{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE RankNTypes #-}
module Data.Functor.Day
( Day(..)
, day
, dap
, assoc, disassoc
, swapped
, intro1, intro2
, elim1, elim2
, trans1, trans2
, cayley, dayley
) where
import Control.Applicative
import Control.Category
import Control.Comonad
import Control.Comonad.Trans.Class
import Data.Distributive
import Data.Profunctor.Cayley (Cayley(..))
import Data.Profunctor.Composition (Procompose(..))
import Data.Functor.Identity
import Data.Functor.Rep
#ifdef __GLASGOW_HASKELL__
import Data.Typeable
#endif
import Prelude hiding (id,(.))
data Day f g a = forall b c. Day (f b) (g c) (b -> c -> a)
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 707
deriving Typeable
#endif
day :: f (a -> b) -> g a -> Day f g b
day fa gb = Day fa gb id
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ < 707
instance (Typeable1 f, Typeable1 g) => Typeable1 (Day f g) where
typeOf1 tfga = mkTyConApp dayTyCon [typeOf1 (fa tfga), typeOf1 (ga tfga)]
where fa :: t f (g :: * -> *) a -> f a
fa = undefined
ga :: t (f :: * -> *) g a -> g a
ga = undefined
dayTyCon :: TyCon
#if MIN_VERSION_base(4,4,0)
dayTyCon = mkTyCon3 "contravariant" "Data.Functor.Day" "Day"
#else
dayTyCon = mkTyCon "Data.Functor.Day.Day"
#endif
#endif
instance Functor (Day f g) where
fmap f (Day fb gc bca) = Day fb gc $ \b c -> f (bca b c)
instance (Applicative f, Applicative g) => Applicative (Day f g) where
pure x = Day (pure ()) (pure ()) (\_ _ -> x)
(Day fa fb u) <*> (Day gc gd v) =
Day ((,) <$> fa <*> gc) ((,) <$> fb <*> gd)
(\(a,c) (b,d) -> u a b (v c d))
instance (Representable f, Representable g) => Distributive (Day f g) where
distribute f = Day (tabulate id) (tabulate id) $ \x y ->
fmap (\(Day m n o) -> o (index m x) (index n y)) f
collect g f = Day (tabulate id) (tabulate id) $ \x y ->
fmap (\q -> case g q of Day m n o -> o (index m x) (index n y)) f
instance (Representable f, Representable g) => Representable (Day f g) where
type Rep (Day f g) = (Rep f, Rep g)
tabulate f = Day (tabulate id) (tabulate id) (curry f)
index (Day m n o) (x,y) = o (index m x) (index n y)
instance (Comonad f, Comonad g) => Comonad (Day f g) where
extract (Day fb gc bca) = bca (extract fb) (extract gc)
duplicate (Day fb gc bca) = Day (duplicate fb) (duplicate gc) (\fb' gc' -> Day fb' gc' bca)
instance (ComonadApply f, ComonadApply g) => ComonadApply (Day f g) where
Day fa fb u <@> Day gc gd v =
Day ((,) <$> fa <@> gc) ((,) <$> fb <@> gd)
(\(a,c) (b,d) -> u a b (v c d))
instance Comonad f => ComonadTrans (Day f) where
lower (Day fb gc bca) = bca (extract fb) <$> gc
assoc :: Day f (Day g h) a -> Day (Day f g) h a
assoc (Day fb (Day gd he dec) bca) = Day (Day fb gd (,)) he $
\ (b,d) e -> bca b (dec d e)
disassoc :: Day (Day f g) h a -> Day f (Day g h) a
disassoc (Day (Day fb gc bce) hd eda) = Day fb (Day gc hd (,)) $ \ b (c,d) ->
eda (bce b c) d
swapped :: Day f g a -> Day g f a
swapped (Day fb gc abc) = Day gc fb (flip abc)
intro1 :: f a -> Day Identity f a
intro1 fa = Day (Identity ()) fa $ \_ a -> a
intro2 :: f a -> Day f Identity a
intro2 fa = Day fa (Identity ()) const
elim1 :: Functor f => Day Identity f a -> f a
elim1 (Day (Identity b) fc bca) = bca b <$> fc
elim2 :: Functor f => Day f Identity a -> f a
elim2 (Day fb (Identity c) bca) = flip bca c <$> fb
dap :: Applicative f => Day f f a -> f a
dap (Day fb fc abc) = liftA2 abc fb fc
trans1 :: (forall x. f x -> g x) -> Day f h a -> Day g h a
trans1 fg (Day fb hc bca) = Day (fg fb) hc bca
trans2 :: (forall x. g x -> h x) -> Day f g a -> Day f h a
trans2 gh (Day fb gc bca) = Day fb (gh gc) bca
cayley :: Procompose (Cayley f p) (Cayley g q) a b -> Cayley (Day f g) (Procompose p q) a b
cayley (Procompose (Cayley p) (Cayley q)) = Cayley $ Day p q Procompose
dayley :: Category p => Procompose (Cayley f p) (Cayley g p) a b -> Cayley (Day f g) p a b
dayley (Procompose (Cayley p) (Cayley q)) = Cayley $ Day p q (.)