{-# LANGUAGE CPP #-}
module Control.Effect.Plugin.Fundep.Unification where
import Data.Bool
import Data.Function (on)
import qualified Data.Set as S
#if __GLASGOW_HASKELL__ >= 810
import Constraint
#else
import TcRnTypes
#endif
import Type
data SolveContext
=
FunctionDef
| InterpreterUse Bool
deriving (SolveContext -> SolveContext -> Bool
(SolveContext -> SolveContext -> Bool)
-> (SolveContext -> SolveContext -> Bool) -> Eq SolveContext
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: SolveContext -> SolveContext -> Bool
$c/= :: SolveContext -> SolveContext -> Bool
== :: SolveContext -> SolveContext -> Bool
$c== :: SolveContext -> SolveContext -> Bool
Eq, Eq SolveContext
Eq SolveContext
-> (SolveContext -> SolveContext -> Ordering)
-> (SolveContext -> SolveContext -> Bool)
-> (SolveContext -> SolveContext -> Bool)
-> (SolveContext -> SolveContext -> Bool)
-> (SolveContext -> SolveContext -> Bool)
-> (SolveContext -> SolveContext -> SolveContext)
-> (SolveContext -> SolveContext -> SolveContext)
-> Ord SolveContext
SolveContext -> SolveContext -> Bool
SolveContext -> SolveContext -> Ordering
SolveContext -> SolveContext -> SolveContext
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
min :: SolveContext -> SolveContext -> SolveContext
$cmin :: SolveContext -> SolveContext -> SolveContext
max :: SolveContext -> SolveContext -> SolveContext
$cmax :: SolveContext -> SolveContext -> SolveContext
>= :: SolveContext -> SolveContext -> Bool
$c>= :: SolveContext -> SolveContext -> Bool
> :: SolveContext -> SolveContext -> Bool
$c> :: SolveContext -> SolveContext -> Bool
<= :: SolveContext -> SolveContext -> Bool
$c<= :: SolveContext -> SolveContext -> Bool
< :: SolveContext -> SolveContext -> Bool
$c< :: SolveContext -> SolveContext -> Bool
compare :: SolveContext -> SolveContext -> Ordering
$ccompare :: SolveContext -> SolveContext -> Ordering
$cp1Ord :: Eq SolveContext
Ord, Int -> SolveContext -> ShowS
[SolveContext] -> ShowS
SolveContext -> String
(Int -> SolveContext -> ShowS)
-> (SolveContext -> String)
-> ([SolveContext] -> ShowS)
-> Show SolveContext
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [SolveContext] -> ShowS
$cshowList :: [SolveContext] -> ShowS
show :: SolveContext -> String
$cshow :: SolveContext -> String
showsPrec :: Int -> SolveContext -> ShowS
$cshowsPrec :: Int -> SolveContext -> ShowS
Show)
mustUnify :: SolveContext -> Bool
mustUnify :: SolveContext -> Bool
mustUnify SolveContext
FunctionDef = Bool
True
mustUnify (InterpreterUse Bool
b) = Bool
b
canUnifyRecursive
:: SolveContext
-> Type
-> Type
-> Bool
canUnifyRecursive :: SolveContext -> Type -> Type -> Bool
canUnifyRecursive SolveContext
solve_ctx = Bool -> Type -> Type -> Bool
go Bool
True
where
poly_given_ok :: Bool
poly_given_ok :: Bool
poly_given_ok =
case SolveContext
solve_ctx of
InterpreterUse Bool
_ -> Bool
True
SolveContext
FunctionDef -> Bool
False
go :: Bool -> Type -> Type -> Bool
go :: Bool -> Type -> Type -> Bool
go Bool
is_first Type
wanted Type
given =
let (Type
w, [Type]
ws) = Type -> (Type, [Type])
splitAppTys Type
wanted
(Type
g, [Type]
gs) = Type -> (Type, [Type])
splitAppTys Type
given
in (Bool -> Bool -> Bool
&& (Type -> Type -> Bool)
-> (Type -> Type -> Bool) -> Bool -> Type -> Type -> Bool
forall a. a -> a -> Bool -> a
bool (Bool -> Type -> Type -> Bool
canUnify Bool
poly_given_ok) Type -> Type -> Bool
eqType Bool
is_first Type
w Type
g)
(Bool -> Bool)
-> (((Type, Type) -> Bool) -> Bool)
-> ((Type, Type) -> Bool)
-> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (((Type, Type) -> Bool) -> [(Type, Type)] -> Bool)
-> [(Type, Type)] -> ((Type, Type) -> Bool) -> Bool
forall a b c. (a -> b -> c) -> b -> a -> c
flip ((Type, Type) -> Bool) -> [(Type, Type)] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all ([Type] -> [Type] -> [(Type, Type)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Type]
ws [Type]
gs)
(((Type, Type) -> Bool) -> Bool) -> ((Type, Type) -> Bool) -> Bool
forall a b. (a -> b) -> a -> b
$ \(Type
wt, Type
gt) -> Bool -> Type -> Type -> Bool
canUnify Bool
poly_given_ok Type
wt Type
gt Bool -> Bool -> Bool
|| Bool -> Type -> Type -> Bool
go Bool
False Type
wt Type
gt
canUnify :: Bool -> Type -> Type -> Bool
canUnify :: Bool -> Type -> Type -> Bool
canUnify Bool
poly_given_ok Type
wt Type
gt =
[Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
or [ Type -> Bool
isTyVarTy Type
wt
, Type -> Bool
isTyVarTy Type
gt Bool -> Bool -> Bool
&& Bool
poly_given_ok
, Type -> Type -> Bool
eqType Type
wt Type
gt
]
data Unification = Unification
{ Unification -> OrdType
_unifyLHS :: OrdType
, Unification -> OrdType
_unifyRHS :: OrdType
}
deriving (Unification -> Unification -> Bool
(Unification -> Unification -> Bool)
-> (Unification -> Unification -> Bool) -> Eq Unification
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: Unification -> Unification -> Bool
$c/= :: Unification -> Unification -> Bool
== :: Unification -> Unification -> Bool
$c== :: Unification -> Unification -> Bool
Eq, Eq Unification
Eq Unification
-> (Unification -> Unification -> Ordering)
-> (Unification -> Unification -> Bool)
-> (Unification -> Unification -> Bool)
-> (Unification -> Unification -> Bool)
-> (Unification -> Unification -> Bool)
-> (Unification -> Unification -> Unification)
-> (Unification -> Unification -> Unification)
-> Ord Unification
Unification -> Unification -> Bool
Unification -> Unification -> Ordering
Unification -> Unification -> Unification
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
min :: Unification -> Unification -> Unification
$cmin :: Unification -> Unification -> Unification
max :: Unification -> Unification -> Unification
$cmax :: Unification -> Unification -> Unification
>= :: Unification -> Unification -> Bool
$c>= :: Unification -> Unification -> Bool
> :: Unification -> Unification -> Bool
$c> :: Unification -> Unification -> Bool
<= :: Unification -> Unification -> Bool
$c<= :: Unification -> Unification -> Bool
< :: Unification -> Unification -> Bool
$c< :: Unification -> Unification -> Bool
compare :: Unification -> Unification -> Ordering
$ccompare :: Unification -> Unification -> Ordering
$cp1Ord :: Eq Unification
Ord)
newtype OrdType = OrdType
{ OrdType -> Type
getOrdType :: Type
}
instance Eq OrdType where
== :: OrdType -> OrdType -> Bool
(==) = Type -> Type -> Bool
eqType (Type -> Type -> Bool)
-> (OrdType -> Type) -> OrdType -> OrdType -> Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` OrdType -> Type
getOrdType
instance Ord OrdType where
compare :: OrdType -> OrdType -> Ordering
compare = Type -> Type -> Ordering
nonDetCmpType (Type -> Type -> Ordering)
-> (OrdType -> Type) -> OrdType -> OrdType -> Ordering
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` OrdType -> Type
getOrdType
unzipNewWanteds
:: S.Set Unification
-> [(Unification, Ct)]
-> ([Unification], [Ct])
unzipNewWanteds :: Set Unification -> [(Unification, Ct)] -> ([Unification], [Ct])
unzipNewWanteds Set Unification
old = [(Unification, Ct)] -> ([Unification], [Ct])
forall a b. [(a, b)] -> ([a], [b])
unzip ([(Unification, Ct)] -> ([Unification], [Ct]))
-> ([(Unification, Ct)] -> [(Unification, Ct)])
-> [(Unification, Ct)]
-> ([Unification], [Ct])
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((Unification, Ct) -> Bool)
-> [(Unification, Ct)] -> [(Unification, Ct)]
forall a. (a -> Bool) -> [a] -> [a]
filter (Bool -> Bool
not (Bool -> Bool)
-> ((Unification, Ct) -> Bool) -> (Unification, Ct) -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Unification -> Set Unification -> Bool)
-> Set Unification -> Unification -> Bool
forall a b c. (a -> b -> c) -> b -> a -> c
flip Unification -> Set Unification -> Bool
forall a. Ord a => a -> Set a -> Bool
S.member Set Unification
old (Unification -> Bool)
-> ((Unification, Ct) -> Unification) -> (Unification, Ct) -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Unification, Ct) -> Unification
forall a b. (a, b) -> a
fst)