{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric      #-}

module Data.IP.Addr where

import Control.Monad
import Data.Bits
import Data.Char
import Data.Data (Data)
import Data.List (foldl', intersperse)
import Data.String
import Data.Typeable (Typeable)
import Data.Word
import Network.Socket
import Numeric (showHex, showInt)
import System.ByteOrder
import Text.Appar.String
import GHC.Enum (succError,predError)
import GHC.Generics

----------------------------------------------------------------

{-|
  A unified IP data for 'IPv4' and 'IPv6'.
  To create this, use the data constructors. Or use 'read' @\"192.0.2.1\"@ :: 'IP', for example. Also, @\"192.0.2.1\"@ can be used as literal with OverloadedStrings.

>>> (read "192.0.2.1" :: IP) == IPv4 (read "192.0.2.1" :: IPv4)
True
>>> (read "2001:db8:00:00:00:00:00:01" :: IP) == IPv6 (read "2001:db8:00:00:00:00:00:01" :: IPv6)
True
-}

data IP = IPv4 { ipv4 :: IPv4 }
        | IPv6 { ipv6 :: IPv6 }
        deriving (Data,Generic,Typeable)

{-|
  Equality over IP addresses. Correctly compare IPv4 and IPv4-embedded-in-IPv6 addresses.

>>> (read "2001:db8:00:00:00:00:00:01" :: IP) == (read "2001:db8:00:00:00:00:00:01" :: IP)
True
>>> (read "2001:db8:00:00:00:00:00:01" :: IP) == (read "2001:db8:00:00:00:00:00:05" :: IP)
False
>>> (read "127.0.0.1" :: IP) == (read "127.0.0.1" :: IP)
True
>>> (read "127.0.0.1" :: IP) == (read "10.0.0.1" :: IP)
False
>>> (read "::ffff:127.0.0.1" :: IP) == (read "127.0.0.1" :: IP)
True
>>> (read "::ffff:127.0.0.1" :: IP) == (read "127.0.0.9" :: IP)
False
>>> (read "::ffff:127.0.0.1" :: IP) >= (read "127.0.0.1" :: IP)
True
>>> (read "::ffff:127.0.0.1" :: IP) <= (read "127.0.0.1" :: IP)
True
-}
instance Eq IP where
  (IPv4 ip1) == (IPv4 ip2) = ip1 == ip2
  (IPv6 ip1) == (IPv6 ip2) = ip1 == ip2
  (IPv4 ip1) == (IPv6 ip2) = ipv4ToIPv6 ip1 == ip2
  (IPv6 ip1) == (IPv4 ip2) = ip1 == ipv4ToIPv6 ip2


instance Ord IP where
  (IPv4 ip1) `compare` (IPv4 ip2) = ip1 `compare` ip2
  (IPv6 ip1) `compare` (IPv6 ip2) = ip1 `compare` ip2
  (IPv4 ip1) `compare` (IPv6 ip2) = ipv4ToIPv6 ip1 `compare` ip2
  (IPv6 ip1) `compare` (IPv4 ip2) = ip1 `compare` ipv4ToIPv6 ip2

instance Show IP where
    show (IPv4 ip) = show ip
    show (IPv6 ip) = show ip

----------------------------------------------------------------

-- This is host byte order
type IPv4Addr = Word32
type IPv6Addr = (Word32,Word32,Word32,Word32)

{-|
  The abstract data type to express an IPv4 address.
  To create this, use 'toIPv4'. Or use 'read' @\"192.0.2.1\"@ :: 'IPv4', for example. Also, @\"192.0.2.1\"@ can be used as literal with OverloadedStrings.

>>> read "192.0.2.1" :: IPv4
192.0.2.1
-}
newtype IPv4 = IP4 IPv4Addr
  deriving (Eq, Ord, Bounded, Data, Generic, Typeable)

{-|
  The abstract data type to express an IPv6 address.
  To create this, use 'toIPv6'. Or use 'read' @\"2001:DB8::1\"@ :: 'IPv6', for example. Also, @\"2001:DB8::1\"@ can be used as literal with OverloadedStrings.

>>> read "2001:db8:00:00:00:00:00:01" :: IPv6
2001:db8::1
>>> read "2001:db8:11e:c00::101" :: IPv6
2001:db8:11e:c00::101
>>> read "2001:db8:11e:c00:aa:bb:192.0.2.1" :: IPv6
2001:db8:11e:c00:aa:bb:c000:201
>>> read "2001:db8::192.0.2.1" :: IPv6
2001:db8::c000:201
>>> read "0::ffff:192.0.2.1" :: IPv6
::ffff:192.0.2.1
>>> read "0::0:c000:201" :: IPv6
::192.0.2.1
>>> read "::0.0.0.1" :: IPv6
::1
-}
newtype IPv6 = IP6 IPv6Addr
  deriving (Eq, Ord, Bounded, Data, Generic, Typeable)


----------------------------------------------------------------
--
-- Enum
--

instance Enum IPv4 where
    fromEnum (IP4 a) = fromEnum a
    toEnum = IP4 . toEnum

instance Enum IPv6 where
    -- fromEnum and toEnum are not really useful, but I defined them anyway
    fromEnum (IP6 (a,b,c,d)) = let a' = fromEnum a `shift` 96
                                   b' = fromEnum b `shift` 64
                                   c' = fromEnum c `shift` 32
                                   d' = fromEnum d
                               in a' .|. b' .|. c' .|. d'
    toEnum i = let i' = fromIntegral i :: Integer
                   a = fromIntegral (i' `shiftR` 96 .&. 0xffffffff)
                   b = fromIntegral (i' `shiftR` 64 .&. 0xffffffff)
                   c = fromIntegral (i' `shiftR` 32 .&. 0xffffffff)
                   d = fromIntegral (i'             .&. 0xffffffff)
               in IP6 (a,b,c,d)

    succ (IP6 (0xffffffff,0xffffffff,0xffffffff,0xffffffff)) = succError "IPv6"
    succ (IP6 (a,         0xffffffff,0xffffffff,0xffffffff)) = IP6 (succ a,0,0,0)
    succ (IP6 (a,                  b,0xffffffff,0xffffffff)) = IP6 (a,succ b,0,0)
    succ (IP6 (a,                  b,         c,0xffffffff)) = IP6 (a,b,succ c,0)
    succ (IP6 (a,                  b,         c,         d)) = IP6 (a,b,c,succ d)

    pred (IP6 (0,0,0,0)) = predError "IPv6"
    pred (IP6 (a,0,0,0)) = IP6 (pred a, 0xffffffff, 0xffffffff, 0xffffffff)
    pred (IP6 (a,b,0,0)) = IP6 (     a,     pred b, 0xffffffff, 0xffffffff)
    pred (IP6 (a,b,c,0)) = IP6 (     a,          b,     pred c, 0xffffffff)
    pred (IP6 (a,b,c,d)) = IP6 (     a,          b,          c,     pred d)

    enumFrom ip = ip:gen ip
        where gen i = let i' = succ i in i':gen i'

    enumFromTo ip ip' = ip:gen ip
        where gen i
                | i == ip' = []
                | otherwise = let i' = succ i in i':gen i'

    -- These two are implemented via the integer enum instance.
    -- A more correct implementation would essentially require
    -- implementing instance Num IPv6, which isn't something
    -- I wanna do. Another approach is to use Word128 to store
    -- an IPv6 address.
    enumFromThen ip ip' = fmap integerToIP6 [ip6ToInteger ip, ip6ToInteger ip' ..]
    enumFromThenTo ip inc fin = fmap integerToIP6 [ip6ToInteger ip, ip6ToInteger inc .. ip6ToInteger fin]

instance Enum IP where
    fromEnum (IPv4 ip) = fromEnum ip
    fromEnum (IPv6 ip) = fromEnum ip

    -- Because Int cannot hold an IPv6 anyway
    toEnum = IPv4 . toEnum

    succ (IPv4 ip) = IPv4 $ succ ip
    succ (IPv6 ip) = IPv6 $ succ ip

    pred (IPv4 ip) = IPv4 $ pred ip
    pred (IPv6 ip) = IPv6 $ pred ip

    enumFrom (IPv4 ip) = fmap IPv4 $ enumFrom ip
    enumFrom (IPv6 ip) = fmap IPv6 $ enumFrom ip

    enumFromTo (IPv4 ip) (IPv4 ip') = fmap IPv4 $ enumFromTo ip ip'
    enumFromTo (IPv6 ip) (IPv6 ip') = fmap IPv6 $ enumFromTo ip ip'
    enumFromTo _ _ = error "enumFromTo: Incompatible IP families"

    enumFromThen (IPv4 ip) (IPv4 ip') = fmap IPv4 $ enumFromThen ip ip'
    enumFromThen (IPv6 ip) (IPv6 ip') = fmap IPv6 $ enumFromThen ip ip'
    enumFromThen _ _ = error "enumFromThen: Incompatible IP families"

    enumFromThenTo (IPv4 ip) (IPv4 inc) (IPv4 fin) = fmap IPv4 $ enumFromThenTo ip inc fin
    enumFromThenTo (IPv6 ip) (IPv6 inc) (IPv6 fin) = fmap IPv6 $ enumFromThenTo ip inc fin
    enumFromThenTo _ _ _ = error "enumFromThenTo: Incompatible IP families"

ip6ToInteger :: IPv6 -> Integer
ip6ToInteger (IP6 (a,b,c,d)) = let a' = word32ToInteger a `shift` 96
                                   b' = word32ToInteger b `shift` 64
                                   c' = word32ToInteger c `shift` 32
                                   d' = word32ToInteger d
                               in a' .|. b' .|. c' .|. d'
    where
        word32ToInteger :: Word32 -> Integer
        word32ToInteger = toEnum . fromEnum

integerToIP6 :: Integer -> IPv6
integerToIP6 i = let a = integerToWord32 (i `shiftR` 96 .&. 0xffffffff)
                     b = integerToWord32 (i `shiftR` 64 .&. 0xffffffff)
                     c = integerToWord32 (i `shiftR` 32 .&. 0xffffffff)
                     d = integerToWord32 (i             .&. 0xffffffff)
                 in IP6 (a,b,c,d)
    where
        integerToWord32 :: Integer -> Word32
        integerToWord32 = toEnum . fromEnum

----------------------------------------------------------------
--
-- Show
--

instance Show IPv4 where
    show ip = showIPv4 ip ""

instance Show IPv6 where
    show ip = showIPv6 ip ""

-- | Show an IPv4 address in the dot-decimal notation.
showIPv4 :: IPv4 -> ShowS
showIPv4 = foldr1 (.) . intersperse (showChar '.') . map showInt . fromIPv4

-- | Show an IPv6 address in the most appropriate notation, based on recommended
-- representation proposed by <http://tools.ietf.org/html/rfc5952 RFC 5952>.
--
-- /The implementation is completely compatible with the current implementation
-- of the `inet_ntop` function in glibc./
showIPv6 :: IPv6 -> ShowS
showIPv6 ip@(IP6 (a1,a2,a3,a4))
  -- IPv4-Mapped IPv6 Address
  | a1 == 0 && a2 == 0 && a3 == 0xffff =
      showString "::ffff:" . showIPv4 (IP4 a4)
  -- IPv4-Compatible IPv6 Address (exclude IPRange ::/112)
  | a1 == 0 && a2 == 0 && a3 == 0 && a4 >= 0x10000 =
      showString "::" . showIPv4 (IP4 a4)
  -- length of longest run > 1, replace it with "::"
  | end - begin > 1 =
      showFields prefix . showString "::" . showFields suffix
  -- length of longest run <= 1, don't use "::"
  | otherwise =
      showFields fields
  where
    fields = fromIPv6 ip
    showFields = foldr (.) id . intersperse (showChar ':') . map showHex
    prefix = take begin fields  -- fields before "::"
    suffix = drop end fields    -- fields after "::"
    begin = end + diff          -- the longest run of zeros
    (diff, end) = minimum $
        scanl (\c i -> if i == 0 then c - 1 else 0) 0 fields `zip` [0..]

----------------------------------------------------------------
--
-- IntToIP
--

{-|
  The 'toIPv4' function returns the 'IPv4' address corresponding to the given
  list of 'Int' octets.  The function is strict in the four elements of the
  list.  An error is returned if the list has a differnet length.  The input
  elements are silently truncated to their 8 least-significant bits before they
  are combined to form the IPv4 address.

>>> toIPv4 [192,0,2,1]
192.0.2.1
-}
toIPv4 :: [Int] -> IPv4
toIPv4 [a1, a2, a3, a4] = IP4 w
  where
    w = (fromIntegral a1 .&. 0xff) `unsafeShiftL` 24 .|.
        (fromIntegral a2 .&. 0xff) `unsafeShiftL` 16 .|.
        (fromIntegral a3 .&. 0xff) `unsafeShiftL`  8 .|.
        (fromIntegral a4 .&. 0xff)
toIPv4 _ = error "IPv4 field list length != 4"
{-# INLINE toIPv4 #-}

{-|
  The 'toIPv4w' function constructs the 'IPv4' address corresponding to the
  given 'Word32' value.  Unlike the 'fromHostAddress' function, it is strict in
  the input value, which here is in host byte order.

>>> toIPv4w 0xc0000201
192.0.2.1

@since 1.7.9
-}
toIPv4w :: Word32 -> IPv4
toIPv4w w = IP4 w
{-# INLINE toIPv4w #-}

{-|
  The 'toIPv6' function returns the 'IPv6' address corresponding to the given
  list of eight 16-bit 'Int's.  The function is strict in the eight elements of
  the list.  An error is returned if the list has a differnet length.  The
  input elements are in host byte order and are silently truncated to their 16
  least-signicant bits before they are combined to form the IPv6 address.

>>> toIPv6 [0x2001,0xDB8,0,0,0,0,0,1]
2001:db8::1
-}
toIPv6 :: [Int] -> IPv6
toIPv6 [i1,i2,i3,i4,i5,i6,i7,i8] = IP6 (x1,x2,x3,x4)
  where
    !x1 = fromIntegral $ (i1 .&. 0xffff) `unsafeShiftL` 16 .|. (i2 .&. 0xffff)
    !x2 = fromIntegral $ (i3 .&. 0xffff) `unsafeShiftL` 16 .|. (i4 .&. 0xffff)
    !x3 = fromIntegral $ (i5 .&. 0xffff) `unsafeShiftL` 16 .|. (i6 .&. 0xffff)
    !x4 = fromIntegral $ (i7 .&. 0xffff) `unsafeShiftL` 16 .|. (i8 .&. 0xffff)
toIPv6 _ = error "toIPv6 field list length != 8"
{-# INLINE toIPv6 #-}

{-|
  The 'toIPv6b' function returns the IPv6 address corresponding to the given
  list of sixteen 'Int' octets.  The function is strict in the sixteen elements
  of the list.  An error is returned if the list has a differnet length.  The
  input elements are silently truncated to their 8 least-signicant bits before
  they are combined to form the IPv6 address.

>>> toIPv6b [0x20,0x01,0xD,0xB8,0,0,0,0,0,0,0,0,0,0,0,1]
2001:db8::1
-}
toIPv6b :: [Int] -> IPv6
toIPv6b [ h11, h12, l11, l12, h21, h22, l21, l22
        , h31, h32, l31, l32, h41, h42, l41, l42 ] = IP6 (x1,x2,x3,x4)
  where
    !x1 = fromIntegral $ (h11 .&. 0xff) `unsafeShiftL` 24 .|.
                         (h12 .&. 0xff) `unsafeShiftL` 16 .|.
                         (l11 .&. 0xff) `unsafeShiftL`  8 .|.
                         (l12 .&. 0xff)
    !x2 = fromIntegral $ (h21 .&. 0xff) `unsafeShiftL` 24 .|.
                         (h22 .&. 0xff) `unsafeShiftL` 16 .|.
                         (l21 .&. 0xff) `unsafeShiftL`  8 .|.
                         (l22 .&. 0xff)
    !x3 = fromIntegral $ (h31 .&. 0xff) `unsafeShiftL` 24 .|.
                         (h32 .&. 0xff) `unsafeShiftL` 16 .|.
                         (l31 .&. 0xff) `unsafeShiftL`  8 .|.
                         (l32 .&. 0xff)
    !x4 = fromIntegral $ (h41 .&. 0xff) `unsafeShiftL` 24 .|.
                         (h42 .&. 0xff) `unsafeShiftL` 16 .|.
                         (l41 .&. 0xff) `unsafeShiftL`  8 .|.
                         (l42 .&. 0xff)
toIPv6b _ = error "toIPv6b field list length != 16"

{-|
  The 'toIPv6w' function constructs the 'IPv6' address corresponding to the
  given four-tuple of host byte order 'Word32' values.  This function differs
  from the 'fromHostAddress6' function only in the fact that it is strict in
  the elements of the tuple.

>>> toIPv6w (0x20010DB8,0x0,0x0,0x1)
2001:db8::1

@since 1.7.9
-}
toIPv6w :: (Word32, Word32, Word32, Word32) -> IPv6
toIPv6w w@(!_, !_, !_, !_) = IP6 w
{-# INLINE toIPv6w #-}

----------------------------------------------------------------
--
-- IPToInt
--

{-|
  The 'fromIPv4' function returns the list of four 'Int' octets corresponding
  to the given 'IPv4' address.

>>> fromIPv4 (toIPv4 [192,0,2,1])
[192,0,2,1]
-}
fromIPv4 :: IPv4 -> [Int]
fromIPv4 (IP4 w) = split w 0o30 : split w 0o20 : split w 0o10 : split w 0 : []
  where
    split :: Word32 -> Int -> Int
    split a n = fromIntegral $ a `unsafeShiftR` n .&. 0xff
{-# INLINE fromIPv4 #-}

{-|
  The 'fromIPv4w' function returns a single 'Word32' value corresponding to the
  given the 'IPv4' address.  Unlike the 'toHostAddress' function, the returned
  value is strictly evaluated, and is not converted to network byte order.

>>> fromIPv4w (toIPv4 [0xc0,0,2,1]) == 0xc0000201
True

@since 1.7.9
-}
fromIPv4w :: IPv4 -> Word32
fromIPv4w (IP4 !ip4rep) = ip4rep
{-# INLINE fromIPv4w #-}

{-|
  The 'fromIPv6' function returns a list eight 'Int's in host byte order
  corresponding to the eight 16-bit fragments of the given IPv6 address.

>>> fromIPv6 (toIPv6 [0x2001,0xDB8,0,0,0,0,0,1])
[8193,3512,0,0,0,0,0,1]
-}
fromIPv6 :: IPv6 -> [Int]
fromIPv6 (IP6 (w1, w2, w3, w4)) =
    split w1 . split w2 . split w3 . split w4 $ []
  where
    split :: Word32 -> [Int] -> [Int]
    split n acc = fromIntegral (n `unsafeShiftR` 0x10 .&. 0xffff) :
                  fromIntegral (n .&. 0xffff) : acc
{-# INLINE fromIPv6 #-}

{-|
  The 'fromIPv6b' function returns the 16 'Int' octets corresponding
  to the 16 bytes of the given IPv6 address.

>>> fromIPv6b (toIPv6b [0x20,0x01,0xD,0xB8,0,0,0,0,0,0,0,0,0,0,0,1])
[32,1,13,184,0,0,0,0,0,0,0,0,0,0,0,1]
-}
fromIPv6b :: IPv6 -> [Int]
fromIPv6b (IP6 (w1, w2, w3, w4)) =
    split w1 . split w2 . split w3 . split w4 $ []
  where
    split :: Word32 -> [Int] -> [Int]
    split n acc = fromIntegral (n `unsafeShiftR` 24 .&. 0xff) :
                  fromIntegral (n `unsafeShiftR` 16 .&. 0xff) :
                  fromIntegral (n `unsafeShiftR`  8 .&. 0xff) :
                  fromIntegral (n .&. 0xff) : acc

{-|
  The 'fromIPv6w' function returns a four-tuple of 'Word32' values in host byte
  order corresponding to the given 'IPv6' address.  This is identical to the
  'toHostAddress6' function, except that the elements of four-tuple are
  first strictly evaluated.

>>> fromIPv6w (toIPv6 [0x2001,0xDB8,0,0,0,0,0,1]) == (0x20010DB8, 0, 0, 1)
True

@since 1.7.9
-}
fromIPv6w :: IPv6 -> (Word32, Word32, Word32, Word32)
fromIPv6w (IP6 ip6rep) = ip6rep
{-# INLINE fromIPv6w #-}

----------------------------------------------------------------
--
-- Read
--

instance Read IP where
    readsPrec _ = parseIP

instance Read IPv4 where
    readsPrec _ = parseIPv4

instance Read IPv6 where
    readsPrec _ = parseIPv6

parseIP :: String -> [(IP,String)]
parseIP cs = case runParser ip4 cs of
    (Just ip,rest) -> [(IPv4 ip,rest)]
    (Nothing,_) -> case runParser ip6 cs of
        (Just ip,rest) -> [(IPv6 ip,rest)]
        (Nothing,_) -> []

parseIPv4 :: String -> [(IPv4,String)]
parseIPv4 cs = case runParser ip4 cs of
    (Nothing,_)    -> []
    (Just a4,rest) -> [(a4,rest)]

parseIPv6 :: String -> [(IPv6,String)]
parseIPv6 cs = case runParser ip6 cs of
    (Nothing,_)    -> []
    (Just a6,rest) -> [(a6,rest)]

----------------------------------------------------------------
--
-- IsString
--

instance IsString IP where
    fromString = read

instance IsString IPv4 where
    fromString = read

instance IsString IPv6 where
    fromString = read

----------------------------------------------------------------
--
-- IPv4 Parser
--

dig :: Parser Int
dig = 0 <$ char '0'
  <|> toInt <$> oneOf ['1'..'9'] <*> many digit
  where
    toInt n ns = foldl' (\x y -> x * 10 + y) 0 . map digitToInt $ n : ns

ip4 :: Parser IPv4
ip4 = skipSpaces >> toIPv4 <$> ip4'

ip4' :: Parser [Int]
ip4' = do
    as <- dig `sepBy1` char '.'
    check as
    return as
  where
    test errmsg adr = when (adr < 0 || 255 < adr) (fail errmsg)
    check as = do
        let errmsg = "IPv4 address"
        when (length as /= 4) (fail errmsg)
        mapM_ (test errmsg) as

skipSpaces :: Parser ()
skipSpaces = void $ many (char ' ')

----------------------------------------------------------------
--
-- IPv6 Parser (RFC 4291)
--

hex :: Parser Int
hex = do
    ns <- some hexDigit
    check ns
    let ms = map digitToInt ns
        val = foldl' (\x y -> x * 16 + y) 0 ms
    return val
  where
    check ns = when (length ns > 4) (fail "IPv6 address -- more than 4 hex")

colon2 :: Parser ()
colon2 = void $ string "::"

format :: [Int] -> [Int] -> Parser [Int]
format bs1 bs2 = do
    let len1 = length bs1
        len2 = length bs2
    when (len1 > 7) (fail "IPv6 address1")
    when (len2 > 7) (fail "IPv6 address2")
    let len = 8 - len1 - len2
    when (len <= 0) (fail "IPv6 address3")
    let spring = replicate len 0
    return $ bs1 ++ spring ++ bs2

ip6 :: Parser IPv6
ip6 = skipSpaces >> toIPv6 <$> ip6'

ip6' :: Parser [Int]
ip6' = ip4Embedded
   <|> do colon2
          bs <- option [] hexcolon
          format [] bs
   <|> try (do rs <- hexcolon
               check rs
               return rs)
   <|> do bs1 <- hexcolon2
          bs2 <- option [] hexcolon
          format bs1 bs2
  where
    hexcolon = hex `sepBy1` char ':'
    hexcolon2 = manyTill (hex <* char ':') (char ':')
    check bs = when (length bs /= 8) (fail "IPv6 address4")

ip4Embedded :: Parser [Int]
ip4Embedded = try (do colon2
                      bs <- beforeEmbedded
                      embedded <- ip4'
                      format [] (bs ++ ip4ToIp6 embedded))
              -- matches 2001:db8::192.0.2.1
          <|> try (do bs1 <- manyTill (try $ hex <* char ':') (char ':')
                      bs2 <- option [] beforeEmbedded
                      embedded <- ip4'
                      format bs1 (bs2 ++ ip4ToIp6 embedded))
              -- matches 2001:db8:11e:c00:aa:bb:192.0.2.1
          <|> try (do bs <- beforeEmbedded
                      embedded <- ip4'
                      let rs = bs ++ ip4ToIp6 embedded
                      check rs
                      return rs)
  where
    beforeEmbedded = many $ try $ hex <* char ':'
    ip4ToIp6 [a,b,c,d] = [ a `shiftL` 8 .|. b
                         , c `shiftL` 8 .|. d ]
    ip4ToIp6 _ = error "ip4ToIp6"
    check bs = when (length bs /= 8) (fail "IPv6 address4")

----------------------------------------------------------------
--
-- HostAddress and HostAddress6
--

-- | The 'fromHostAddress' function converts 'HostAddress' to 'IPv4'.
fromHostAddress :: HostAddress -> IPv4
fromHostAddress addr4
  | byteOrder == LittleEndian = IP4 $ fixByteOrder addr4
  | otherwise                 = IP4 addr4

-- | The 'toHostAddress' function converts 'IPv4' to 'HostAddress'.
toHostAddress :: IPv4 -> HostAddress
toHostAddress (IP4 addr4)
  | byteOrder == LittleEndian = fixByteOrder addr4
  | otherwise                 = addr4

-- | The 'fromHostAddress6' function converts 'HostAddress6' to 'IPv6'.
fromHostAddress6 :: HostAddress6 -> IPv6
fromHostAddress6 = IP6

-- | The 'toHostAddress6' function converts 'IPv6' to 'HostAddress6'.
toHostAddress6 :: IPv6 -> HostAddress6
toHostAddress6 (IP6 addr6) = addr6

fixByteOrder :: Word32 -> Word32
fixByteOrder s = d1 .|. d2 .|. d3 .|. d4
  where
    d1 = shiftL s 24
    d2 = shiftL s  8 .&. 0x00ff0000
    d3 = shiftR s  8 .&. 0x0000ff00
    d4 = shiftR s 24 .&. 0x000000ff

-- | Convert IPv4 address to IPv4-embedded-in-IPv6
ipv4ToIPv6 :: IPv4 -> IPv6
ipv4ToIPv6 ip = toIPv6b [0,0,0,0,0,0,0,0,0,0,0xff,0xff,i1,i2,i3,i4]
  where
    [i1,i2,i3,i4] = fromIPv4 ip

-- | Convert 'SockAddr' to 'IP'.
--
--   Since: 1.7.4.
fromSockAddr :: SockAddr -> Maybe (IP, PortNumber)
fromSockAddr (SockAddrInet  pn   ha)    = Just (IPv4 (fromHostAddress  ha),  pn)
fromSockAddr (SockAddrInet6 pn _ ha6 _) = Just (IPv6 (fromHostAddress6 ha6), pn)
fromSockAddr _                          = Nothing

-- | Convert 'IP' to 'SockAddr'.
--
--   Since: 1.7.8.
toSockAddr :: (IP, PortNumber) -> SockAddr
toSockAddr (IPv4 addr4, pn) = SockAddrInet  pn   (toHostAddress  addr4)
toSockAddr (IPv6 addr6, pn) = SockAddrInet6 pn 0 (toHostAddress6 addr6) 0