{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TupleSections #-}
{-# OPTIONS_HADDOCK not-home #-}
module Data.Profunctor.Indexed
(
Profunctor(..)
, lcoerce
, rcoerce
, Strong(..)
, Costrong(..)
, Choice(..)
, Cochoice(..)
, Visiting(..)
, Mapping(..)
, Traversing(..)
, Star(..)
, reStar
, Forget(..)
, reForget
, ForgetM(..)
, FunArrow(..)
, reFunArrow
, IxStar(..)
, IxForget(..)
, IxForgetM(..)
, IxFunArrow(..)
, StarA(..)
, runStarA
, IxStarA(..)
, runIxStarA
, Exchange(..)
, Store(..)
, Market(..)
, AffineMarket(..)
, Tagged(..)
, Context(..)
, (#.)
, (.#)
) where
import Data.Coerce (Coercible, coerce)
import Data.Functor.Const
import Data.Functor.Identity
newtype Star f i a b = Star { runStar :: a -> f b }
newtype Forget r i a b = Forget { runForget :: a -> r }
newtype ForgetM r i a b = ForgetM { runForgetM :: a -> Maybe r }
newtype FunArrow i a b = FunArrow { runFunArrow :: a -> b }
newtype IxStar f i a b = IxStar { runIxStar :: i -> a -> f b }
newtype IxForget r i a b = IxForget { runIxForget :: i -> a -> r }
newtype IxForgetM r i a b = IxForgetM { runIxForgetM :: i -> a -> Maybe r }
newtype IxFunArrow i a b = IxFunArrow { runIxFunArrow :: i -> a -> b }
data StarA f i a b = StarA (forall r. r -> f r) (a -> f b)
runStarA :: StarA f i a b -> a -> f b
runStarA (StarA _ k) = k
{-# INLINE runStarA #-}
data IxStarA f i a b = IxStarA (forall r. r -> f r) (i -> a -> f b)
runIxStarA :: IxStarA f i a b -> i -> a -> f b
runIxStarA (IxStarA _ k) = k
{-# INLINE runIxStarA #-}
reStar :: Star f i a b -> Star f j a b
reStar (Star k) = Star k
{-# INLINE reStar #-}
reForget :: Forget r i a b -> Forget r j a b
reForget (Forget k) = Forget k
{-# INLINE reForget #-}
reFunArrow :: FunArrow i a b -> FunArrow j a b
reFunArrow (FunArrow k) = FunArrow k
{-# INLINE reFunArrow #-}
class Profunctor p where
dimap :: (a -> b) -> (c -> d) -> p i b c -> p i a d
lmap :: (a -> b) -> p i b c -> p i a c
rmap :: (c -> d) -> p i b c -> p i b d
lcoerce' :: Coercible a b => p i a c -> p i b c
default lcoerce'
:: Coercible (p i a c) (p i b c)
=> p i a c
-> p i b c
lcoerce' = coerce
{-# INLINE lcoerce' #-}
rcoerce' :: Coercible a b => p i c a -> p i c b
default rcoerce'
:: Coercible (p i c a) (p i c b)
=> p i c a
-> p i c b
rcoerce' = coerce
{-# INLINE rcoerce' #-}
conjoined__
:: (p i a b -> p i s t)
-> (p i a b -> p j s t)
-> (p i a b -> p j s t)
default conjoined__
:: Coercible (p i s t) (p j s t)
=> (p i a b -> p i s t)
-> (p i a b -> p j s t)
-> (p i a b -> p j s t)
conjoined__ f _ = coerce . f
{-# INLINE conjoined__ #-}
ixcontramap :: (j -> i) -> p i a b -> p j a b
default ixcontramap
:: Coercible (p i a b) (p j a b)
=> (j -> i)
-> p i a b
-> p j a b
ixcontramap _ = coerce
{-# INLINE ixcontramap #-}
rcoerce :: (Coercible a b, Profunctor p) => p i c a -> p i c b
rcoerce = rcoerce'
{-# INLINE rcoerce #-}
lcoerce :: (Coercible a b, Profunctor p) => p i a c -> p i b c
lcoerce = lcoerce'
{-# INLINE lcoerce #-}
instance Functor f => Profunctor (StarA f) where
dimap f g (StarA point k) = StarA point (fmap g . k . f)
lmap f (StarA point k) = StarA point (k . f)
rmap g (StarA point k) = StarA point (fmap g . k)
{-# INLINE dimap #-}
{-# INLINE lmap #-}
{-# INLINE rmap #-}
rcoerce' = rmap coerce
{-# INLINE rcoerce' #-}
instance Functor f => Profunctor (Star f) where
dimap f g (Star k) = Star (fmap g . k . f)
lmap f (Star k) = Star (k . f)
rmap g (Star k) = Star (fmap g . k)
{-# INLINE dimap #-}
{-# INLINE lmap #-}
{-# INLINE rmap #-}
rcoerce' = rmap coerce
{-# INLINE rcoerce' #-}
instance Profunctor (Forget r) where
dimap f _ (Forget k) = Forget (k . f)
lmap f (Forget k) = Forget (k . f)
rmap _g (Forget k) = Forget k
{-# INLINE dimap #-}
{-# INLINE lmap #-}
{-# INLINE rmap #-}
instance Profunctor (ForgetM r) where
dimap f _ (ForgetM k) = ForgetM (k . f)
lmap f (ForgetM k) = ForgetM (k . f)
rmap _g (ForgetM k) = ForgetM k
{-# INLINE dimap #-}
{-# INLINE lmap #-}
{-# INLINE rmap #-}
instance Profunctor FunArrow where
dimap f g (FunArrow k) = FunArrow (g . k . f)
lmap f (FunArrow k) = FunArrow (k . f)
rmap g (FunArrow k) = FunArrow (g . k)
{-# INLINE dimap #-}
{-# INLINE lmap #-}
{-# INLINE rmap #-}
instance Functor f => Profunctor (IxStarA f) where
dimap f g (IxStarA point k) = IxStarA point (\i -> fmap g . k i . f)
lmap f (IxStarA point k) = IxStarA point (\i -> k i . f)
rmap g (IxStarA point k) = IxStarA point (\i -> fmap g . k i)
{-# INLINE dimap #-}
{-# INLINE lmap #-}
{-# INLINE rmap #-}
rcoerce' = rmap coerce
{-# INLINE rcoerce' #-}
conjoined__ _ f = f
ixcontramap ij (IxStarA point k) = IxStarA point $ \i -> k (ij i)
{-# INLINE conjoined__ #-}
{-# INLINE ixcontramap #-}
instance Functor f => Profunctor (IxStar f) where
dimap f g (IxStar k) = IxStar (\i -> fmap g . k i . f)
lmap f (IxStar k) = IxStar (\i -> k i . f)
rmap g (IxStar k) = IxStar (\i -> fmap g . k i)
{-# INLINE dimap #-}
{-# INLINE lmap #-}
{-# INLINE rmap #-}
rcoerce' = rmap coerce
{-# INLINE rcoerce' #-}
conjoined__ _ f = f
ixcontramap ij (IxStar k) = IxStar $ \i -> k (ij i)
{-# INLINE conjoined__ #-}
{-# INLINE ixcontramap #-}
instance Profunctor (IxForget r) where
dimap f _ (IxForget k) = IxForget (\i -> k i . f)
lmap f (IxForget k) = IxForget (\i -> k i . f)
rmap _g (IxForget k) = IxForget k
{-# INLINE dimap #-}
{-# INLINE lmap #-}
{-# INLINE rmap #-}
conjoined__ _ f = f
ixcontramap ij (IxForget k) = IxForget $ \i -> k (ij i)
{-# INLINE conjoined__ #-}
{-# INLINE ixcontramap #-}
instance Profunctor (IxForgetM r) where
dimap f _ (IxForgetM k) = IxForgetM (\i -> k i . f)
lmap f (IxForgetM k) = IxForgetM (\i -> k i . f)
rmap _g (IxForgetM k) = IxForgetM k
{-# INLINE dimap #-}
{-# INLINE lmap #-}
{-# INLINE rmap #-}
conjoined__ _ f = f
ixcontramap ij (IxForgetM k) = IxForgetM $ \i -> k (ij i)
{-# INLINE conjoined__ #-}
{-# INLINE ixcontramap #-}
instance Profunctor IxFunArrow where
dimap f g (IxFunArrow k) = IxFunArrow (\i -> g . k i . f)
lmap f (IxFunArrow k) = IxFunArrow (\i -> k i . f)
rmap g (IxFunArrow k) = IxFunArrow (\i -> g . k i)
{-# INLINE dimap #-}
{-# INLINE lmap #-}
{-# INLINE rmap #-}
conjoined__ _ f = f
ixcontramap ij (IxFunArrow k) = IxFunArrow $ \i -> k (ij i)
{-# INLINE conjoined__ #-}
{-# INLINE ixcontramap #-}
class Profunctor p => Strong p where
first' :: p i a b -> p i (a, c) (b, c)
second' :: p i a b -> p i (c, a) (c, b)
linear
:: (forall f. Functor f => (a -> f b) -> s -> f t)
-> p i a b
-> p i s t
linear f = dimap
((\(Context bt a) -> (a, bt)) . f (Context id))
(\(b, bt) -> bt b)
. first'
{-# INLINE linear #-}
ilinear
:: (forall f. Functor f => (i -> a -> f b) -> s -> f t)
-> p j a b
-> p (i -> j) s t
default ilinear
:: Coercible (p j s t) (p (i -> j) s t)
=> (forall f. Functor f => (i -> a -> f b) -> s -> f t)
-> p j a b
-> p (i -> j) s t
ilinear f = coerce . linear (\afb -> f $ \_ -> afb)
{-# INLINE ilinear #-}
instance Functor f => Strong (StarA f) where
first' (StarA point k) = StarA point $ \ ~(a, c) -> (\b' -> (b', c)) <$> k a
second' (StarA point k) = StarA point $ \ ~(c, a) -> (,) c <$> k a
{-# INLINE first' #-}
{-# INLINE second' #-}
linear f (StarA point k) = StarA point (f k)
{-# INLINE linear #-}
instance Functor f => Strong (Star f) where
first' (Star k) = Star $ \ ~(a, c) -> (\b' -> (b', c)) <$> k a
second' (Star k) = Star $ \ ~(c, a) -> (,) c <$> k a
{-# INLINE first' #-}
{-# INLINE second' #-}
linear f (Star k) = Star (f k)
{-# INLINE linear #-}
instance Strong (Forget r) where
first' (Forget k) = Forget (k . fst)
second' (Forget k) = Forget (k . snd)
{-# INLINE first' #-}
{-# INLINE second' #-}
linear f (Forget k) = Forget (getConst #. f (Const #. k))
{-# INLINE linear #-}
instance Strong (ForgetM r) where
first' (ForgetM k) = ForgetM (k . fst)
second' (ForgetM k) = ForgetM (k . snd)
{-# INLINE first' #-}
{-# INLINE second' #-}
linear f (ForgetM k) = ForgetM (getConst #. f (Const #. k))
{-# INLINE linear #-}
instance Strong FunArrow where
first' (FunArrow k) = FunArrow $ \ ~(a, c) -> (k a, c)
second' (FunArrow k) = FunArrow $ \ ~(c, a) -> (c, k a)
{-# INLINE first' #-}
{-# INLINE second' #-}
linear f (FunArrow k) = FunArrow $ runIdentity #. f (Identity #. k)
{-# INLINE linear #-}
instance Functor f => Strong (IxStarA f) where
first' (IxStarA point k) = IxStarA point $ \i ~(a, c) -> (\b' -> (b', c)) <$> k i a
second' (IxStarA point k) = IxStarA point $ \i ~(c, a) -> (,) c <$> k i a
{-# INLINE first' #-}
{-# INLINE second' #-}
linear f (IxStarA point k) = IxStarA point $ \i -> f (k i)
ilinear f (IxStarA point k) = IxStarA point $ \ij -> f $ \i -> k (ij i)
{-# INLINE linear #-}
{-# INLINE ilinear #-}
instance Functor f => Strong (IxStar f) where
first' (IxStar k) = IxStar $ \i ~(a, c) -> (\b' -> (b', c)) <$> k i a
second' (IxStar k) = IxStar $ \i ~(c, a) -> (,) c <$> k i a
{-# INLINE first' #-}
{-# INLINE second' #-}
linear f (IxStar k) = IxStar $ \i -> f (k i)
ilinear f (IxStar k) = IxStar $ \ij -> f $ \i -> k (ij i)
{-# INLINE linear #-}
{-# INLINE ilinear #-}
instance Strong (IxForget r) where
first' (IxForget k) = IxForget $ \i -> k i . fst
second' (IxForget k) = IxForget $ \i -> k i . snd
{-# INLINE first' #-}
{-# INLINE second' #-}
linear f (IxForget k) = IxForget $ \i -> getConst #. f (Const #. k i)
ilinear f (IxForget k) = IxForget $ \ij -> getConst #. f (\i -> Const #. k (ij i))
{-# INLINE linear #-}
{-# INLINE ilinear #-}
instance Strong (IxForgetM r) where
first' (IxForgetM k) = IxForgetM $ \i -> k i . fst
second' (IxForgetM k) = IxForgetM $ \i -> k i . snd
{-# INLINE first' #-}
{-# INLINE second' #-}
linear f (IxForgetM k) = IxForgetM $ \i -> getConst #. f (Const #. k i)
ilinear f (IxForgetM k) = IxForgetM $ \ij -> getConst #. f (\i -> Const #. k (ij i))
{-# INLINE linear #-}
{-# INLINE ilinear #-}
instance Strong IxFunArrow where
first' (IxFunArrow k) = IxFunArrow $ \i ~(a, c) -> (k i a, c)
second' (IxFunArrow k) = IxFunArrow $ \i ~(c, a) -> (c, k i a)
{-# INLINE first' #-}
{-# INLINE second' #-}
linear f (IxFunArrow k) = IxFunArrow $ \i ->
runIdentity #. f (Identity #. k i)
ilinear f (IxFunArrow k) = IxFunArrow $ \ij ->
runIdentity #. f (\i -> Identity #. k (ij i))
{-# INLINE linear #-}
{-# INLINE ilinear #-}
class Profunctor p => Costrong p where
unfirst :: p i (a, d) (b, d) -> p i a b
unsecond :: p i (d, a) (d, b) -> p i a b
class Profunctor p => Choice p where
left' :: p i a b -> p i (Either a c) (Either b c)
right' :: p i a b -> p i (Either c a) (Either c b)
instance Functor f => Choice (StarA f) where
left' (StarA point k) = StarA point $ either (fmap Left . k) (point . Right)
right' (StarA point k) = StarA point $ either (point . Left) (fmap Right . k)
{-# INLINE left' #-}
{-# INLINE right' #-}
instance Applicative f => Choice (Star f) where
left' (Star k) = Star $ either (fmap Left . k) (pure . Right)
right' (Star k) = Star $ either (pure . Left) (fmap Right . k)
{-# INLINE left' #-}
{-# INLINE right' #-}
instance Monoid r => Choice (Forget r) where
left' (Forget k) = Forget $ either k (const mempty)
right' (Forget k) = Forget $ either (const mempty) k
{-# INLINE left' #-}
{-# INLINE right' #-}
instance Choice (ForgetM r) where
left' (ForgetM k) = ForgetM $ either k (const Nothing)
right' (ForgetM k) = ForgetM $ either (const Nothing) k
{-# INLINE left' #-}
{-# INLINE right' #-}
instance Choice FunArrow where
left' (FunArrow k) = FunArrow $ either (Left . k) Right
right' (FunArrow k) = FunArrow $ either Left (Right . k)
{-# INLINE left' #-}
{-# INLINE right' #-}
instance Functor f => Choice (IxStarA f) where
left' (IxStarA point k) =
IxStarA point $ \i -> either (fmap Left . k i) (point . Right)
right' (IxStarA point k) =
IxStarA point $ \i -> either (point . Left) (fmap Right . k i)
{-# INLINE left' #-}
{-# INLINE right' #-}
instance Applicative f => Choice (IxStar f) where
left' (IxStar k) = IxStar $ \i -> either (fmap Left . k i) (pure . Right)
right' (IxStar k) = IxStar $ \i -> either (pure . Left) (fmap Right . k i)
{-# INLINE left' #-}
{-# INLINE right' #-}
instance Monoid r => Choice (IxForget r) where
left' (IxForget k) = IxForget $ \i -> either (k i) (const mempty)
right' (IxForget k) = IxForget $ \i -> either (const mempty) (k i)
{-# INLINE left' #-}
{-# INLINE right' #-}
instance Choice (IxForgetM r) where
left' (IxForgetM k) = IxForgetM $ \i -> either (k i) (const Nothing)
right' (IxForgetM k) = IxForgetM $ \i -> either (const Nothing) (k i)
{-# INLINE left' #-}
{-# INLINE right' #-}
instance Choice IxFunArrow where
left' (IxFunArrow k) = IxFunArrow $ \i -> either (Left . k i) Right
right' (IxFunArrow k) = IxFunArrow $ \i -> either Left (Right . k i)
{-# INLINE left' #-}
{-# INLINE right' #-}
class Profunctor p => Cochoice p where
unleft :: p i (Either a d) (Either b d) -> p i a b
unright :: p i (Either d a) (Either d b) -> p i a b
instance Cochoice (Forget r) where
unleft (Forget k) = Forget (k . Left)
unright (Forget k) = Forget (k . Right)
{-# INLINE unleft #-}
{-# INLINE unright #-}
instance Cochoice (ForgetM r) where
unleft (ForgetM k) = ForgetM (k . Left)
unright (ForgetM k) = ForgetM (k . Right)
{-# INLINE unleft #-}
{-# INLINE unright #-}
instance Cochoice (IxForget r) where
unleft (IxForget k) = IxForget $ \i -> k i . Left
unright (IxForget k) = IxForget $ \i -> k i . Right
{-# INLINE unleft #-}
{-# INLINE unright #-}
instance Cochoice (IxForgetM r) where
unleft (IxForgetM k) = IxForgetM (\i -> k i . Left)
unright (IxForgetM k) = IxForgetM (\i -> k i . Right)
{-# INLINE unleft #-}
{-# INLINE unright #-}
class (Choice p, Strong p) => Visiting p where
visit
:: forall i s t a b
. (forall f. Functor f => (forall r. r -> f r) -> (a -> f b) -> s -> f t)
-> p i a b
-> p i s t
visit f =
let match :: s -> Either a t
match s = f Right Left s
update :: s -> b -> t
update s b = runIdentity $ f Identity (\_ -> Identity b) s
in dimap (\s -> (match s, s))
(\(ebt, s) -> either (update s) id ebt)
. first'
. left'
{-# INLINE visit #-}
ivisit
:: (forall f. Functor f => (forall r. r -> f r) -> (i -> a -> f b) -> s -> f t)
-> p j a b
-> p (i -> j) s t
default ivisit
:: Coercible (p j s t) (p (i -> j) s t)
=> (forall f. Functor f => (forall r. r -> f r) -> (i -> a -> f b) -> s -> f t)
-> p j a b
-> p (i -> j) s t
ivisit f = coerce . visit (\point afb -> f point $ \_ -> afb)
{-# INLINE ivisit #-}
instance Functor f => Visiting (StarA f) where
visit f (StarA point k) = StarA point $ f point k
ivisit f (StarA point k) = StarA point $ f point (\_ -> k)
{-# INLINE visit #-}
{-# INLINE ivisit #-}
instance Applicative f => Visiting (Star f) where
visit f (Star k) = Star $ f pure k
ivisit f (Star k) = Star $ f pure (\_ -> k)
{-# INLINE visit #-}
{-# INLINE ivisit #-}
instance Monoid r => Visiting (Forget r) where
visit f (Forget k) = Forget $ getConst #. f pure (Const #. k)
ivisit f (Forget k) = Forget $ getConst #. f pure (\_ -> Const #. k)
{-# INLINE visit #-}
{-# INLINE ivisit #-}
instance Visiting (ForgetM r) where
visit f (ForgetM k) =
ForgetM $ getConst #. f (\_ -> Const Nothing) (Const #. k)
ivisit f (ForgetM k) =
ForgetM $ getConst #. f (\_ -> Const Nothing) (\_ -> Const #. k)
{-# INLINE visit #-}
{-# INLINE ivisit #-}
instance Visiting FunArrow where
visit f (FunArrow k) = FunArrow $ runIdentity #. f pure (Identity #. k)
ivisit f (FunArrow k) = FunArrow $ runIdentity #. f pure (\_ -> Identity #. k)
{-# INLINE visit #-}
{-# INLINE ivisit #-}
instance Functor f => Visiting (IxStarA f) where
visit f (IxStarA point k) = IxStarA point $ \i -> f point (k i)
ivisit f (IxStarA point k) = IxStarA point $ \ij -> f point $ \i -> k (ij i)
{-# INLINE visit #-}
{-# INLINE ivisit #-}
instance Applicative f => Visiting (IxStar f) where
visit f (IxStar k) = IxStar $ \i -> f pure (k i)
ivisit f (IxStar k) = IxStar $ \ij -> f pure $ \i -> k (ij i)
{-# INLINE visit #-}
{-# INLINE ivisit #-}
instance Monoid r => Visiting (IxForget r) where
visit f (IxForget k) =
IxForget $ \i -> getConst #. f pure (Const #. k i)
ivisit f (IxForget k) =
IxForget $ \ij -> getConst #. f pure (\i -> Const #. k (ij i))
{-# INLINE visit #-}
{-# INLINE ivisit #-}
instance Visiting (IxForgetM r) where
visit f (IxForgetM k) =
IxForgetM $ \i -> getConst #. f (\_ -> Const Nothing) (Const #. k i)
ivisit f (IxForgetM k) =
IxForgetM $ \ij -> getConst #. f (\_ -> Const Nothing) (\i -> Const #. k (ij i))
{-# INLINE visit #-}
{-# INLINE ivisit #-}
instance Visiting IxFunArrow where
visit f (IxFunArrow k) =
IxFunArrow $ \i -> runIdentity #. f pure (Identity #. k i)
ivisit f (IxFunArrow k) =
IxFunArrow $ \ij -> runIdentity #. f pure (\i -> Identity #. k (ij i))
{-# INLINE visit #-}
{-# INLINE ivisit #-}
class Visiting p => Traversing p where
wander
:: (forall f. Applicative f => (a -> f b) -> s -> f t)
-> p i a b
-> p i s t
iwander
:: (forall f. Applicative f => (i -> a -> f b) -> s -> f t)
-> p j a b
-> p (i -> j) s t
instance Applicative f => Traversing (Star f) where
wander f (Star k) = Star $ f k
iwander f (Star k) = Star $ f (\_ -> k)
{-# INLINE wander #-}
{-# INLINE iwander #-}
instance Monoid r => Traversing (Forget r) where
wander f (Forget k) = Forget $ getConst #. f (Const #. k)
iwander f (Forget k) = Forget $ getConst #. f (\_ -> Const #. k)
{-# INLINE wander #-}
{-# INLINE iwander #-}
instance Traversing FunArrow where
wander f (FunArrow k) = FunArrow $ runIdentity #. f (Identity #. k)
iwander f (FunArrow k) = FunArrow $ runIdentity #. f (\_ -> Identity #. k)
{-# INLINE wander #-}
{-# INLINE iwander #-}
instance Applicative f => Traversing (IxStar f) where
wander f (IxStar k) = IxStar $ \i -> f (k i)
iwander f (IxStar k) = IxStar $ \ij -> f $ \i -> k (ij i)
{-# INLINE wander #-}
{-# INLINE iwander #-}
instance Monoid r => Traversing (IxForget r) where
wander f (IxForget k) =
IxForget $ \i -> getConst #. f (Const #. k i)
iwander f (IxForget k) =
IxForget $ \ij -> getConst #. f (\i -> Const #. k (ij i))
{-# INLINE wander #-}
{-# INLINE iwander #-}
instance Traversing IxFunArrow where
wander f (IxFunArrow k) =
IxFunArrow $ \i -> runIdentity #. f (Identity #. k i)
iwander f (IxFunArrow k) =
IxFunArrow $ \ij -> runIdentity #. f (\i -> Identity #. k (ij i))
{-# INLINE wander #-}
{-# INLINE iwander #-}
class Traversing p => Mapping p where
roam
:: ((a -> b) -> s -> t)
-> p i a b
-> p i s t
iroam
:: ((i -> a -> b) -> s -> t)
-> p j a b
-> p (i -> j) s t
instance Mapping FunArrow where
roam f (FunArrow k) = FunArrow $ f k
iroam f (FunArrow k) = FunArrow $ f (const k)
{-# INLINE roam #-}
{-# INLINE iroam #-}
instance Mapping IxFunArrow where
roam f (IxFunArrow k) = IxFunArrow $ \i -> f (k i)
iroam f (IxFunArrow k) = IxFunArrow $ \ij -> f $ \i -> k (ij i)
{-# INLINE roam #-}
{-# INLINE iroam #-}
data Exchange a b i s t =
Exchange (s -> a) (b -> t)
instance Profunctor (Exchange a b) where
dimap ss tt (Exchange sa bt) = Exchange (sa . ss) (tt . bt)
lmap ss (Exchange sa bt) = Exchange (sa . ss) bt
rmap tt (Exchange sa bt) = Exchange sa (tt . bt)
{-# INLINE dimap #-}
{-# INLINE lmap #-}
{-# INLINE rmap #-}
data Store a b i s t = Store (s -> a) (s -> b -> t)
instance Profunctor (Store a b) where
dimap f g (Store get set) = Store (get . f) (\s -> g . set (f s))
lmap f (Store get set) = Store (get . f) (\s -> set (f s))
rmap g (Store get set) = Store get (\s -> g . set s)
{-# INLINE dimap #-}
{-# INLINE lmap #-}
{-# INLINE rmap #-}
instance Strong (Store a b) where
first' (Store get set) = Store (get . fst) (\(s, c) b -> (set s b, c))
second' (Store get set) = Store (get . snd) (\(c, s) b -> (c, set s b))
{-# INLINE first' #-}
{-# INLINE second' #-}
data Market a b i s t = Market (b -> t) (s -> Either t a)
instance Functor (Market a b i s) where
fmap f (Market bt seta) = Market (f . bt) (either (Left . f) Right . seta)
{-# INLINE fmap #-}
instance Profunctor (Market a b) where
dimap f g (Market bt seta) = Market (g . bt) (either (Left . g) Right . seta . f)
lmap f (Market bt seta) = Market bt (seta . f)
rmap g (Market bt seta) = Market (g . bt) (either (Left . g) Right . seta)
{-# INLINE dimap #-}
{-# INLINE lmap #-}
{-# INLINE rmap #-}
instance Choice (Market a b) where
left' (Market bt seta) = Market (Left . bt) $ \sc -> case sc of
Left s -> case seta s of
Left t -> Left (Left t)
Right a -> Right a
Right c -> Left (Right c)
right' (Market bt seta) = Market (Right . bt) $ \cs -> case cs of
Left c -> Left (Left c)
Right s -> case seta s of
Left t -> Left (Right t)
Right a -> Right a
{-# INLINE left' #-}
{-# INLINE right' #-}
data AffineMarket a b i s t = AffineMarket (s -> b -> t) (s -> Either t a)
instance Profunctor (AffineMarket a b) where
dimap f g (AffineMarket sbt seta) = AffineMarket
(\s b -> g (sbt (f s) b))
(either (Left . g) Right . seta . f)
lmap f (AffineMarket sbt seta) = AffineMarket
(\s b -> sbt (f s) b)
(seta . f)
rmap g (AffineMarket sbt seta) = AffineMarket
(\s b -> g (sbt s b))
(either (Left . g) Right . seta)
{-# INLINE dimap #-}
{-# INLINE lmap #-}
{-# INLINE rmap #-}
instance Choice (AffineMarket a b) where
left' (AffineMarket sbt seta) = AffineMarket
(\e b -> bimap (flip sbt b) id e)
(\sc -> case sc of
Left s -> bimap Left id (seta s)
Right c -> Left (Right c))
right' (AffineMarket sbt seta) = AffineMarket
(\e b -> bimap id (flip sbt b) e)
(\sc -> case sc of
Left c -> Left (Left c)
Right s -> bimap Right id (seta s))
{-# INLINE left' #-}
{-# INLINE right' #-}
instance Strong (AffineMarket a b) where
first' (AffineMarket sbt seta) = AffineMarket
(\(a, c) b -> (sbt a b, c))
(\(a, c) -> bimap (,c) id (seta a))
second' (AffineMarket sbt seta) = AffineMarket
(\(c, a) b -> (c, sbt a b))
(\(c, a) -> bimap (c,) id (seta a))
{-# INLINE first' #-}
{-# INLINE second' #-}
bimap :: (a -> b) -> (c -> d) -> Either a c -> Either b d
bimap f g = either (Left . f) (Right . g)
instance Visiting (AffineMarket a b)
newtype Tagged i a b = Tagged { unTagged :: b }
instance Functor (Tagged i a) where
fmap f = Tagged #. f .# unTagged
{-# INLINE fmap #-}
instance Profunctor Tagged where
dimap _f g = Tagged #. g .# unTagged
lmap _f = coerce
rmap g = Tagged #. g .# unTagged
{-# INLINE dimap #-}
{-# INLINE lmap #-}
{-# INLINE rmap #-}
instance Choice Tagged where
left' = Tagged #. Left .# unTagged
right' = Tagged #. Right .# unTagged
{-# INLINE left' #-}
{-# INLINE right' #-}
instance Costrong Tagged where
unfirst (Tagged bd) = Tagged (fst bd)
unsecond (Tagged db) = Tagged (snd db)
{-# INLINE unfirst #-}
{-# INLINE unsecond #-}
data Context a b t = Context (b -> t) a
deriving Functor
(#.) :: Coercible b c => (b -> c) -> (a -> b) -> (a -> c)
(#.) _f = coerce
infixl 8 .#
{-# INLINE (#.) #-}
(.#) :: Coercible a b => (b -> c) -> (a -> b) -> (a -> c)
(.#) f _g = coerce f
infixr 9 #.
{-# INLINE (.#) #-}