Copyright | Will Thompson and Iñaki García Etxebarria |
---|---|
License | LGPL-2.1 |
Maintainer | Iñaki García Etxebarria |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
A FrameClock
tells the application when to update and repaint a
window. This may be synced to the vertical refresh rate of the
monitor, for example. Even when the frame clock uses a simple timer
rather than a hardware-based vertical sync, the frame clock helps
because it ensures everything paints at the same time (reducing the
total number of frames). The frame clock can also automatically
stop painting when it knows the frames will not be visible, or
scale back animation framerates.
FrameClock
is designed to be compatible with an OpenGL-based
implementation or with mozRequestAnimationFrame in Firefox,
for example.
A frame clock is idle until someone requests a frame with
frameClockRequestPhase
. At some later point that makes
sense for the synchronization being implemented, the clock will
process a frame and emit signals for each phase that has been
requested. (See the signals of the FrameClock
class for
documentation of the phases. FrameClockPhaseUpdate
and the
FrameClock::update signal are most interesting for application
writers, and are used to update the animations, using the frame time
given by frameClockGetFrameTime
.
The frame time is reported in microseconds and generally in the same
timescale as getMonotonicTime
, however, it is not the same
as getMonotonicTime
. The frame time does not advance during
the time a frame is being painted, and outside of a frame, an attempt
is made so that all calls to frameClockGetFrameTime
that
are called at a “similar” time get the same value. This means that
if different animations are timed by looking at the difference in
time between an initial value from frameClockGetFrameTime
and the value inside the FrameClock::update signal of the clock,
they will stay exactly synchronized.
Synopsis
- newtype FrameClock = FrameClock (ManagedPtr FrameClock)
- class (GObject o, IsDescendantOf FrameClock o) => IsFrameClock o
- toFrameClock :: (MonadIO m, IsFrameClock o) => o -> m FrameClock
- frameClockBeginUpdating :: (HasCallStack, MonadIO m, IsFrameClock a) => a -> m ()
- frameClockEndUpdating :: (HasCallStack, MonadIO m, IsFrameClock a) => a -> m ()
- frameClockGetCurrentTimings :: (HasCallStack, MonadIO m, IsFrameClock a) => a -> m (Maybe FrameTimings)
- frameClockGetFrameCounter :: (HasCallStack, MonadIO m, IsFrameClock a) => a -> m Int64
- frameClockGetFrameTime :: (HasCallStack, MonadIO m, IsFrameClock a) => a -> m Int64
- frameClockGetHistoryStart :: (HasCallStack, MonadIO m, IsFrameClock a) => a -> m Int64
- frameClockGetRefreshInfo :: (HasCallStack, MonadIO m, IsFrameClock a) => a -> Int64 -> m (Int64, Int64)
- frameClockGetTimings :: (HasCallStack, MonadIO m, IsFrameClock a) => a -> Int64 -> m (Maybe FrameTimings)
- frameClockRequestPhase :: (HasCallStack, MonadIO m, IsFrameClock a) => a -> [FrameClockPhase] -> m ()
- type FrameClockAfterPaintCallback = IO ()
- afterFrameClockAfterPaint :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockAfterPaintCallback) -> m SignalHandlerId
- onFrameClockAfterPaint :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockAfterPaintCallback) -> m SignalHandlerId
- type FrameClockBeforePaintCallback = IO ()
- afterFrameClockBeforePaint :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockBeforePaintCallback) -> m SignalHandlerId
- onFrameClockBeforePaint :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockBeforePaintCallback) -> m SignalHandlerId
- type FrameClockFlushEventsCallback = IO ()
- afterFrameClockFlushEvents :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockFlushEventsCallback) -> m SignalHandlerId
- onFrameClockFlushEvents :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockFlushEventsCallback) -> m SignalHandlerId
- type FrameClockLayoutCallback = IO ()
- afterFrameClockLayout :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockLayoutCallback) -> m SignalHandlerId
- onFrameClockLayout :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockLayoutCallback) -> m SignalHandlerId
- type FrameClockPaintCallback = IO ()
- afterFrameClockPaint :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockPaintCallback) -> m SignalHandlerId
- onFrameClockPaint :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockPaintCallback) -> m SignalHandlerId
- type FrameClockResumeEventsCallback = IO ()
- afterFrameClockResumeEvents :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockResumeEventsCallback) -> m SignalHandlerId
- onFrameClockResumeEvents :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockResumeEventsCallback) -> m SignalHandlerId
- type FrameClockUpdateCallback = IO ()
- afterFrameClockUpdate :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockUpdateCallback) -> m SignalHandlerId
- onFrameClockUpdate :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockUpdateCallback) -> m SignalHandlerId
Exported types
newtype FrameClock Source #
Memory-managed wrapper type.
FrameClock (ManagedPtr FrameClock) |
Instances
Eq FrameClock Source # | |
Defined in GI.Gdk.Objects.FrameClock (==) :: FrameClock -> FrameClock -> Bool # (/=) :: FrameClock -> FrameClock -> Bool # | |
GObject FrameClock Source # | |
Defined in GI.Gdk.Objects.FrameClock | |
ManagedPtrNewtype FrameClock Source # | |
Defined in GI.Gdk.Objects.FrameClock toManagedPtr :: FrameClock -> ManagedPtr FrameClock | |
TypedObject FrameClock Source # | |
Defined in GI.Gdk.Objects.FrameClock | |
HasParentTypes FrameClock Source # | |
Defined in GI.Gdk.Objects.FrameClock | |
IsGValue (Maybe FrameClock) Source # | Convert |
Defined in GI.Gdk.Objects.FrameClock gvalueGType_ :: IO GType gvalueSet_ :: Ptr GValue -> Maybe FrameClock -> IO () gvalueGet_ :: Ptr GValue -> IO (Maybe FrameClock) | |
type ParentTypes FrameClock Source # | |
Defined in GI.Gdk.Objects.FrameClock type ParentTypes FrameClock = '[Object] |
class (GObject o, IsDescendantOf FrameClock o) => IsFrameClock o Source #
Type class for types which can be safely cast to FrameClock
, for instance with toFrameClock
.
Instances
(GObject o, IsDescendantOf FrameClock o) => IsFrameClock o Source # | |
Defined in GI.Gdk.Objects.FrameClock |
toFrameClock :: (MonadIO m, IsFrameClock o) => o -> m FrameClock Source #
Cast to FrameClock
, for types for which this is known to be safe. For general casts, use castTo
.
Methods
Click to display all available methods, including inherited ones
Methods
beginUpdating, bindProperty, bindPropertyFull, endUpdating, forceFloating, freezeNotify, getv, isFloating, notify, notifyByPspec, ref, refSink, requestPhase, runDispose, stealData, stealQdata, thawNotify, unref, watchClosure.
Getters
getCurrentTimings, getData, getFrameCounter, getFrameTime, getHistoryStart, getProperty, getQdata, getRefreshInfo, getTimings.
Setters
beginUpdating
frameClockBeginUpdating Source #
:: (HasCallStack, MonadIO m, IsFrameClock a) | |
=> a |
|
-> m () |
Starts updates for an animation. Until a matching call to
frameClockEndUpdating
is made, the frame clock will continually
request a new frame with the FrameClockPhaseUpdate
phase.
This function may be called multiple times and frames will be
requested until frameClockEndUpdating
is called the same
number of times.
Since: 3.8
endUpdating
frameClockEndUpdating Source #
:: (HasCallStack, MonadIO m, IsFrameClock a) | |
=> a |
|
-> m () |
Stops updates for an animation. See the documentation for
frameClockBeginUpdating
.
Since: 3.8
getCurrentTimings
frameClockGetCurrentTimings Source #
:: (HasCallStack, MonadIO m, IsFrameClock a) | |
=> a |
|
-> m (Maybe FrameTimings) | Returns: the |
Gets the frame timings for the current frame.
Since: 3.8
getFrameCounter
frameClockGetFrameCounter Source #
:: (HasCallStack, MonadIO m, IsFrameClock a) | |
=> a |
|
-> m Int64 | Returns: inside frame processing, the value of the frame counter for the current frame. Outside of frame processing, the frame counter for the last frame. |
A FrameClock
maintains a 64-bit counter that increments for
each frame drawn.
Since: 3.8
getFrameTime
frameClockGetFrameTime Source #
:: (HasCallStack, MonadIO m, IsFrameClock a) | |
=> a |
|
-> m Int64 | Returns: a timestamp in microseconds, in the timescale of
of |
Gets the time that should currently be used for animations. Inside the processing of a frame, it’s the time used to compute the animation position of everything in a frame. Outside of a frame, it's the time of the conceptual “previous frame,” which may be either the actual previous frame time, or if that’s too old, an updated time.
Since: 3.8
getHistoryStart
frameClockGetHistoryStart Source #
:: (HasCallStack, MonadIO m, IsFrameClock a) | |
=> a |
|
-> m Int64 | Returns: the frame counter value for the oldest frame
that is available in the internal frame history of the
|
FrameClock
internally keeps a history of FrameTimings
objects for recent frames that can be retrieved with
frameClockGetTimings
. The set of stored frames
is the set from the counter values given by
frameClockGetHistoryStart
and
frameClockGetFrameCounter
, inclusive.
Since: 3.8
getRefreshInfo
frameClockGetRefreshInfo Source #
:: (HasCallStack, MonadIO m, IsFrameClock a) | |
=> a |
|
-> Int64 |
|
-> m (Int64, Int64) |
Using the frame history stored in the frame clock, finds the last
known presentation time and refresh interval, and assuming that
presentation times are separated by the refresh interval,
predicts a presentation time that is a multiple of the refresh
interval after the last presentation time, and later than baseTime
.
Since: 3.8
getTimings
:: (HasCallStack, MonadIO m, IsFrameClock a) | |
=> a |
|
-> Int64 |
|
-> m (Maybe FrameTimings) | Returns: the |
Retrieves a FrameTimings
object holding timing information
for the current frame or a recent frame. The FrameTimings
object may not yet be complete: see frameTimingsGetComplete
.
Since: 3.8
requestPhase
frameClockRequestPhase Source #
:: (HasCallStack, MonadIO m, IsFrameClock a) | |
=> a |
|
-> [FrameClockPhase] |
|
-> m () |
Asks the frame clock to run a particular phase. The signal
corresponding the requested phase will be emitted the next
time the frame clock processes. Multiple calls to
frameClockRequestPhase
will be combined together
and only one frame processed. If you are displaying animated
content and want to continually request the
FrameClockPhaseUpdate
phase for a period of time,
you should use frameClockBeginUpdating
instead, since
this allows GTK+ to adjust system parameters to get maximally
smooth animations.
Since: 3.8
Signals
afterPaint
type FrameClockAfterPaintCallback = IO () Source #
This signal ends processing of the frame. Applications should generally not handle this signal.
afterFrameClockAfterPaint :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockAfterPaintCallback) -> m SignalHandlerId Source #
Connect a signal handler for the afterPaint signal, to be run after the default handler. When overloading is enabled, this is equivalent to
after
frameClock #afterPaint callback
By default the object invoking the signal is not passed to the callback.
If you need to access it, you can use the implit ?self
parameter.
Note that this requires activating the ImplicitParams
GHC extension.
onFrameClockAfterPaint :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockAfterPaintCallback) -> m SignalHandlerId Source #
Connect a signal handler for the afterPaint signal, to be run before the default handler. When overloading is enabled, this is equivalent to
on
frameClock #afterPaint callback
beforePaint
type FrameClockBeforePaintCallback = IO () Source #
This signal begins processing of the frame. Applications should generally not handle this signal.
afterFrameClockBeforePaint :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockBeforePaintCallback) -> m SignalHandlerId Source #
Connect a signal handler for the beforePaint signal, to be run after the default handler. When overloading is enabled, this is equivalent to
after
frameClock #beforePaint callback
By default the object invoking the signal is not passed to the callback.
If you need to access it, you can use the implit ?self
parameter.
Note that this requires activating the ImplicitParams
GHC extension.
onFrameClockBeforePaint :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockBeforePaintCallback) -> m SignalHandlerId Source #
Connect a signal handler for the beforePaint signal, to be run before the default handler. When overloading is enabled, this is equivalent to
on
frameClock #beforePaint callback
flushEvents
type FrameClockFlushEventsCallback = IO () Source #
This signal is used to flush pending motion events that are being batched up and compressed together. Applications should not handle this signal.
afterFrameClockFlushEvents :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockFlushEventsCallback) -> m SignalHandlerId Source #
Connect a signal handler for the flushEvents signal, to be run after the default handler. When overloading is enabled, this is equivalent to
after
frameClock #flushEvents callback
By default the object invoking the signal is not passed to the callback.
If you need to access it, you can use the implit ?self
parameter.
Note that this requires activating the ImplicitParams
GHC extension.
onFrameClockFlushEvents :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockFlushEventsCallback) -> m SignalHandlerId Source #
Connect a signal handler for the flushEvents signal, to be run before the default handler. When overloading is enabled, this is equivalent to
on
frameClock #flushEvents callback
layout
type FrameClockLayoutCallback = IO () Source #
This signal is emitted as the second step of toolkit and application processing of the frame. Any work to update sizes and positions of application elements should be performed. GTK+ normally handles this internally.
afterFrameClockLayout :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockLayoutCallback) -> m SignalHandlerId Source #
Connect a signal handler for the layout signal, to be run after the default handler. When overloading is enabled, this is equivalent to
after
frameClock #layout callback
By default the object invoking the signal is not passed to the callback.
If you need to access it, you can use the implit ?self
parameter.
Note that this requires activating the ImplicitParams
GHC extension.
onFrameClockLayout :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockLayoutCallback) -> m SignalHandlerId Source #
Connect a signal handler for the layout signal, to be run before the default handler. When overloading is enabled, this is equivalent to
on
frameClock #layout callback
paint
type FrameClockPaintCallback = IO () Source #
This signal is emitted as the third step of toolkit and
application processing of the frame. The frame is
repainted. GDK normally handles this internally and
produces expose events, which are turned into GTK+
GtkWidget::draw
signals.
afterFrameClockPaint :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockPaintCallback) -> m SignalHandlerId Source #
Connect a signal handler for the paint signal, to be run after the default handler. When overloading is enabled, this is equivalent to
after
frameClock #paint callback
By default the object invoking the signal is not passed to the callback.
If you need to access it, you can use the implit ?self
parameter.
Note that this requires activating the ImplicitParams
GHC extension.
onFrameClockPaint :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockPaintCallback) -> m SignalHandlerId Source #
Connect a signal handler for the paint signal, to be run before the default handler. When overloading is enabled, this is equivalent to
on
frameClock #paint callback
resumeEvents
type FrameClockResumeEventsCallback = IO () Source #
This signal is emitted after processing of the frame is finished, and is handled internally by GTK+ to resume normal event processing. Applications should not handle this signal.
afterFrameClockResumeEvents :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockResumeEventsCallback) -> m SignalHandlerId Source #
Connect a signal handler for the resumeEvents signal, to be run after the default handler. When overloading is enabled, this is equivalent to
after
frameClock #resumeEvents callback
By default the object invoking the signal is not passed to the callback.
If you need to access it, you can use the implit ?self
parameter.
Note that this requires activating the ImplicitParams
GHC extension.
onFrameClockResumeEvents :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockResumeEventsCallback) -> m SignalHandlerId Source #
Connect a signal handler for the resumeEvents signal, to be run before the default handler. When overloading is enabled, this is equivalent to
on
frameClock #resumeEvents callback
update
type FrameClockUpdateCallback = IO () Source #
This signal is emitted as the first step of toolkit and
application processing of the frame. Animations should
be updated using frameClockGetFrameTime
.
Applications can connect directly to this signal, or
use gtk_widget_add_tick_callback()
as a more convenient
interface.
afterFrameClockUpdate :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockUpdateCallback) -> m SignalHandlerId Source #
Connect a signal handler for the update signal, to be run after the default handler. When overloading is enabled, this is equivalent to
after
frameClock #update callback
By default the object invoking the signal is not passed to the callback.
If you need to access it, you can use the implit ?self
parameter.
Note that this requires activating the ImplicitParams
GHC extension.
onFrameClockUpdate :: (IsFrameClock a, MonadIO m) => a -> ((?self :: a) => FrameClockUpdateCallback) -> m SignalHandlerId Source #
Connect a signal handler for the update signal, to be run before the default handler. When overloading is enabled, this is equivalent to
on
frameClock #update callback