (HappyWrap86 happy_var_2 :: CDecl
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap95
happyOut95 HappyAbsSyn
happy_x_5 of { (HappyWrap95 happy_var_5 :: Reversed CInitList
happy_var_5) -> 
	( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> CInitList -> NodeInfo -> CExpr
forall a.
CDeclaration a -> CInitializerList a -> a -> CExpression a
CCompoundLit CDecl
happy_var_2 (Reversed CInitList -> CInitList
forall a. Reversed [a] -> [a]
reverse Reversed CInitList
happy_var_5))}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))

happyReduce_398 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_398 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_398 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_398
happyReduction_398 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_398 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_2 of { (HappyWrap86 happy_var_2 :: CDecl
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap95
happyOut95 HappyAbsSyn
happy_x_5 of { (HappyWrap95 happy_var_5 :: Reversed CInitList
happy_var_5) -> 
	( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> CInitList -> NodeInfo -> CExpr
forall a.
CDeclaration a -> CInitializerList a -> a -> CExpression a
CCompoundLit CDecl
happy_var_2 (Reversed CInitList -> CInitList
forall a. Reversed [a] -> [a]
reverse Reversed CInitList
happy_var_5))}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))

happyReduce_399 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_399 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_399 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  98# HappyAbsSyn -> HappyAbsSyn
happyReduction_399
happyReduction_399 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_399 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_1 of { (HappyWrap120 happy_var_1 :: CExpr
happy_var_1) -> 
	Reversed [CExpr] -> HappyAbsSyn
happyIn105
		 (CExpr -> Reversed [CExpr]
forall a. a -> Reversed [a]
singleton CExpr
happy_var_1
	)}

happyReduce_400 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_400 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_400 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  98# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_400
happyReduction_400 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_400 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap105
happyOut105 HappyAbsSyn
happy_x_1 of { (HappyWrap105 happy_var_1 :: Reversed [CExpr]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_3 of { (HappyWrap120 happy_var_3 :: CExpr
happy_var_3) -> 
	Reversed [CExpr] -> HappyAbsSyn
happyIn105
		 (Reversed [CExpr]
happy_var_1 Reversed [CExpr] -> CExpr -> Reversed [CExpr]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CExpr
happy_var_3
	)}}

happyReduce_401 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_401 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_401 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  99# HappyAbsSyn -> HappyAbsSyn
happyReduction_401
happyReduction_401 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_401 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap104
happyOut104 HappyAbsSyn
happy_x_1 of { (HappyWrap104 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn106
		 (CExpr
happy_var_1
	)}

happyReduce_402 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_402 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_402 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_402
happyReduction_402 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_402 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap106
happyOut106 HappyAbsSyn
happy_x_2 of { (HappyWrap106 happy_var_2 :: CExpr
happy_var_2) -> 
	( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> NodeInfo -> CExpr
forall a. CUnaryOp -> CExpression a -> a -> CExpression a
CUnary CUnaryOp
CPreIncOp CExpr
happy_var_2)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))

happyReduce_403 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_403 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_403 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_403
happyReduction_403 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_403 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap106
happyOut106 HappyAbsSyn
happy_x_2 of { (HappyWrap106 happy_var_2 :: CExpr
happy_var_2) -> 
	( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> NodeInfo -> CExpr
forall a. CUnaryOp -> CExpression a -> a -> CExpression a
CUnary CUnaryOp
CPreDecOp CExpr
happy_var_2)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))

happyReduce_404 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_404 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_404 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  99# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_404
happyReduction_404 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_404 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap108
happyOut108 HappyAbsSyn
happy_x_2 of { (HappyWrap108 happy_var_2 :: CExpr
happy_var_2) -> 
	CExpr -> HappyAbsSyn
happyIn106
		 (CExpr
happy_var_2
	)}

happyReduce_405 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_405 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_405 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_405
happyReduction_405 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_405 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap107
happyOut107 HappyAbsSyn
happy_x_1 of { (HappyWrap107 happy_var_1 :: Located CUnaryOp
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap108
happyOut108 HappyAbsSyn
happy_x_2 of { (HappyWrap108 happy_var_2 :: CExpr
happy_var_2) -> 
	( Located CUnaryOp -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Located CUnaryOp
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> NodeInfo -> CExpr
forall a. CUnaryOp -> CExpression a -> a -> CExpression a
CUnary (Located CUnaryOp -> CUnaryOp
forall a. Located a -> a
unL Located CUnaryOp
happy_var_1) CExpr
happy_var_2)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))

happyReduce_406 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_406 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_406 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_406
happyReduction_406 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_406 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap106
happyOut106 HappyAbsSyn
happy_x_2 of { (HappyWrap106 happy_var_2 :: CExpr
happy_var_2) -> 
	( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CExpr
forall a. CExpression a -> a -> CExpression a
CSizeofExpr CExpr
happy_var_2)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))

happyReduce_407 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_407 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_407 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_407
happyReduction_407 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_407 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_3 of { (HappyWrap86 happy_var_3 :: CDecl
happy_var_3) -> 
	( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> NodeInfo -> CExpr
forall a. CDeclaration a -> a -> CExpression a
CSizeofType CDecl
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))

happyReduce_408 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_408 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_408 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_408
happyReduction_408 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_408 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap106
happyOut106 HappyAbsSyn
happy_x_2 of { (HappyWrap106 happy_var_2 :: CExpr
happy_var_2) -> 
	( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CExpr
forall a. CExpression a -> a -> CExpression a
CAlignofExpr CExpr
happy_var_2)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))

happyReduce_409 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_409 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_409 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_409
happyReduction_409 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_409 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_3 of { (HappyWrap86 happy_var_3 :: CDecl
happy_var_3) -> 
	( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> NodeInfo -> CExpr
forall a. CDeclaration a -> a -> CExpression a
CAlignofType CDecl
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))

happyReduce_410 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_410 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_410 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_410
happyReduction_410 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_410 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap106
happyOut106 HappyAbsSyn
happy_x_2 of { (HappyWrap106 happy_var_2 :: CExpr
happy_var_2) -> 
	( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CExpr
forall a. CExpression a -> a -> CExpression a
CComplexReal CExpr
happy_var_2)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))

happyReduce_411 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_411 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_411 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_411
happyReduction_411 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_411 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap106
happyOut106 HappyAbsSyn
happy_x_2 of { (HappyWrap106 happy_var_2 :: CExpr
happy_var_2) -> 
	( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CExpr
forall a. CExpression a -> a -> CExpression a
CComplexImag CExpr
happy_var_2)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))

happyReduce_412 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_412 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_412 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_412
happyReduction_412 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_412 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
happy_x_2 of { (HappyWrap131 happy_var_2 :: Ident
happy_var_2) -> 
	( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CExpr
forall a. Ident -> a -> CExpression a
CLabAddrExpr Ident
happy_var_2)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))

happyReduce_413 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_413 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_413 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  100# HappyAbsSyn -> HappyAbsSyn
happyReduction_413
happyReduction_413 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_413 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CUnaryOp -> HappyAbsSyn
happyIn107
		 (CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CAdrOp  (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_414 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_414 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_414 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  100# HappyAbsSyn -> HappyAbsSyn
happyReduction_414
happyReduction_414 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_414 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CUnaryOp -> HappyAbsSyn
happyIn107
		 (CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CIndOp  (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_415 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_415 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_415 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  100# HappyAbsSyn -> HappyAbsSyn
happyReduction_415
happyReduction_415 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_415 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CUnaryOp -> HappyAbsSyn
happyIn107
		 (CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CPlusOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_416 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_416 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_416 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  100# HappyAbsSyn -> HappyAbsSyn
happyReduction_416
happyReduction_416 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_416 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CUnaryOp -> HappyAbsSyn
happyIn107
		 (CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CMinOp  (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_417 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_417 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_417 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  100# HappyAbsSyn -> HappyAbsSyn
happyReduction_417
happyReduction_417 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_417 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CUnaryOp -> HappyAbsSyn
happyIn107
		 (CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CCompOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_418 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_418 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_418 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  100# HappyAbsSyn -> HappyAbsSyn
happyReduction_418
happyReduction_418 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_418 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CUnaryOp -> HappyAbsSyn
happyIn107
		 (CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CNegOp  (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_419 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_419 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_419 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  101# HappyAbsSyn -> HappyAbsSyn
happyReduction_419
happyReduction_419 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_419 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap106
happyOut106 HappyAbsSyn
happy_x_1 of { (HappyWrap106 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn108
		 (CExpr
happy_var_1
	)}

happyReduce_420 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_420 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_420 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 101# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_420
happyReduction_420 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_420 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_2 of { (HappyWrap86 happy_var_2 :: CDecl
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap108
happyOut108 HappyAbsSyn
happy_x_4 of { (HappyWrap108 happy_var_4 :: CExpr
happy_var_4) -> 
	( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> CExpr -> NodeInfo -> CExpr
forall a. CDeclaration a -> CExpression a -> a -> CExpression a
CCast CDecl
happy_var_2 CExpr
happy_var_4)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn108 CExpr
r))

happyReduce_421 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_421 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_421 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  102# HappyAbsSyn -> HappyAbsSyn
happyReduction_421
happyReduction_421 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_421 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap108
happyOut108 HappyAbsSyn
happy_x_1 of { (HappyWrap108 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn109
		 (CExpr
happy_var_1
	)}

happyReduce_422 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_422 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_422 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 102# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_422
happyReduction_422 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_422 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap109
happyOut109 HappyAbsSyn
happy_x_1 of { (HappyWrap109 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap108
happyOut108 HappyAbsSyn
happy_x_3 of { (HappyWrap108 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CMulOp CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn109 CExpr
r))

happyReduce_423 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_423 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_423 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 102# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_423
happyReduction_423 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_423 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap109
happyOut109 HappyAbsSyn
happy_x_1 of { (HappyWrap109 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap108
happyOut108 HappyAbsSyn
happy_x_3 of { (HappyWrap108 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CDivOp CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn109 CExpr
r))

happyReduce_424 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_424 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_424 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 102# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_424
happyReduction_424 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_424 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap109
happyOut109 HappyAbsSyn
happy_x_1 of { (HappyWrap109 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap108
happyOut108 HappyAbsSyn
happy_x_3 of { (HappyWrap108 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CRmdOp CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn109 CExpr
r))

happyReduce_425 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_425 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_425 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  103# HappyAbsSyn -> HappyAbsSyn
happyReduction_425
happyReduction_425 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_425 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap109
happyOut109 HappyAbsSyn
happy_x_1 of { (HappyWrap109 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn110
		 (CExpr
happy_var_1
	)}

happyReduce_426 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_426 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_426 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 103# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_426
happyReduction_426 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_426 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_1 of { (HappyWrap110 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap109
happyOut109 HappyAbsSyn
happy_x_3 of { (HappyWrap109 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CAddOp CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn110 CExpr
r))

happyReduce_427 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_427 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_427 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 103# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_427
happyReduction_427 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_427 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_1 of { (HappyWrap110 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap109
happyOut109 HappyAbsSyn
happy_x_3 of { (HappyWrap109 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CSubOp CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn110 CExpr
r))

happyReduce_428 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_428 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_428 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  104# HappyAbsSyn -> HappyAbsSyn
happyReduction_428
happyReduction_428 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_428 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_1 of { (HappyWrap110 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn111
		 (CExpr
happy_var_1
	)}

happyReduce_429 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_429 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_429 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 104# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_429
happyReduction_429 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_429 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap111
happyOut111 HappyAbsSyn
happy_x_1 of { (HappyWrap111 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_3 of { (HappyWrap110 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CShlOp CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn111 CExpr
r))

happyReduce_430 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_430 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_430 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 104# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_430
happyReduction_430 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_430 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap111
happyOut111 HappyAbsSyn
happy_x_1 of { (HappyWrap111 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_3 of { (HappyWrap110 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CShrOp CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn111 CExpr
r))

happyReduce_431 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_431 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_431 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  105# HappyAbsSyn -> HappyAbsSyn
happyReduction_431
happyReduction_431 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_431 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap111
happyOut111 HappyAbsSyn
happy_x_1 of { (HappyWrap111 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn112
		 (CExpr
happy_var_1
	)}

happyReduce_432 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_432 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_432 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 105# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_432
happyReduction_432 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_432 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_1 of { (HappyWrap112 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap111
happyOut111 HappyAbsSyn
happy_x_3 of { (HappyWrap111 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CLeOp CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn112 CExpr
r))

happyReduce_433 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_433 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_433 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 105# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_433
happyReduction_433 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_433 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_1 of { (HappyWrap112 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap111
happyOut111 HappyAbsSyn
happy_x_3 of { (HappyWrap111 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CGrOp CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn112 CExpr
r))

happyReduce_434 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_434 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_434 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 105# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_434
happyReduction_434 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_434 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_1 of { (HappyWrap112 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap111
happyOut111 HappyAbsSyn
happy_x_3 of { (HappyWrap111 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CLeqOp CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn112 CExpr
r))

happyReduce_435 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_435 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_435 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 105# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_435
happyReduction_435 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_435 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_1 of { (HappyWrap112 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap111
happyOut111 HappyAbsSyn
happy_x_3 of { (HappyWrap111 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CGeqOp CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn112 CExpr
r))

happyReduce_436 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_436 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_436 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  106# HappyAbsSyn -> HappyAbsSyn
happyReduction_436
happyReduction_436 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_436 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_1 of { (HappyWrap112 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn113
		 (CExpr
happy_var_1
	)}

happyReduce_437 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_437 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_437 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 106# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_437
happyReduction_437 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_437 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap113
happyOut113 HappyAbsSyn
happy_x_1 of { (HappyWrap113 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_3 of { (HappyWrap112 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CEqOp  CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn113 CExpr
r))

happyReduce_438 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_438 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_438 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 106# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_438
happyReduction_438 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_438 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap113
happyOut113 HappyAbsSyn
happy_x_1 of { (HappyWrap113 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_3 of { (HappyWrap112 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CNeqOp CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn113 CExpr
r))

happyReduce_439 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_439 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_439 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  107# HappyAbsSyn -> HappyAbsSyn
happyReduction_439
happyReduction_439 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_439 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap113
happyOut113 HappyAbsSyn
happy_x_1 of { (HappyWrap113 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn114
		 (CExpr
happy_var_1
	)}

happyReduce_440 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_440 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_440 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 107# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_440
happyReduction_440 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_440 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap114
happyOut114 HappyAbsSyn
happy_x_1 of { (HappyWrap114 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap113
happyOut113 HappyAbsSyn
happy_x_3 of { (HappyWrap113 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CAndOp CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn114 CExpr
r))

happyReduce_441 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_441 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_441 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  108# HappyAbsSyn -> HappyAbsSyn
happyReduction_441
happyReduction_441 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_441 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap114
happyOut114 HappyAbsSyn
happy_x_1 of { (HappyWrap114 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn115
		 (CExpr
happy_var_1
	)}

happyReduce_442 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_442 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_442 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 108# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_442
happyReduction_442 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_442 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap115
happyOut115 HappyAbsSyn
happy_x_1 of { (HappyWrap115 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap114
happyOut114 HappyAbsSyn
happy_x_3 of { (HappyWrap114 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CXorOp CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn115 CExpr
r))

happyReduce_443 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_443 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_443 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  109# HappyAbsSyn -> HappyAbsSyn
happyReduction_443
happyReduction_443 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_443 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap115
happyOut115 HappyAbsSyn
happy_x_1 of { (HappyWrap115 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn116
		 (CExpr
happy_var_1
	)}

happyReduce_444 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_444 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_444 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 109# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_444
happyReduction_444 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_444 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap116
happyOut116 HappyAbsSyn
happy_x_1 of { (HappyWrap116 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap115
happyOut115 HappyAbsSyn
happy_x_3 of { (HappyWrap115 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
COrOp CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn116 CExpr
r))

happyReduce_445 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_445 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_445 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  110# HappyAbsSyn -> HappyAbsSyn
happyReduction_445
happyReduction_445 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_445 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap116
happyOut116 HappyAbsSyn
happy_x_1 of { (HappyWrap116 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn117
		 (CExpr
happy_var_1
	)}

happyReduce_446 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_446 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_446 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 110# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_446
happyReduction_446 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_446 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap117
happyOut117 HappyAbsSyn
happy_x_1 of { (HappyWrap117 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap116
happyOut116 HappyAbsSyn
happy_x_3 of { (HappyWrap116 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CLndOp CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn117 CExpr
r))

happyReduce_447 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_447 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_447 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  111# HappyAbsSyn -> HappyAbsSyn
happyReduction_447
happyReduction_447 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_447 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap117
happyOut117 HappyAbsSyn
happy_x_1 of { (HappyWrap117 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn118
		 (CExpr
happy_var_1
	)}

happyReduce_448 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_448 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_448 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 111# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_448
happyReduction_448 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_448 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap118
happyOut118 HappyAbsSyn
happy_x_1 of { (HappyWrap118 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap117
happyOut117 HappyAbsSyn
happy_x_3 of { (HappyWrap117 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CLorOp CExpr
happy_var_1 CExpr
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn118 CExpr
r))

happyReduce_449 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_449 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_449 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  112# HappyAbsSyn -> HappyAbsSyn
happyReduction_449
happyReduction_449 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_449 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap118
happyOut118 HappyAbsSyn
happy_x_1 of { (HappyWrap118 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn119
		 (CExpr
happy_var_1
	)}

happyReduce_450 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_450 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_450 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 112# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_450
happyReduction_450 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_450 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap118
happyOut118 HappyAbsSyn
happy_x_1 of { (HappyWrap118 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_3 of { (HappyWrap122 happy_var_3 :: CExpr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap119
happyOut119 HappyAbsSyn
happy_x_5 of { (HappyWrap119 happy_var_5 :: CExpr
happy_var_5) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> Maybe CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CExpression a
-> Maybe (CExpression a) -> CExpression a -> a -> CExpression a
CCond CExpr
happy_var_1 (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_3) CExpr
happy_var_5)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn119 CExpr
r))

happyReduce_451 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_451 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_451 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 112# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_451
happyReduction_451 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_451 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap118
happyOut118 HappyAbsSyn
happy_x_1 of { (HappyWrap118 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap119
happyOut119 HappyAbsSyn
happy_x_4 of { (HappyWrap119 happy_var_4 :: CExpr
happy_var_4) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> Maybe CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CExpression a
-> Maybe (CExpression a) -> CExpression a -> a -> CExpression a
CCond CExpr
happy_var_1 Maybe CExpr
forall k1. Maybe k1
Nothing CExpr
happy_var_4)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn119 CExpr
r))

happyReduce_452 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_452 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_452 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  113# HappyAbsSyn -> HappyAbsSyn
happyReduction_452
happyReduction_452 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_452 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap119
happyOut119 HappyAbsSyn
happy_x_1 of { (HappyWrap119 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn120
		 (CExpr
happy_var_1
	)}

happyReduce_453 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_453 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_453 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 113# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_453
happyReduction_453 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_453 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap106
happyOut106 HappyAbsSyn
happy_x_1 of { (HappyWrap106 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_2 of { (HappyWrap121 happy_var_2 :: Located CAssignOp
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_3 of { (HappyWrap120 happy_var_3 :: CExpr
happy_var_3) -> 
	( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CAssignOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CAssignOp -> CExpression a -> CExpression a -> a -> CExpression a
CAssign (Located CAssignOp -> CAssignOp
forall a. Located a -> a
unL Located CAssignOp
happy_var_2) CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn120 CExpr
r))

happyReduce_454 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_454 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_454 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  114# HappyAbsSyn -> HappyAbsSyn
happyReduction_454
happyReduction_454 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_454 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn121
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CAssignOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_455 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_455 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_455 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  114# HappyAbsSyn -> HappyAbsSyn
happyReduction_455
happyReduction_455 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_455 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn121
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CMulAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_456 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_456 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_456 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  114# HappyAbsSyn -> HappyAbsSyn
happyReduction_456
happyReduction_456 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_456 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn121
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CDivAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_457 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_457 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_457 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  114# HappyAbsSyn -> HappyAbsSyn
happyReduction_457
happyReduction_457 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_457 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn121
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CRmdAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_458 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_458 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_458 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  114# HappyAbsSyn -> HappyAbsSyn
happyReduction_458
happyReduction_458 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_458 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn121
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CAddAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_459 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_459 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_459 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  114# HappyAbsSyn -> HappyAbsSyn
happyReduction_459
happyReduction_459 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_459 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn121
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CSubAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_460 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_460 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_460 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  114# HappyAbsSyn -> HappyAbsSyn
happyReduction_460
happyReduction_460 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_460 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn121
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CShlAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_461 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_461 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_461 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  114# HappyAbsSyn -> HappyAbsSyn
happyReduction_461
happyReduction_461 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_461 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn121
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CShrAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_462 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_462 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_462 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  114# HappyAbsSyn -> HappyAbsSyn
happyReduction_462
happyReduction_462 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_462 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn121
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CAndAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_463 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_463 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_463 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  114# HappyAbsSyn -> HappyAbsSyn
happyReduction_463
happyReduction_463 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_463 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn121
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CXorAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_464 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_464 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_464 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  114# HappyAbsSyn -> HappyAbsSyn
happyReduction_464
happyReduction_464 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_464 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn121
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
COrAssOp  (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_465 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_465 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_465 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  115# HappyAbsSyn -> HappyAbsSyn
happyReduction_465
happyReduction_465 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_465 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_1 of { (HappyWrap120 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn122
		 (CExpr
happy_var_1
	)}

happyReduce_466 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_466 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_466 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 115# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_466
happyReduction_466 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_466 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_1 of { (HappyWrap120 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_3 of { (HappyWrap123 happy_var_3 :: Reversed [CExpr]
happy_var_3) -> 
	( let es :: [CExpr]
es = Reversed [CExpr] -> [CExpr]
forall a. Reversed [a] -> [a]
reverse Reversed [CExpr]
happy_var_3 in [CExpr] -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CExpr]
es ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ [CExpr] -> NodeInfo -> CExpr
forall a. [CExpression a] -> a -> CExpression a
CComma (CExpr
happy_var_1CExpr -> [CExpr] -> [CExpr]
forall k1. k1 -> [k1] -> [k1]
:[CExpr]
es))}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn122 CExpr
r))

happyReduce_467 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_467 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_467 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  116# HappyAbsSyn -> HappyAbsSyn
happyReduction_467
happyReduction_467 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_467 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_1 of { (HappyWrap120 happy_var_1 :: CExpr
happy_var_1) -> 
	Reversed [CExpr] -> HappyAbsSyn
happyIn123
		 (CExpr -> Reversed [CExpr]
forall a. a -> Reversed [a]
singleton CExpr
happy_var_1
	)}

happyReduce_468 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_468 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_468 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  116# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_468
happyReduction_468 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_468 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_1 of { (HappyWrap123 happy_var_1 :: Reversed [CExpr]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_3 of { (HappyWrap120 happy_var_3 :: CExpr
happy_var_3) -> 
	Reversed [CExpr] -> HappyAbsSyn
happyIn123
		 (Reversed [CExpr]
happy_var_1 Reversed [CExpr] -> CExpr -> Reversed [CExpr]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CExpr
happy_var_3
	)}}

happyReduce_469 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_469 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_469 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  117# HappyAbsSyn
happyReduction_469
happyReduction_469 :: HappyAbsSyn
happyReduction_469  =  Maybe CExpr -> HappyAbsSyn
happyIn124
		 (Maybe CExpr
forall k1. Maybe k1
Nothing
	)

happyReduce_470 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_470 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_470 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  117# HappyAbsSyn -> HappyAbsSyn
happyReduction_470
happyReduction_470 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_470 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_1 of { (HappyWrap122 happy_var_1 :: CExpr
happy_var_1) -> 
	Maybe CExpr -> HappyAbsSyn
happyIn124
		 (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_1
	)}

happyReduce_471 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_471 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_471 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  118# HappyAbsSyn
happyReduction_471
happyReduction_471 :: HappyAbsSyn
happyReduction_471  =  Maybe CExpr -> HappyAbsSyn
happyIn125
		 (Maybe CExpr
forall k1. Maybe k1
Nothing
	)

happyReduce_472 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_472 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_472 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  118# HappyAbsSyn -> HappyAbsSyn
happyReduction_472
happyReduction_472 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_472 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_1 of { (HappyWrap120 happy_var_1 :: CExpr
happy_var_1) -> 
	Maybe CExpr -> HappyAbsSyn
happyIn125
		 (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_1
	)}

happyReduce_473 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_473 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_473 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  119# HappyAbsSyn -> HappyAbsSyn
happyReduction_473
happyReduction_473 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_473 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap119
happyOut119 HappyAbsSyn
happy_x_1 of { (HappyWrap119 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn126
		 (CExpr
happy_var_1
	)}

happyReduce_474 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_474 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_474 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 120# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_474
happyReduction_474 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_474 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CConst -> (CConst -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CConst) -> P CConst
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CConst) -> P CConst)
-> (NodeInfo -> CConst) -> P CConst
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokILit _ i :: CInteger
i -> CInteger -> NodeInfo -> CConst
forall a. CInteger -> a -> CConstant a
CIntConst CInteger
i)})
	) (\r :: CConst
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CConst -> HappyAbsSyn
happyIn127 CConst
r))

happyReduce_475 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_475 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_475 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 120# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_475
happyReduction_475 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_475 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CConst -> (CConst -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CConst) -> P CConst
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CConst) -> P CConst)
-> (NodeInfo -> CConst) -> P CConst
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokCLit _ c :: CChar
c -> CChar -> NodeInfo -> CConst
forall a. CChar -> a -> CConstant a
CCharConst CChar
c)})
	) (\r :: CConst
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CConst -> HappyAbsSyn
happyIn127 CConst
r))

happyReduce_476 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_476 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_476 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 120# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_476
happyReduction_476 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_476 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CConst -> (CConst -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CConst) -> P CConst
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CConst) -> P CConst)
-> (NodeInfo -> CConst) -> P CConst
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokFLit _ f :: CFloat
f -> CFloat -> NodeInfo -> CConst
forall a. CFloat -> a -> CConstant a
CFloatConst CFloat
f)})
	) (\r :: CConst
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CConst -> HappyAbsSyn
happyIn127 CConst
r))

happyReduce_477 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_477 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_477 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 121# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_477
happyReduction_477 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_477 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStrLit -> (CStrLit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> CStrLit) -> P CStrLit
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStrLit) -> P CStrLit)
-> (NodeInfo -> CStrLit) -> P CStrLit
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokSLit _ s :: CString
s -> CString -> NodeInfo -> CStrLit
forall a. CString -> a -> CStringLiteral a
CStrLit CString
s)})
	) (\r :: CStrLit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStrLit -> HappyAbsSyn
happyIn128 CStrLit
r))

happyReduce_478 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_478 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_478 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 121# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_478
happyReduction_478 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_478 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStrLit -> (CStrLit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap129
happyOut129 HappyAbsSyn
happy_x_2 of { (HappyWrap129 happy_var_2 :: Reversed [CString]
happy_var_2) -> 
	( CToken -> (NodeInfo -> CStrLit) -> P CStrLit
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStrLit) -> P CStrLit)
-> (NodeInfo -> CStrLit) -> P CStrLit
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokSLit _ s :: CString
s -> CString -> NodeInfo -> CStrLit
forall a. CString -> a -> CStringLiteral a
CStrLit ([CString] -> CString
concatCStrings (CString
s CString -> [CString] -> [CString]
forall k1. k1 -> [k1] -> [k1]
: Reversed [CString] -> [CString]
forall a. Reversed [a] -> [a]
reverse Reversed [CString]
happy_var_2)))}})
	) (\r :: CStrLit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStrLit -> HappyAbsSyn
happyIn128 CStrLit
r))

happyReduce_479 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_479 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_479 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  122# HappyAbsSyn -> HappyAbsSyn
happyReduction_479
happyReduction_479 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_479 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Reversed [CString] -> HappyAbsSyn
happyIn129
		 (case CToken
happy_var_1 of CTokSLit _ s :: CString
s -> CString -> Reversed [CString]
forall a. a -> Reversed [a]
singleton CString
s
	)}

happyReduce_480 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_480 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_480 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  122# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_480
happyReduction_480 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_480 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap129
happyOut129 HappyAbsSyn
happy_x_1 of { (HappyWrap129 happy_var_1 :: Reversed [CString]
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	Reversed [CString] -> HappyAbsSyn
happyIn129
		 (case CToken
happy_var_2 of CTokSLit _ s :: CString
s -> Reversed [CString]
happy_var_1 Reversed [CString] -> CString -> Reversed [CString]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CString
s
	)}}

happyReduce_481 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_481 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_481 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  123# HappyAbsSyn -> HappyAbsSyn
happyReduction_481
happyReduction_481 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_481 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokClangC _ (ClangCVersionTok happy_var_1 :: ClangCVersion
happy_var_1)) -> 
	ClangCVersion -> HappyAbsSyn
happyIn130
		 (ClangCVersion
happy_var_1
	)}

happyReduce_482 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_482 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_482 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  124# HappyAbsSyn -> HappyAbsSyn
happyReduction_482
happyReduction_482 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_482 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent  _ happy_var_1 :: Ident
happy_var_1) -> 
	Ident -> HappyAbsSyn
happyIn131
		 (Ident
happy_var_1
	)}

happyReduce_483 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_483 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_483 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  124# HappyAbsSyn -> HappyAbsSyn
happyReduction_483
happyReduction_483 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_483 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent _ happy_var_1 :: Ident
happy_var_1) -> 
	Ident -> HappyAbsSyn
happyIn131
		 (Ident
happy_var_1
	)}

happyReduce_484 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_484 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_484 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  125# HappyAbsSyn
happyReduction_484
happyReduction_484 :: HappyAbsSyn
happyReduction_484  =  [CAttr] -> HappyAbsSyn
happyIn132
		 ([]
	)

happyReduce_485 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_485 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_485 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  125# HappyAbsSyn -> HappyAbsSyn
happyReduction_485
happyReduction_485 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_485 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_1 of { (HappyWrap133 happy_var_1 :: [CAttr]
happy_var_1) -> 
	[CAttr] -> HappyAbsSyn
happyIn132
		 ([CAttr]
happy_var_1
	)}

happyReduce_486 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_486 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_486 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  126# HappyAbsSyn -> HappyAbsSyn
happyReduction_486
happyReduction_486 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_486 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_1 of { (HappyWrap134 happy_var_1 :: [CAttr]
happy_var_1) -> 
	[CAttr] -> HappyAbsSyn
happyIn133
		 ([CAttr]
happy_var_1
	)}

happyReduce_487 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_487 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_487 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  126# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_487
happyReduction_487 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_487 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_1 of { (HappyWrap133 happy_var_1 :: [CAttr]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 happy_var_2 :: [CAttr]
happy_var_2) -> 
	[CAttr] -> HappyAbsSyn
happyIn133
		 ([CAttr]
happy_var_1 [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
happy_var_2
	)}}

happyReduce_488 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_488 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_488 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 6# 127# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_488
happyReduction_488 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_488 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap135
happyOut135 HappyAbsSyn
happy_x_4 of { (HappyWrap135 happy_var_4 :: Reversed [CAttr]
happy_var_4) -> 
	[CAttr] -> HappyAbsSyn
happyIn134
		 (Reversed [CAttr] -> [CAttr]
forall a. Reversed [a] -> [a]
reverse Reversed [CAttr]
happy_var_4
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}

happyReduce_489 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_489 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_489 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  128# HappyAbsSyn -> HappyAbsSyn
happyReduction_489
happyReduction_489 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_489 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap136
happyOut136 HappyAbsSyn
happy_x_1 of { (HappyWrap136 happy_var_1 :: Maybe CAttr
happy_var_1) -> 
	Reversed [CAttr] -> HappyAbsSyn
happyIn135
		 (case Maybe CAttr
happy_var_1 of Nothing -> Reversed [CAttr]
forall a. Reversed [a]
empty; Just attr :: CAttr
attr -> CAttr -> Reversed [CAttr]
forall a. a -> Reversed [a]
singleton CAttr
attr
	)}

happyReduce_490 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_490 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_490 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  128# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_490
happyReduction_490 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_490 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap135
happyOut135 HappyAbsSyn
happy_x_1 of { (HappyWrap135 happy_var_1 :: Reversed [CAttr]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap136
happyOut136 HappyAbsSyn
happy_x_3 of { (HappyWrap136 happy_var_3 :: Maybe CAttr
happy_var_3) -> 
	Reversed [CAttr] -> HappyAbsSyn
happyIn135
		 (((Reversed [CAttr] -> Reversed [CAttr])
-> (CAttr -> Reversed [CAttr] -> Reversed [CAttr])
-> Maybe CAttr
-> Reversed [CAttr]
-> Reversed [CAttr]
forall b a. b -> (a -> b) -> Maybe a -> b
maybe Reversed [CAttr] -> Reversed [CAttr]
forall a. a -> a
id ((Reversed [CAttr] -> CAttr -> Reversed [CAttr])
-> CAttr -> Reversed [CAttr] -> Reversed [CAttr]
forall a b c. (a -> b -> c) -> b -> a -> c
flip Reversed [CAttr] -> CAttr -> Reversed [CAttr]
forall a. Reversed [a] -> a -> Reversed [a]
snoc) Maybe CAttr
happy_var_3) Reversed [CAttr]
happy_var_1
	)}}

happyReduce_491 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_491 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_491 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  129# HappyAbsSyn
happyReduction_491
happyReduction_491 :: HappyAbsSyn
happyReduction_491  =  Maybe CAttr -> HappyAbsSyn
happyIn136
		 (Maybe CAttr
forall k1. Maybe k1
Nothing
	)

happyReduce_492 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_492 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_492 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 129# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_492
happyReduction_492 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_492 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Maybe CAttr) -> (Maybe CAttr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent  _ happy_var_1 :: Ident
happy_var_1) -> 
	( Ident -> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> Maybe CAttr) -> P (Maybe CAttr))
-> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall a b. (a -> b) -> a -> b
$ CAttr -> Maybe CAttr
forall k1. k1 -> Maybe k1
Just (CAttr -> Maybe CAttr)
-> (NodeInfo -> CAttr) -> NodeInfo -> Maybe CAttr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ident -> [CExpr] -> NodeInfo -> CAttr
forall a. Ident -> [CExpression a] -> a -> CAttribute a
CAttr Ident
happy_var_1  [])})
	) (\r :: Maybe CAttr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Maybe CAttr -> HappyAbsSyn
happyIn136 Maybe CAttr
r))

happyReduce_493 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_493 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_493 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 129# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_493
happyReduction_493 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_493 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Maybe CAttr) -> (Maybe CAttr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> Maybe CAttr) -> P (Maybe CAttr))
-> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall a b. (a -> b) -> a -> b
$ CAttr -> Maybe CAttr
forall k1. k1 -> Maybe k1
Just (CAttr -> Maybe CAttr)
-> (NodeInfo -> CAttr) -> NodeInfo -> Maybe CAttr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ident -> [CExpr] -> NodeInfo -> CAttr
forall a. Ident -> [CExpression a] -> a -> CAttribute a
CAttr ([Char] -> Ident
internalIdent "const") [])})
	) (\r :: Maybe CAttr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Maybe CAttr -> HappyAbsSyn
happyIn136 Maybe CAttr
r))

happyReduce_494 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_494 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_494 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 129# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_494
happyReduction_494 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_494 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Maybe CAttr) -> (Maybe CAttr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent  _ happy_var_1 :: Ident
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap137
happyOut137 HappyAbsSyn
happy_x_3 of { (HappyWrap137 happy_var_3 :: Reversed [CExpr]
happy_var_3) -> 
	( Ident -> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> Maybe CAttr) -> P (Maybe CAttr))
-> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall a b. (a -> b) -> a -> b
$ CAttr -> Maybe CAttr
forall k1. k1 -> Maybe k1
Just (CAttr -> Maybe CAttr)
-> (NodeInfo -> CAttr) -> NodeInfo -> Maybe CAttr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ident -> [CExpr] -> NodeInfo -> CAttr
forall a. Ident -> [CExpression a] -> a -> CAttribute a
CAttr Ident
happy_var_1 (Reversed [CExpr] -> [CExpr]
forall a. Reversed [a] -> [a]
reverse Reversed [CExpr]
happy_var_3))}})
	) (\r :: Maybe CAttr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Maybe CAttr -> HappyAbsSyn
happyIn136 Maybe CAttr
r))

happyReduce_495 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_495 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_495 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 129# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_495
happyReduction_495 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_495 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Maybe CAttr) -> (Maybe CAttr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent  _ happy_var_1 :: Ident
happy_var_1) -> 
	( Ident -> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> Maybe CAttr) -> P (Maybe CAttr))
-> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall a b. (a -> b) -> a -> b
$ CAttr -> Maybe CAttr
forall k1. k1 -> Maybe k1
Just (CAttr -> Maybe CAttr)
-> (NodeInfo -> CAttr) -> NodeInfo -> Maybe CAttr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ident -> [CExpr] -> NodeInfo -> CAttr
forall a. Ident -> [CExpression a] -> a -> CAttribute a
CAttr Ident
happy_var_1 [])})
	) (\r :: Maybe CAttr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Maybe CAttr -> HappyAbsSyn
happyIn136 Maybe CAttr
r))

happyReduce_496 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_496 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_496 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  130# HappyAbsSyn -> HappyAbsSyn
happyReduction_496
happyReduction_496 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_496 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_1 of { (HappyWrap126 happy_var_1 :: CExpr
happy_var_1) -> 
	Reversed [CExpr] -> HappyAbsSyn
happyIn137
		 (CExpr -> Reversed [CExpr]
forall a. a -> Reversed [a]
singleton CExpr
happy_var_1
	)}

happyReduce_497 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_497 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_497 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  130# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p p. p -> p -> p -> HappyAbsSyn
happyReduction_497
happyReduction_497 :: p -> p -> p -> HappyAbsSyn
happyReduction_497 happy_x_3 :: p
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  Reversed [CExpr] -> HappyAbsSyn
happyIn137
		 ([CExpr] -> Reversed [CExpr]
forall a. a -> Reversed a
Reversed []
	)

happyReduce_498 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_498 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_498 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  130# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p p. p -> p -> p -> HappyAbsSyn
happyReduction_498
happyReduction_498 :: p -> p -> p -> HappyAbsSyn
happyReduction_498 happy_x_3 :: p
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  Reversed [CExpr] -> HappyAbsSyn
happyIn137
		 ([CExpr] -> Reversed [CExpr]
forall a. a -> Reversed a
Reversed []
	)

happyReduce_499 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_499 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_499 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  130# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_499
happyReduction_499 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_499 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap137
happyOut137 HappyAbsSyn
happy_x_1 of { (HappyWrap137 happy_var_1 :: Reversed [CExpr]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_3 of { (HappyWrap126 happy_var_3 :: CExpr
happy_var_3) -> 
	Reversed [CExpr] -> HappyAbsSyn
happyIn137
		 (Reversed [CExpr]
happy_var_1 Reversed [CExpr] -> CExpr -> Reversed [CExpr]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CExpr
happy_var_3
	)}}

happyReduce_500 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_500 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_500 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 5# 130# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_500
happyReduction_500 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_500 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap137
happyOut137 HappyAbsSyn
happy_x_1 of { (HappyWrap137 happy_var_1 :: Reversed [CExpr]
happy_var_1) -> 
	Reversed [CExpr] -> HappyAbsSyn
happyIn137
		 (Reversed [CExpr]
happy_var_1
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}

happyReduce_501 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_501 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_501 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 5# 130# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_501
happyReduction_501 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_501 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap137
happyOut137 HappyAbsSyn
happy_x_1 of { (HappyWrap137 happy_var_1 :: Reversed [CExpr]
happy_var_1) -> 
	Reversed [CExpr] -> HappyAbsSyn
happyIn137
		 (Reversed [CExpr]
happy_var_1
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}

happyNewToken :: Int# -> Happy_IntList -> HappyStk HappyAbsSyn -> P HappyAbsSyn
happyNewToken action :: Int#
action sts :: Happy_IntList
sts stk :: HappyStk HappyAbsSyn
stk
	= (CToken -> P HappyAbsSyn) -> P HappyAbsSyn
forall a. (CToken -> P a) -> P a
lexC(\tk :: CToken
tk -> 
	let cont :: Int# -> P HappyAbsSyn
cont i :: Int#
i = Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyDoAction Int#
i CToken
tk Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk in
	case CToken
tk of {
	CTokEof -> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyDoAction 123# CToken
tk Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk;
	CTokLParen	_ -> Int# -> P HappyAbsSyn
cont 1#;
	CTokRParen	_ -> Int# -> P HappyAbsSyn
cont 2#;
	CTokLBracket	_ -> Int# -> P HappyAbsSyn
cont 3#;
	CTokRBracket	_ -> Int# -> P HappyAbsSyn
cont 4#;
	CTokArrow	_ -> Int# -> P HappyAbsSyn
cont 5#;
	CTokDot	_ -> Int# -> P HappyAbsSyn
cont 6#;
	CTokExclam	_ -> Int# -> P HappyAbsSyn
cont 7#;
	CTokTilde	_ -> Int# -> P HappyAbsSyn
cont 8#;
	CTokInc	_ -> Int# -> P HappyAbsSyn
cont 9#;
	CTokDec	_ -> Int# -> P HappyAbsSyn
cont 10#;
	CTokPlus	_ -> Int# -> P HappyAbsSyn
cont 11#;
	CTokMinus	_ -> Int# -> P HappyAbsSyn
cont 12#;
	CTokStar	_ -> Int# -> P HappyAbsSyn
cont 13#;
	CTokSlash	_ -> Int# -> P HappyAbsSyn
cont 14#;
	CTokPercent	_ -> Int# -> P HappyAbsSyn
cont 15#;
	CTokAmper	_ -> Int# -> P HappyAbsSyn
cont 16#;
	CTokShiftL	_ -> Int# -> P HappyAbsSyn
cont 17#;
	CTokShiftR	_ -> Int# -> P HappyAbsSyn
cont 18#;
	CTokLess	_ -> Int# -> P HappyAbsSyn
cont 19#;
	CTokLessEq	_ -> Int# -> P HappyAbsSyn
cont 20#;
	CTokHigh	_ -> Int# -> P HappyAbsSyn
cont 21#;
	CTokHighEq	_ -> Int# -> P HappyAbsSyn
cont 22#;
	CTokEqual	_ -> Int# -> P HappyAbsSyn
cont 23#;
	CTokUnequal	_ -> Int# -> P HappyAbsSyn
cont 24#;
	CTokHat	_ -> Int# -> P HappyAbsSyn
cont 25#;
	CTokBar	_ -> Int# -> P HappyAbsSyn
cont 26#;
	CTokAnd	_ -> Int# -> P HappyAbsSyn
cont 27#;
	CTokOr	_ -> Int# -> P HappyAbsSyn
cont 28#;
	CTokQuest	_ -> Int# -> P HappyAbsSyn
cont 29#;
	CTokColon	_ -> Int# -> P HappyAbsSyn
cont 30#;
	CTokAssign	_ -> Int# -> P HappyAbsSyn
cont 31#;
	CTokPlusAss	_ -> Int# -> P HappyAbsSyn
cont 32#;
	CTokMinusAss	_ -> Int# -> P HappyAbsSyn
cont 33#;
	CTokStarAss	_ -> Int# -> P HappyAbsSyn
cont 34#;
	CTokSlashAss	_ -> Int# -> P HappyAbsSyn
cont 35#;
	CTokPercAss	_ -> Int# -> P HappyAbsSyn
cont 36#;
	CTokAmpAss	_ -> Int# -> P HappyAbsSyn
cont 37#;
	CTokHatAss	_ -> Int# -> P HappyAbsSyn
cont 38#;
	CTokBarAss	_ -> Int# -> P HappyAbsSyn
cont 39#;
	CTokSLAss	_ -> Int# -> P HappyAbsSyn
cont 40#;
	CTokSRAss	_ -> Int# -> P HappyAbsSyn
cont 41#;
	CTokComma	_ -> Int# -> P HappyAbsSyn
cont 42#;
	CTokSemic	_ -> Int# -> P HappyAbsSyn
cont 43#;
	CTokLBrace	_ -> Int# -> P HappyAbsSyn
cont 44#;
	CTokRBrace	_ -> Int# -> P HappyAbsSyn
cont 45#;
	CTokEllipsis	_ -> Int# -> P HappyAbsSyn
cont 46#;
	CTokAlignof	_ -> Int# -> P HappyAbsSyn
cont 47#;
	CTokAlignas   _ -> Int# -> P HappyAbsSyn
cont 48#;
	CTokAtomic    _ -> Int# -> P HappyAbsSyn
cont 49#;
	CTokAsm	_ -> Int# -> P HappyAbsSyn
cont 50#;
	CTokAuto	_ -> Int# -> P HappyAbsSyn
cont 51#;
	CTokBreak	_ -> Int# -> P HappyAbsSyn
cont 52#;
	CTokBool	_ -> Int# -> P HappyAbsSyn
cont 53#;
	CTokCase	_ -> Int# -> P HappyAbsSyn
cont 54#;
	CTokChar	_ -> Int# -> P HappyAbsSyn
cont 55#;
	CTokConst	_ -> Int# -> P HappyAbsSyn
cont 56#;
	CTokContinue	_ -> Int# -> P HappyAbsSyn
cont 57#;
	CTokComplex	_ -> Int# -> P HappyAbsSyn
cont 58#;
	CTokDefault	_ -> Int# -> P HappyAbsSyn
cont 59#;
	CTokDo	_ -> Int# -> P HappyAbsSyn
cont 60#;
	CTokDouble	_ -> Int# -> P HappyAbsSyn
cont 61#;
	CTokElse	_ -> Int# -> P HappyAbsSyn
cont 62#;
	CTokEnum	_ -> Int# -> P HappyAbsSyn
cont 63#;
	CTokExtern	_ -> Int# -> P HappyAbsSyn
cont 64#;
	CTokFloat	_ -> Int# -> P HappyAbsSyn
cont 65#;
	CTokFloatN  32 False _ -> Int# -> P HappyAbsSyn
cont 66#;
	CTokFloatN  32 True _ -> Int# -> P HappyAbsSyn
cont 67#;
	CTokFloatN  64 False _ -> Int# -> P HappyAbsSyn
cont 68#;
	CTokFloatN  64 True _ -> Int# -> P HappyAbsSyn
cont 69#;
	CTokFloatN 128 False _ -> Int# -> P HappyAbsSyn
cont 70#;
	CTokFloatN 128 True _ -> Int# -> P HappyAbsSyn
cont 71#;
	CTokFloatN 128 False _ -> Int# -> P HappyAbsSyn
cont 72#;
	CTokFor	_ -> Int# -> P HappyAbsSyn
cont 73#;
	CTokGeneric   _ -> Int# -> P HappyAbsSyn
cont 74#;
	CTokGoto	_ -> Int# -> P HappyAbsSyn
cont 75#;
	CTokIf	_ -> Int# -> P HappyAbsSyn
cont 76#;
	CTokInline	_ -> Int# -> P HappyAbsSyn
cont 77#;
	CTokInt	_ -> Int# -> P HappyAbsSyn
cont 78#;
	CTokInt128    _ -> Int# -> P HappyAbsSyn
cont 79#;
	CTokLong	_ -> Int# -> P HappyAbsSyn
cont 80#;
	CTokLabel	_ -> Int# -> P HappyAbsSyn
cont 81#;
	CTokNoreturn  _ -> Int# -> P HappyAbsSyn
cont 82#;
	CTokNullable  _ -> Int# -> P HappyAbsSyn
cont 83#;
	CTokNonnull   _ -> Int# -> P HappyAbsSyn
cont 84#;
	CTokRegister	_ -> Int# -> P HappyAbsSyn
cont 85#;
	CTokRestrict	_ -> Int# -> P HappyAbsSyn
cont 86#;
	CTokReturn	_ -> Int# -> P HappyAbsSyn
cont 87#;
	CTokShort	_ -> Int# -> P HappyAbsSyn
cont 88#;
	CTokSigned	_ -> Int# -> P HappyAbsSyn
cont 89#;
	CTokSizeof	_ -> Int# -> P HappyAbsSyn
cont 90#;
	CTokStatic	_ -> Int# -> P HappyAbsSyn
cont 91#;
	CTokStaticAssert _ -> Int# -> P HappyAbsSyn
cont 92#;
	CTokStruct	_ -> Int# -> P HappyAbsSyn
cont 93#;
	CTokSwitch	_ -> Int# -> P HappyAbsSyn
cont 94#;
	CTokTypedef	_ -> Int# -> P HappyAbsSyn
cont 95#;
	CTokTypeof	_ -> Int# -> P HappyAbsSyn
cont 96#;
	CTokThread	_ -> Int# -> P HappyAbsSyn
cont 97#;
	CTokUnion	_ -> Int# -> P HappyAbsSyn
cont 98#;
	CTokUnsigned	_ -> Int# -> P HappyAbsSyn
cont 99#;
	CTokVoid	_ -> Int# -> P HappyAbsSyn
cont 100#;
	CTokVolatile	_ -> Int# -> P HappyAbsSyn
cont 101#;
	CTokWhile	_ -> Int# -> P HappyAbsSyn
cont 102#;
	CTokCLit   _ _ -> Int# -> P HappyAbsSyn
cont 103#;
	CTokILit   _ _ -> Int# -> P HappyAbsSyn
cont 104#;
	CTokFLit   _ _ -> Int# -> P HappyAbsSyn
cont 105#;
	CTokSLit   _ _ -> Int# -> P HappyAbsSyn
cont 106#;
	CTokIdent  _ happy_dollar_dollar :: Ident
happy_dollar_dollar -> Int# -> P HappyAbsSyn
cont 107#;
	CTokTyIdent _ happy_dollar_dollar :: Ident
happy_dollar_dollar -> Int# -> P HappyAbsSyn
cont 108#;
	CTokGnuC GnuCAttrTok _ -> Int# -> P HappyAbsSyn
cont 109#;
	CTokGnuC GnuCExtTok  _ -> Int# -> P HappyAbsSyn
cont 110#;
	CTokGnuC GnuCComplexReal _ -> Int# -> P HappyAbsSyn
cont 111#;
	CTokGnuC GnuCComplexImag _ -> Int# -> P HappyAbsSyn
cont 112#;
	CTokGnuC GnuCVaArg    _ -> Int# -> P HappyAbsSyn
cont 113#;
	CTokGnuC GnuCOffsetof _ -> Int# -> P HappyAbsSyn
cont 114#;
	CTokGnuC GnuCTyCompat _ -> Int# -> P HappyAbsSyn
cont 115#;
	CTokClangC _ ClangBuiltinConvertVector -> Int# -> P HappyAbsSyn
cont 116#;
	CTokClangC _ (ClangCVersionTok happy_dollar_dollar :: ClangCVersion
happy_dollar_dollar) -> Int# -> P HappyAbsSyn
cont 117#;
	CTokClKernel	_ -> Int# -> P HappyAbsSyn
cont 118#;
	CTokClRdOnly	_ -> Int# -> P HappyAbsSyn
cont 119#;
	CTokClWrOnly	_ -> Int# -> P HappyAbsSyn
cont 120#;
	CTokClGlobal	_ -> Int# -> P HappyAbsSyn
cont 121#;
	CTokClLocal	_ -> Int# -> P HappyAbsSyn
cont 122#;
	_ -> (CToken, [[Char]]) -> P HappyAbsSyn
forall a. (CToken, [[Char]]) -> P a
happyError' (CToken
tk, [])
	})

happyError_ :: [[Char]] -> Int# -> CToken -> P a
happyError_ explist :: [[Char]]
explist 123# tk :: CToken
tk = (CToken, [[Char]]) -> P a
forall a. (CToken, [[Char]]) -> P a
happyError' (CToken
tk, [[Char]]
explist)
happyError_ explist :: [[Char]]
explist _ tk :: CToken
tk = (CToken, [[Char]]) -> P a
forall a. (CToken, [[Char]]) -> P a
happyError' (CToken
tk, [[Char]]
explist)

happyThen :: () => P a -> (a -> P b) -> P b
happyThen :: P a -> (a -> P b) -> P b
happyThen = P a -> (a -> P b) -> P b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
happyReturn :: () => a -> P a
happyReturn :: a -> P a
happyReturn = (a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return)
happyParse :: () => Happy_GHC_Exts.Int# -> P (HappyAbsSyn )

happyNewToken :: () => Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )

happyDoAction :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )

happyReduceArr :: () => Happy_Data_Array.Array Int (Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ))

happyThen1 :: () => P a -> (a -> P b) -> P b
happyThen1 :: P a -> (a -> P b) -> P b
happyThen1 = P a -> (a -> P b) -> P b
forall a b. P a -> (a -> P b) -> P b
happyThen
happyReturn1 :: () => a -> P a
happyReturn1 :: a -> P a
happyReturn1 = a -> P a
forall a. a -> P a
happyReturn
happyError' :: () => ((CToken), [String]) -> P a
happyError' :: (CToken, [[Char]]) -> P a
happyError' tk :: (CToken, [[Char]])
tk = (\(tokens :: CToken
tokens, explist :: [[Char]]
explist) -> P a
forall a. P a
happyError) (CToken, [[Char]])
tk
translation_unit :: P CTranslUnit
translation_unit = P CTranslUnit
happySomeParser where
 happySomeParser :: P CTranslUnit
happySomeParser = P HappyAbsSyn -> (HappyAbsSyn -> P CTranslUnit) -> P CTranslUnit
forall a b. P a -> (a -> P b) -> P b
happyThen (Int# -> P HappyAbsSyn
happyParse 0#) (\x :: HappyAbsSyn
x -> CTranslUnit -> P CTranslUnit
forall a. a -> P a
happyReturn (let {(HappyWrap7 x' :: CTranslUnit
x') = HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
x} in CTranslUnit
x'))

external_declaration :: P CExtDecl
external_declaration = P CExtDecl
happySomeParser where
 happySomeParser :: P CExtDecl
happySomeParser = P HappyAbsSyn -> (HappyAbsSyn -> P CExtDecl) -> P CExtDecl
forall a b. P a -> (a -> P b) -> P b
happyThen (Int# -> P HappyAbsSyn
happyParse 1#) (\x :: HappyAbsSyn
x -> CExtDecl -> P CExtDecl
forall a. a -> P a
happyReturn (let {(HappyWrap9 x' :: CExtDecl
x') = HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
x} in CExtDecl
x'))

statement :: P CStat
statement = P CStat
happySomeParser where
 happySomeParser :: P CStat
happySomeParser = P HappyAbsSyn -> (HappyAbsSyn -> P CStat) -> P CStat
forall a b. P a -> (a -> P b) -> P b
happyThen (Int# -> P HappyAbsSyn
happyParse 2#) (\x :: HappyAbsSyn
x -> CStat -> P CStat
forall a. a -> P a
happyReturn (let {(HappyWrap12 x' :: CStat
x') = HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
x} in CStat
x'))

expression :: P CExpr
expression = P CExpr
happySomeParser where
 happySomeParser :: P CExpr
happySomeParser = P HappyAbsSyn -> (HappyAbsSyn -> P CExpr) -> P CExpr
forall a b. P a -> (a -> P b) -> P b
happyThen (Int# -> P HappyAbsSyn
happyParse 3#) (\x :: HappyAbsSyn
x -> CExpr -> P CExpr
forall a. a -> P a
happyReturn (let {(HappyWrap122 x' :: CExpr
x') = HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
x} in CExpr
x'))

happySeq :: a -> b -> b
happySeq = a -> b -> b
forall a b. a -> b -> b
happyDontSeq


--  sometimes it is neccessary to reverse an unreversed list
reverseList :: [a] -> Reversed [a]
reverseList :: [a] -> Reversed [a]
reverseList = [a] -> Reversed [a]
forall a. a -> Reversed a
Reversed ([a] -> Reversed [a]) -> ([a] -> [a]) -> [a] -> Reversed [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> [a]
forall a. [a] -> [a]
List.reverse

-- We occasionally need things to have a location when they don't naturally
-- have one built in as tokens and most AST elements do.
--
data Located a = L !a !Position

unL :: Located a -> a
unL :: Located a -> a
unL (L a :: a
a pos :: Position
pos) = a
a

instance Pos (Located a) where
  posOf :: Located a -> Position
posOf (L _ pos :: Position
pos) = Position
pos

-- FIXME: the next 3 inlines here increase the object file size by  70%
-- Check whether the speed win is worth it
{-# INLINE withNodeInfo #-}
withNodeInfo :: Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo :: node -> (NodeInfo -> a) -> P a
withNodeInfo node :: node
node mkAttrNode :: NodeInfo -> a
mkAttrNode = do
  Name
name <- P Name
getNewName
  CToken
lastTok <- P CToken
getSavedToken
  let firstPos :: Position
firstPos = node -> Position
forall a. Pos a => a -> Position
posOf node
node
  let attrs :: NodeInfo
attrs = Position -> PosLength -> Name -> NodeInfo
mkNodeInfo' Position
firstPos (CToken -> PosLength
posLenOfTok (CToken -> PosLength) -> CToken -> PosLength
forall a b. (a -> b) -> a -> b
$! CToken
lastTok) Name
name
  NodeInfo
attrs NodeInfo -> P a -> P a
forall a b. a -> b -> b
`seq` a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return (NodeInfo -> a
mkAttrNode NodeInfo
attrs)

{-# INLINE withLength #-}
withLength :: NodeInfo -> (NodeInfo -> a) -> P a
withLength :: NodeInfo -> (NodeInfo -> a) -> P a
withLength nodeinfo :: NodeInfo
nodeinfo mkAttrNode :: NodeInfo -> a
mkAttrNode = do
  CToken
lastTok <- P CToken
getSavedToken
  let firstPos :: Position
firstPos = NodeInfo -> Position
posOfNode NodeInfo
nodeinfo
  let attrs :: NodeInfo
attrs = Position -> PosLength -> Name -> NodeInfo
mkNodeInfo' Position
firstPos (CToken -> PosLength
posLenOfTok (CToken -> PosLength) -> CToken -> PosLength
forall a b. (a -> b) -> a -> b
$! CToken
lastTok)
              (Name -> (Name -> Name) -> Maybe Name -> Name
forall b a. b -> (a -> b) -> Maybe a -> b
maybe ([Char] -> Name
forall a. HasCallStack => [Char] -> a
error "nameOfNode") Name -> Name
forall a. a -> a
id (NodeInfo -> Maybe Name
nameOfNode NodeInfo
nodeinfo))
  NodeInfo
attrs NodeInfo -> P a -> P a
forall a b. a -> b -> b
`seq` a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return (NodeInfo -> a
mkAttrNode NodeInfo
attrs)

data CDeclrR = CDeclrR (Maybe Ident) (Reversed [CDerivedDeclr]) (Maybe CStrLit) [CAttr] NodeInfo
reverseDeclr :: CDeclrR -> CDeclr
reverseDeclr :: CDeclrR -> CDeclr
reverseDeclr (CDeclrR ide :: Maybe Ident
ide reversedDDs :: Reversed [CDerivedDeclarator NodeInfo]
reversedDDs asmname :: Maybe CStrLit
asmname cattrs :: [CAttr]
cattrs at :: NodeInfo
at)
    = Maybe Ident
-> [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclr
forall a.
Maybe Ident
-> [CDerivedDeclarator a]
-> Maybe (CStringLiteral a)
-> [CAttribute a]
-> a
-> CDeclarator a
CDeclr Maybe Ident
ide (Reversed [CDerivedDeclarator NodeInfo]
-> [CDerivedDeclarator NodeInfo]
forall a. Reversed [a] -> [a]
reverse Reversed [CDerivedDeclarator NodeInfo]
reversedDDs) Maybe CStrLit
asmname [CAttr]
cattrs NodeInfo
at
instance CNode (CDeclrR) where
    nodeInfo :: CDeclrR -> NodeInfo
nodeInfo (CDeclrR _ _ _ _ n :: NodeInfo
n) = NodeInfo
n
instance Pos (CDeclrR) where
    posOf :: CDeclrR -> Position
posOf (CDeclrR _ _ _ _ n :: NodeInfo
n) = NodeInfo -> Position
forall a. Pos a => a -> Position
posOf NodeInfo
n

{-# INLINE withAttribute #-}
withAttribute :: Pos node => node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute :: node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute node :: node
node cattrs :: [CAttr]
cattrs mkDeclrNode :: NodeInfo -> CDeclrR
mkDeclrNode = do
  Name
name <- P Name
getNewName
  let attrs :: NodeInfo
attrs = Position -> Name -> NodeInfo
mkNodeInfo (node -> Position
forall a. Pos a => a -> Position
posOf node
node) Name
name
  let newDeclr :: CDeclrR
newDeclr = [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
cattrs (CDeclrR -> CDeclrR) -> CDeclrR -> CDeclrR
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CDeclrR
mkDeclrNode NodeInfo
attrs
  NodeInfo
attrs NodeInfo -> P CDeclrR -> P CDeclrR
forall a b. a -> b -> b
`seq` CDeclrR
newDeclr CDeclrR -> P CDeclrR -> P CDeclrR
forall a b. a -> b -> b
`seq` CDeclrR -> P CDeclrR
forall (m :: * -> *) a. Monad m => a -> m a
return CDeclrR
newDeclr

-- postfixing variant
{-# INLINE withAttributePF #-}
withAttributePF :: Pos node => node -> [CAttr] -> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
withAttributePF :: node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF node :: node
node cattrs :: [CAttr]
cattrs mkDeclrCtor :: NodeInfo -> CDeclrR -> CDeclrR
mkDeclrCtor = do
  Name
name <- P Name
getNewName
  let attrs :: NodeInfo
attrs = Position -> Name -> NodeInfo
mkNodeInfo (node -> Position
forall a. Pos a => a -> Position
posOf node
node) Name
name
  let newDeclr :: CDeclrR -> CDeclrR
newDeclr = [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
cattrs (CDeclrR -> CDeclrR) -> (CDeclrR -> CDeclrR) -> CDeclrR -> CDeclrR
forall b c a. (b -> c) -> (a -> b) -> a -> c
. NodeInfo -> CDeclrR -> CDeclrR
mkDeclrCtor NodeInfo
attrs
  NodeInfo
attrs NodeInfo -> P (CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. a -> b -> b
`seq` CDeclrR -> CDeclrR
newDeclr (CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. a -> b -> b
`seq` (CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall (m :: * -> *) a. Monad m => a -> m a
return CDeclrR -> CDeclrR
newDeclr

-- add top level attributes for a declarator.
--
-- In the following example
--
-- > int declr1, __attribute__((a1)) * __attribute__((a2)) y() __asm__("$" "y") __attribute__((a3));
--
-- the attributes `a1' and `a3' are top-level attributes for y.
-- The (pseudo)-AST for the second declarator is
--
-- > CDeclr "y"
-- >        [CFunDeclr ..., CPtrDeclr __attribute__((a2)) ... ]
-- >        (asm "$y")
-- >        [__attribute__((a1)), __attribute__((a3)) ]
--
-- So assembler names and preceeding and trailing attributes are recorded in object declarator.
--
appendObjAttrs :: [CAttr] -> CDeclr -> CDeclr
appendObjAttrs :: [CAttr] -> CDeclr -> CDeclr
appendObjAttrs newAttrs :: [CAttr]
newAttrs (CDeclr ident :: Maybe Ident
ident indirections :: [CDerivedDeclarator NodeInfo]
indirections asmname :: Maybe CStrLit
asmname cAttrs :: [CAttr]
cAttrs at :: NodeInfo
at)
    = Maybe Ident
-> [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclr
forall a.
Maybe Ident
-> [CDerivedDeclarator a]
-> Maybe (CStringLiteral a)
-> [CAttribute a]
-> a
-> CDeclarator a
CDeclr Maybe Ident
ident [CDerivedDeclarator NodeInfo]
indirections Maybe CStrLit
asmname ([CAttr]
cAttrs [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
newAttrs) NodeInfo
at
appendObjAttrsR :: [CAttr] -> CDeclrR -> CDeclrR
appendObjAttrsR :: [CAttr] -> CDeclrR -> CDeclrR
appendObjAttrsR newAttrs :: [CAttr]
newAttrs (CDeclrR ident :: Maybe Ident
ident indirections :: Reversed [CDerivedDeclarator NodeInfo]
indirections asmname :: Maybe CStrLit
asmname cAttrs :: [CAttr]
cAttrs at :: NodeInfo
at)
    = Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident Reversed [CDerivedDeclarator NodeInfo]
indirections Maybe CStrLit
asmname ([CAttr]
cAttrs [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
newAttrs) NodeInfo
at

setAsmName :: Maybe CStrLit  -> CDeclrR -> P CDeclrR
setAsmName :: Maybe CStrLit -> CDeclrR -> P CDeclrR
setAsmName mAsmName :: Maybe CStrLit
mAsmName (CDeclrR ident :: Maybe Ident
ident indirections :: Reversed [CDerivedDeclarator NodeInfo]
indirections oldName :: Maybe CStrLit
oldName cattrs :: [CAttr]
cattrs at :: NodeInfo
at) =
    case Maybe CStrLit
-> Maybe CStrLit -> Either (CStrLit, CStrLit) (Maybe CStrLit)
forall b. Maybe b -> Maybe b -> Either (b, b) (Maybe b)
combineName Maybe CStrLit
mAsmName Maybe CStrLit
oldName of
        Left (n1 :: CStrLit
n1,n2 :: CStrLit
n2)       -> Position -> [[Char]] -> P CDeclrR
forall a. Position -> [[Char]] -> P a
failP (CStrLit -> Position
forall a. Pos a => a -> Position
posOf CStrLit
n2) ["Duplicate assembler name: ",CStrLit -> [Char]
forall a. CStringLiteral a -> [Char]
showName CStrLit
n1,CStrLit -> [Char]
forall a. CStringLiteral a -> [Char]
showName CStrLit
n2]
        Right newName :: Maybe CStrLit
newName      -> CDeclrR -> P CDeclrR
forall (m :: * -> *) a. Monad m => a -> m a
return (CDeclrR -> P CDeclrR) -> CDeclrR -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident Reversed [CDerivedDeclarator NodeInfo]
indirections Maybe CStrLit
newName [CAttr]
cattrs NodeInfo
at
  where
  combineName :: Maybe b -> Maybe b -> Either (b, b) (Maybe b)
combineName Nothing Nothing = Maybe b -> Either (b, b) (Maybe b)
forall a b. b -> Either a b
Right Maybe b
forall k1. Maybe k1
Nothing
  combineName Nothing oldname :: Maybe b
oldname@(Just _)  = Maybe b -> Either (b, b) (Maybe b)
forall a b. b -> Either a b
Right Maybe b
oldname
  combineName newname :: Maybe b
newname@(Just _) Nothing  = Maybe b -> Either (b, b) (Maybe b)
forall a b. b -> Either a b
Right Maybe b
newname
  combineName (Just n1 :: b
n1) (Just n2 :: b
n2) = (b, b) -> Either (b, b) (Maybe b)
forall a b. a -> Either a b
Left (b
n1,b
n2)
  showName :: CStringLiteral a -> [Char]
showName (CStrLit cstr :: CString
cstr _) = CString -> [Char]
forall a. Show a => a -> [Char]
show CString
cstr

withAsmNameAttrs :: (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs :: (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (mAsmName :: Maybe CStrLit
mAsmName, newAttrs :: [CAttr]
newAttrs) declr :: CDeclrR
declr = Maybe CStrLit -> CDeclrR -> P CDeclrR
setAsmName Maybe CStrLit
mAsmName ([CAttr] -> CDeclrR -> CDeclrR
appendObjAttrsR [CAttr]
newAttrs CDeclrR
declr)

appendDeclrAttrs :: [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs :: [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs newAttrs :: [CAttr]
newAttrs (CDeclrR ident :: Maybe Ident
ident (Reversed []) asmname :: Maybe CStrLit
asmname cattrs :: [CAttr]
cattrs at :: NodeInfo
at)
    = Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident Reversed [CDerivedDeclarator NodeInfo]
forall a. Reversed [a]
empty Maybe CStrLit
asmname ([CAttr]
cattrs [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
newAttrs) NodeInfo
at
appendDeclrAttrs newAttrs :: [CAttr]
newAttrs (CDeclrR ident :: Maybe Ident
ident (Reversed (x :: CDerivedDeclarator NodeInfo
x:xs :: [CDerivedDeclarator NodeInfo]
xs)) asmname :: Maybe CStrLit
asmname cattrs :: [CAttr]
cattrs at :: NodeInfo
at)
    = Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident ([CDerivedDeclarator NodeInfo]
-> Reversed [CDerivedDeclarator NodeInfo]
forall a. a -> Reversed a
Reversed (CDerivedDeclarator NodeInfo -> CDerivedDeclarator NodeInfo
appendAttrs CDerivedDeclarator NodeInfo
x CDerivedDeclarator NodeInfo
-> [CDerivedDeclarator NodeInfo] -> [CDerivedDeclarator NodeInfo]
forall k1. k1 -> [k1] -> [k1]
: [CDerivedDeclarator NodeInfo]
xs)) Maybe CStrLit
asmname [CAttr]
cattrs NodeInfo
at where
    appendAttrs :: CDerivedDeclarator NodeInfo -> CDerivedDeclarator NodeInfo
appendAttrs (CPtrDeclr typeQuals :: [CTypeQual]
typeQuals at :: NodeInfo
at)           = [CTypeQual] -> NodeInfo -> CDerivedDeclarator NodeInfo
forall a. [CTypeQualifier a] -> a -> CDerivedDeclarator a
CPtrDeclr ([CTypeQual]
typeQuals [CTypeQual] -> [CTypeQual] -> [CTypeQual]
forall a. [a] -> [a] -> [a]
++ (CAttr -> CTypeQual) -> [CAttr] -> [CTypeQual]
forall a b. (a -> b) -> [a] -> [b]
map CAttr -> CTypeQual
forall a. CAttribute a -> CTypeQualifier a
CAttrQual [CAttr]
newAttrs) NodeInfo
at
    appendAttrs (CArrDeclr typeQuals :: [CTypeQual]
typeQuals arraySize :: CArraySize NodeInfo
arraySize at :: NodeInfo
at) = [CTypeQual]
-> CArraySize NodeInfo -> NodeInfo -> CDerivedDeclarator NodeInfo
forall a.
[CTypeQualifier a] -> CArraySize a -> a -> CDerivedDeclarator a
CArrDeclr ([CTypeQual]
typeQuals [CTypeQual] -> [CTypeQual] -> [CTypeQual]
forall a. [a] -> [a] -> [a]
++ (CAttr -> CTypeQual) -> [CAttr] -> [CTypeQual]
forall a b. (a -> b) -> [a] -> [b]
map CAttr -> CTypeQual
forall a. CAttribute a -> CTypeQualifier a
CAttrQual [CAttr]
newAttrs) CArraySize NodeInfo
arraySize NodeInfo
at
    appendAttrs (CFunDeclr parameters :: Either [Ident] ([CDecl], Bool)
parameters cattrs :: [CAttr]
cattrs at :: NodeInfo
at)   = Either [Ident] ([CDecl], Bool)
-> [CAttr] -> NodeInfo -> CDerivedDeclarator NodeInfo
forall a.
Either [Ident] ([CDeclaration a], Bool)
-> [CAttribute a] -> a -> CDerivedDeclarator a
CFunDeclr Either [Ident] ([CDecl], Bool)
parameters ([CAttr]
cattrs [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
newAttrs) NodeInfo
at

ptrDeclr :: CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr :: CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr (CDeclrR ident :: Maybe Ident
ident derivedDeclrs :: Reversed [CDerivedDeclarator NodeInfo]
derivedDeclrs asmname :: Maybe CStrLit
asmname cattrs :: [CAttr]
cattrs dat :: NodeInfo
dat) tyquals :: [CTypeQual]
tyquals at :: NodeInfo
at
    = Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident (Reversed [CDerivedDeclarator NodeInfo]
derivedDeclrs Reversed [CDerivedDeclarator NodeInfo]
-> CDerivedDeclarator NodeInfo
-> Reversed [CDerivedDeclarator NodeInfo]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` [CTypeQual] -> NodeInfo -> CDerivedDeclarator NodeInfo
forall a. [CTypeQualifier a] -> a -> CDerivedDeclarator a
CPtrDeclr [CTypeQual]
tyquals NodeInfo
at) Maybe CStrLit
asmname [CAttr]
cattrs NodeInfo
dat
funDeclr :: CDeclrR -> (Either [Ident] ([CDecl],Bool)) -> [CAttr] -> NodeInfo -> CDeclrR
funDeclr :: CDeclrR
-> Either [Ident] ([CDecl], Bool) -> [CAttr] -> NodeInfo -> CDeclrR
funDeclr (CDeclrR ident :: Maybe Ident
ident derivedDeclrs :: Reversed [CDerivedDeclarator NodeInfo]
derivedDeclrs asmname :: Maybe CStrLit
asmname dcattrs :: [CAttr]
dcattrs dat :: NodeInfo
dat) params :: Either [Ident] ([CDecl], Bool)
params cattrs :: [CAttr]
cattrs at :: NodeInfo
at
    = Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident (Reversed [CDerivedDeclarator NodeInfo]
derivedDeclrs Reversed [CDerivedDeclarator NodeInfo]
-> CDerivedDeclarator NodeInfo
-> Reversed [CDerivedDeclarator NodeInfo]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` Either [Ident] ([CDecl], Bool)
-> [CAttr] -> NodeInfo -> CDerivedDeclarator NodeInfo
forall a.
Either [Ident] ([CDeclaration a], Bool)
-> [CAttribute a] -> a -> CDerivedDeclarator a
CFunDeclr Either [Ident] ([CDecl], Bool)
params [CAttr]
cattrs NodeInfo
at) Maybe CStrLit
asmname [CAttr]
dcattrs NodeInfo
dat
arrDeclr :: CDeclrR -> [CTypeQual] -> Bool -> Bool -> Maybe CExpr -> NodeInfo -> CDeclrR
arrDeclr :: CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr (CDeclrR ident :: Maybe Ident
ident derivedDeclrs :: Reversed [CDerivedDeclarator NodeInfo]
derivedDeclrs asmname :: Maybe CStrLit
asmname cattrs :: [CAttr]
cattrs dat :: NodeInfo
dat) tyquals :: [CTypeQual]
tyquals var_sized :: Bool
var_sized static_size :: Bool
static_size size_expr_opt :: Maybe CExpr
size_expr_opt at :: NodeInfo
at
    = CArraySize NodeInfo
arr_sz CArraySize NodeInfo -> CDeclrR -> CDeclrR
forall a b. a -> b -> b
`seq` ( Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident (Reversed [CDerivedDeclarator NodeInfo]
derivedDeclrs Reversed [CDerivedDeclarator NodeInfo]
-> CDerivedDeclarator NodeInfo
-> Reversed [CDerivedDeclarator NodeInfo]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` [CTypeQual]
-> CArraySize NodeInfo -> NodeInfo -> CDerivedDeclarator NodeInfo
forall a.
[CTypeQualifier a] -> CArraySize a -> a -> CDerivedDeclarator a
CArrDeclr [CTypeQual]
tyquals CArraySize NodeInfo
arr_sz NodeInfo
at) Maybe CStrLit
asmname [CAttr]
cattrs NodeInfo
dat )
    where
    arr_sz :: CArraySize NodeInfo
arr_sz = case Maybe CExpr
size_expr_opt of
                 Just e :: CExpr
e  -> Bool -> CExpr -> CArraySize NodeInfo
forall a. Bool -> CExpression a -> CArraySize a
CArrSize Bool
static_size CExpr
e
                 Nothing -> Bool -> CArraySize NodeInfo
forall a. Bool -> CArraySize a
CNoArrSize Bool
var_sized

liftTypeQuals :: Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals :: Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals = (CTypeQual -> CDeclSpec) -> [CTypeQual] -> [CDeclSpec]
forall a b. (a -> b) -> [a] -> [b]
map CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual ([CTypeQual] -> [CDeclSpec])
-> (Reversed [CTypeQual] -> [CTypeQual])
-> Reversed [CTypeQual]
-> [CDeclSpec]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse

-- lift CAttrs to DeclSpecs
--
liftCAttrs :: [CAttr] -> [CDeclSpec]
liftCAttrs :: [CAttr] -> [CDeclSpec]
liftCAttrs = (CAttr -> CDeclSpec) -> [CAttr] -> [CDeclSpec]
forall a b. (a -> b) -> [a] -> [b]
map (CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual (CTypeQual -> CDeclSpec)
-> (CAttr -> CTypeQual) -> CAttr -> CDeclSpec
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CAttr -> CTypeQual
forall a. CAttribute a -> CTypeQualifier a
CAttrQual)

-- when we parsed (decl_spec_1,...,decl_spec_n,attrs), add the __attributes__s to the declspec list
-- needs special care when @decl_spec_n@ is a SUE definition
addTrailingAttrs :: Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs :: Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs declspecs :: Reversed [CDeclSpec]
declspecs new_attrs :: [CAttr]
new_attrs =
    case Reversed [CDeclSpec] -> (Reversed [CDeclSpec], CDeclSpec)
forall a. Reversed [a] -> (Reversed [a], a)
viewr Reversed [CDeclSpec]
declspecs of
        (specs_init :: Reversed [CDeclSpec]
specs_init, CTypeSpec (CSUType (CStruct tag :: CStructTag
tag name :: Maybe Ident
name (Just def :: [CDecl]
def) def_attrs :: [CAttr]
def_attrs su_node :: NodeInfo
su_node) node :: NodeInfo
node))
            -> (Reversed [CDeclSpec]
specs_init Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CStructUnion -> NodeInfo -> CTypeSpec
forall a. CStructureUnion a -> a -> CTypeSpecifier a
CSUType (CStructTag
-> Maybe Ident
-> Maybe [CDecl]
-> [CAttr]
-> NodeInfo
-> CStructUnion
forall a.
CStructTag
-> Maybe Ident
-> Maybe [CDeclaration a]
-> [CAttribute a]
-> a
-> CStructureUnion a
CStruct CStructTag
tag Maybe Ident
name ([CDecl] -> Maybe [CDecl]
forall k1. k1 -> Maybe k1
Just [CDecl]
def) ([CAttr]
def_attrs [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
new_attrs) NodeInfo
su_node) NodeInfo
node))
        (specs_init :: Reversed [CDeclSpec]
specs_init, CTypeSpec (CEnumType (CEnum name :: Maybe Ident
name (Just def :: [(Ident, Maybe CExpr)]
def) def_attrs :: [CAttr]
def_attrs e_node :: NodeInfo
e_node) node :: NodeInfo
node))
            -> (Reversed [CDeclSpec]
specs_init Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CEnum -> NodeInfo -> CTypeSpec
forall a. CEnumeration a -> a -> CTypeSpecifier a
CEnumType (Maybe Ident
-> Maybe [(Ident, Maybe CExpr)] -> [CAttr] -> NodeInfo -> CEnum
forall a.
Maybe Ident
-> Maybe [(Ident, Maybe (CExpression a))]
-> [CAttribute a]
-> a
-> CEnumeration a
CEnum Maybe Ident
name ([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall k1. k1 -> Maybe k1
Just [(Ident, Maybe CExpr)]
def) ([CAttr]
def_attrs [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
new_attrs) NodeInfo
e_node) NodeInfo
node))
        _ -> Reversed [CDeclSpec]
declspecs Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`rappend` ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
new_attrs)

-- convenient instance, the position of a list of things is the position of
-- the first thing in the list
--
instance Pos a => Pos [a] where
  posOf :: [a] -> Position
posOf (x :: a
x:_) = a -> Position
forall a. Pos a => a -> Position
posOf a
x

instance Pos a => Pos (Reversed a) where
  posOf :: Reversed a -> Position
posOf (Reversed x :: a
x) = a -> Position
forall a. Pos a => a -> Position
posOf a
x

emptyDeclr :: CDeclrR
emptyDeclr :: CDeclrR
emptyDeclr       = Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
forall k1. Maybe k1
Nothing Reversed [CDerivedDeclarator NodeInfo]
forall a. Reversed [a]
empty Maybe CStrLit
forall k1. Maybe k1
Nothing [] NodeInfo
undefNode
mkVarDeclr :: Ident -> NodeInfo -> CDeclrR
mkVarDeclr :: Ident -> NodeInfo -> CDeclrR
mkVarDeclr ident :: Ident
ident = Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
ident) Reversed [CDerivedDeclarator NodeInfo]
forall a. Reversed [a]
empty Maybe CStrLit
forall k1. Maybe k1
Nothing []

-- Take the identifiers and use them to update the typedef'ed identifier set
-- if the decl is defining a typedef then we add it to the set,
-- if it's a var decl then that shadows typedefed identifiers
--
doDeclIdent :: [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent :: [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent declspecs :: [CDeclSpec]
declspecs (CDeclrR mIdent :: Maybe Ident
mIdent _ _ _ _) =
  case Maybe Ident
mIdent of
    Nothing -> () -> P ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
    Just ident :: Ident
ident | (CDeclSpec -> Bool) -> [CDeclSpec] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any CDeclSpec -> Bool
forall a. CDeclarationSpecifier a -> Bool
iypedef [CDeclSpec]
declspecs -> Ident -> P ()
addTypedef Ident
ident
               | Bool
otherwise             -> Ident -> P ()
shadowTypedef Ident
ident

  where iypedef :: CDeclarationSpecifier a -> Bool
iypedef (CStorageSpec (CTypedef _)) = Bool
True
        iypedef _                           = Bool
False

doFuncParamDeclIdent :: CDeclr -> P ()
doFuncParamDeclIdent :: CDeclr -> P ()
doFuncParamDeclIdent (CDeclr _ (CFunDeclr params :: Either [Ident] ([CDecl], Bool)
params _ _ : _) _ _ _) =
  [P ()] -> P ()
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, Monad m) =>
t (m a) -> m ()
sequence_
    [ case CDeclr -> Maybe Ident
getCDeclrIdent CDeclr
declr of
        Nothing -> () -> P ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
        Just ident :: Ident
ident -> Ident -> P ()
shadowTypedef Ident
ident
    | CDecl _ dle :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dle _  <- ([Ident] -> [CDecl])
-> (([CDecl], Bool) -> [CDecl])
-> Either [Ident] ([CDecl], Bool)
-> [CDecl]
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either ([CDecl] -> [Ident] -> [CDecl]
forall a b. a -> b -> a
const []) ([CDecl], Bool) -> [CDecl]
forall a b. (a, b) -> a
fst Either [Ident] ([CDecl], Bool)
params
    , (Just declr :: CDeclr
declr, _, _) <- [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dle ]
doFuncParamDeclIdent _ = () -> P ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()

-- extract all identifiers
getCDeclrIdent :: CDeclr -> Maybe Ident
getCDeclrIdent :: CDeclr -> Maybe Ident
getCDeclrIdent (CDeclr mIdent :: Maybe Ident
mIdent _ _ _ _) = Maybe Ident
mIdent

happyError :: P a
happyError :: P a
happyError = P a
forall a. P a
parseError

-- * public interface

-- | @parseC input initialPos@ parses the given preprocessed C-source input and returns the AST or a list of parse errors.
parseC :: InputStream -> Position -> Either ParseError CTranslUnit
parseC :: InputStream -> Position -> Either ParseError CTranslUnit
parseC input :: InputStream
input initialPosition :: Position
initialPosition =
  ((CTranslUnit, [Name]) -> CTranslUnit)
-> Either ParseError (CTranslUnit, [Name])
-> Either ParseError CTranslUnit
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (CTranslUnit, [Name]) -> CTranslUnit
forall a b. (a, b) -> a
fst (Either ParseError (CTranslUnit, [Name])
 -> Either ParseError CTranslUnit)
-> Either ParseError (CTranslUnit, [Name])
-> Either ParseError CTranslUnit
forall a b. (a -> b) -> a -> b
$ P CTranslUnit
-> InputStream
-> Position
-> [Ident]
-> [Name]
-> Either ParseError (CTranslUnit, [Name])
forall a.
P a
-> InputStream
-> Position
-> [Ident]
-> [Name]
-> Either ParseError (a, [Name])
execParser P CTranslUnit
translUnitP InputStream
input Position
initialPosition [Ident]
builtinTypeNames (Int -> [Name]
namesStartingFrom 0)

-- | @translUnitP@ provides a parser for a complete C translation unit, i.e. a list of external declarations.
translUnitP :: P CTranslUnit
translUnitP :: P CTranslUnit
translUnitP = P CTranslUnit
translation_unit
-- | @extDeclP@ provides a parser for an external (file-scope) declaration
extDeclP :: P CExtDecl
extDeclP :: P CExtDecl
extDeclP = P CExtDecl
external_declaration
-- | @statementP@ provides a parser for C statements
statementP :: P CStat
statementP :: P CStat
statementP = P CStat
statement
-- | @expressionP@ provides a parser for C expressions
expressionP :: P CExpr
expressionP :: P CExpr
expressionP = P CExpr
expression
{-# LINE 1 "templates/GenericTemplate.hs" #-}
-- $Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp $













-- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex.
#if __GLASGOW_HASKELL__ > 706
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool)
#else
#define LT(n,m) (n Happy_GHC_Exts.<# m)
#define GTE(n,m) (n Happy_GHC_Exts.>=# m)
#define EQ(n,m) (n Happy_GHC_Exts.==# m)
#endif



















data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList








































infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)

-----------------------------------------------------------------------------
-- starting the parse

happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll

-----------------------------------------------------------------------------
-- Accepting the parse

-- If the current token is ERROR_TOK, it means we've just accepted a partial
-- parse (a %partial parser).  We must ignore the saved token on the top of
-- the stack in this case.
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
        happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) = 
        (happyTcHack j (happyTcHack st)) (happyReturn1 ans)

-----------------------------------------------------------------------------
-- Arrays only: do the next action



happyDoAction i tk st
        = {- nothing -}
          case action of
                0#           -> {- nothing -}
                                     happyFail (happyExpListPerState ((Happy_GHC_Exts.I# (st)) :: Int)) i tk st
                -1#          -> {- nothing -}
                                     happyAccept i tk st
                n | LT(n,(0# :: Happy_GHC_Exts.Int#)) -> {- nothing -}
                                                   (happyReduceArr Happy_Data_Array.! rule) i tk st
                                                   where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
                n                 -> {- nothing -}
                                     happyShift new_state i tk st
                                     where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
   where off    = happyAdjustOffset (indexShortOffAddr happyActOffsets st)
         off_i  = (off Happy_GHC_Exts.+# i)
         check  = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#))
                  then EQ(indexShortOffAddr happyCheck off_i, i)
                  else False
         action
          | check     = indexShortOffAddr happyTable off_i
          | otherwise = indexShortOffAddr happyDefActions st




indexShortOffAddr (HappyA# arr) off =
        Happy_GHC_Exts.narrow16Int# i
  where
        i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
        high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
        low  = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
        off' = off Happy_GHC_Exts.*# 2#




{-# INLINE happyLt #-}
happyLt x y = LT(x,y)


readArrayBit arr bit =
    Bits.testBit (Happy_GHC_Exts.I# (indexShortOffAddr arr ((unbox_int bit) `Happy_GHC_Exts.iShiftRA#` 4#))) (bit `mod` 16)
  where unbox_int (Happy_GHC_Exts.I# x) = x






data HappyAddr = HappyA# Happy_GHC_Exts.Addr#


-----------------------------------------------------------------------------
-- HappyState data type (not arrays)













-----------------------------------------------------------------------------
-- Shifting a token

happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--     trace "shifting the error token" $
     happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)

happyShift new_state i tk st sts stk =
     happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)

-- happyReduce is specialised for the common cases.

happySpecReduce_0 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
     = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)

happySpecReduce_1 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
     = let r = fn v1 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_2 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
     = let r = fn v1 v2 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_3 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
     = let r = fn v1 v2 v3 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happyReduce k i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
     = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
         sts1@((HappyCons (st1@(action)) (_))) ->
                let r = fn stk in  -- it doesn't hurt to always seq here...
                happyDoSeq r (happyGoto nt j tk st1 sts1 r)

happyMonadReduce k nt fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
          let drop_stk = happyDropStk k stk in
          happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))

happyMonad2Reduce k nt fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
         let drop_stk = happyDropStk k stk

             off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st1)
             off_i = (off Happy_GHC_Exts.+# nt)
             new_state = indexShortOffAddr happyTable off_i




          in
          happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))

happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t

happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs

-----------------------------------------------------------------------------
-- Moving to a new state after a reduction


happyGoto nt j tk st = 
   {- nothing -}
   happyDoAction j tk new_state
   where off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st)
         off_i = (off Happy_GHC_Exts.+# nt)
         new_state = indexShortOffAddr happyTable off_i




-----------------------------------------------------------------------------
-- Error recovery (ERROR_TOK is the error token)

-- parse error if we are in recovery and we fail again
happyFail explist 0# tk old_st _ stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--      trace "failing" $ 
        happyError_ explist i tk

{-  We don't need state discarding for our restricted implementation of
    "error".  In fact, it can cause some bogus parses, so I've disabled it
    for now --SDM

-- discard a state
happyFail  ERROR_TOK tk old_st CONS(HAPPYSTATE(action),sts) 
                                                (saved_tok `HappyStk` _ `HappyStk` stk) =
--      trace ("discarding state, depth " ++ show (length stk))  $
        DO_ACTION(action,ERROR_TOK,tk,sts,(saved_tok`HappyStk`stk))
-}

-- Enter error recovery: generate an error token,
--                       save the old token and carry on.
happyFail explist i tk (action) sts stk =
--      trace "entering error recovery" $
        happyDoAction 0# tk action sts ((Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)

-- Internal happy errors:

notHappyAtAll :: a
notHappyAtAll = error "Internal Happy error\n"

-----------------------------------------------------------------------------
-- Hack to get the typechecker to accept our action functions


happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
{-# INLINE happyTcHack #-}


-----------------------------------------------------------------------------
-- Seq-ing.  If the --strict flag is given, then Happy emits 
--      happySeq = happyDoSeq
-- otherwise it emits
--      happySeq = happyDontSeq

happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq   a b = a `seq` b
happyDontSeq a b = b

-----------------------------------------------------------------------------
-- Don't inline any functions from the template.  GHC has a nasty habit
-- of deciding to inline happyGoto everywhere, which increases the size of
-- the generated parser quite a bit.


{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}

{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}

-- end of Happy Template.