{-# LANGUAGE Unsafe #-}
{-# LANGUAGE NoImplicitPrelude, MagicHash, UnboxedTuples, RoleAnnotations #-}
{-# LANGUAGE BangPatterns #-}
{-# OPTIONS_HADDOCK not-home #-}
module GHC.Internal.Arr (
Ix(..), Array(..), STArray(..),
arrEleBottom, array, listArray,
(!), safeRangeSize, negRange, safeIndex, badSafeIndex,
bounds, numElements, numElementsSTArray, indices, elems,
assocs, accumArray, adjust, (//), accum,
amap, ixmap,
eqArray, cmpArray, cmpIntArray,
newSTArray, boundsSTArray,
readSTArray, writeSTArray,
freezeSTArray, thawSTArray,
foldlElems, foldlElems', foldl1Elems,
foldrElems, foldrElems', foldr1Elems,
fill, done,
unsafeArray, unsafeArray',
lessSafeIndex, unsafeAt, unsafeReplace,
unsafeAccumArray, unsafeAccumArray', unsafeAccum,
unsafeReadSTArray, unsafeWriteSTArray,
unsafeFreezeSTArray, unsafeThawSTArray,
) where
import GHC.Internal.Num
import GHC.Internal.ST
import GHC.Internal.Base
import GHC.Internal.List
import GHC.Internal.Ix
import GHC.Internal.Show
infixl 9 !, //
default ()
data Array i e
= Array !i
!i
{-# UNPACK #-} !Int
(Array# e)
data STArray s i e
= STArray !i
!i
{-# UNPACK #-} !Int
(MutableArray# s e)
type role Array nominal representational
type role STArray nominal nominal representational
instance Eq (STArray s i e) where
STArray i
_ i
_ Int
_ MutableArray# s e
arr1# == :: STArray s i e -> STArray s i e -> Bool
== STArray i
_ i
_ Int
_ MutableArray# s e
arr2# =
Int# -> Bool
isTrue# (MutableArray# s e -> MutableArray# s e -> Int#
forall s a. MutableArray# s a -> MutableArray# s a -> Int#
sameMutableArray# MutableArray# s e
arr1# MutableArray# s e
arr2#)
{-# NOINLINE arrEleBottom #-}
arrEleBottom :: a
arrEleBottom :: forall a. a
arrEleBottom = [Char] -> a
forall a. [Char] -> a
errorWithoutStackTrace [Char]
"(Array.!): undefined array element"
{-# INLINE array #-}
array :: Ix i
=> (i,i)
-> [(i, e)]
-> Array i e
array :: forall i e. Ix i => (i, i) -> [(i, e)] -> Array i e
array (i
l,i
u) [(i, e)]
ies
= let n :: Int
n = (i, i) -> Int
forall i. Ix i => (i, i) -> Int
safeRangeSize (i
l,i
u)
in (i, i) -> Int -> [(Int, e)] -> Array i e
forall i e. (i, i) -> Int -> [(Int, e)] -> Array i e
unsafeArray' (i
l,i
u) Int
n
[((i, i) -> Int -> i -> Int
forall i. Ix i => (i, i) -> Int -> i -> Int
safeIndex (i
l,i
u) Int
n i
i, e
e) | (i
i, e
e) <- [(i, e)]
ies]
{-# INLINE unsafeArray #-}
unsafeArray :: Ix i => (i,i) -> [(Int, e)] -> Array i e
unsafeArray :: forall i e. Ix i => (i, i) -> [(Int, e)] -> Array i e
unsafeArray (i, i)
b [(Int, e)]
ies = (i, i) -> Int -> [(Int, e)] -> Array i e
forall i e. (i, i) -> Int -> [(Int, e)] -> Array i e
unsafeArray' (i, i)
b ((i, i) -> Int
forall i. Ix i => (i, i) -> Int
rangeSize (i, i)
b) [(Int, e)]
ies
{-# INLINE unsafeArray' #-}
unsafeArray' :: (i,i) -> Int -> [(Int, e)] -> Array i e
unsafeArray' :: forall i e. (i, i) -> Int -> [(Int, e)] -> Array i e
unsafeArray' (i
l,i
u) n :: Int
n@(I# Int#
n#) [(Int, e)]
ies = (forall s. ST s (Array i e)) -> Array i e
forall a. (forall s. ST s a) -> a
runST (STRep s (Array i e) -> ST s (Array i e)
forall s a. STRep s a -> ST s a
ST (STRep s (Array i e) -> ST s (Array i e))
-> STRep s (Array i e) -> ST s (Array i e)
forall a b. (a -> b) -> a -> b
$ \State# s
s1# ->
case Int# -> e -> State# s -> (# State# s, MutableArray# s e #)
forall a d.
Int# -> a -> State# d -> (# State# d, MutableArray# d a #)
newArray# Int#
n# e
forall a. a
arrEleBottom State# s
s1# of
(# State# s
s2#, MutableArray# s e
marr# #) ->
((Int, e) -> STRep s (Array i e) -> STRep s (Array i e))
-> STRep s (Array i e) -> [(Int, e)] -> STRep s (Array i e)
forall a b. (a -> b -> b) -> b -> [a] -> b
foldr (MutableArray# s e
-> (Int, e) -> STRep s (Array i e) -> STRep s (Array i e)
forall s e a.
MutableArray# s e -> (Int, e) -> STRep s a -> STRep s a
fill MutableArray# s e
marr#) (i -> i -> Int -> MutableArray# s e -> STRep s (Array i e)
forall i s e.
i -> i -> Int -> MutableArray# s e -> STRep s (Array i e)
done i
l i
u Int
n MutableArray# s e
marr#) [(Int, e)]
ies State# s
s2#)
{-# INLINE fill #-}
fill :: MutableArray# s e -> (Int, e) -> STRep s a -> STRep s a
fill :: forall s e a.
MutableArray# s e -> (Int, e) -> STRep s a -> STRep s a
fill MutableArray# s e
marr# (I# Int#
i#, e
e) STRep s a
next
= \State# s
s1# -> case MutableArray# s e -> Int# -> e -> State# s -> State# s
forall d a. MutableArray# d a -> Int# -> a -> State# d -> State# d
writeArray# MutableArray# s e
marr# Int#
i# e
e State# s
s1# of
State# s
s2# -> STRep s a
next State# s
s2#
{-# INLINE done #-}
done :: i -> i -> Int -> MutableArray# s e -> STRep s (Array i e)
done :: forall i s e.
i -> i -> Int -> MutableArray# s e -> STRep s (Array i e)
done i
l i
u n :: Int
n@(I# Int#
_) MutableArray# s e
marr#
= \State# s
s1# -> case MutableArray# s e -> State# s -> (# State# s, Array# e #)
forall d a.
MutableArray# d a -> State# d -> (# State# d, Array# a #)
unsafeFreezeArray# MutableArray# s e
marr# State# s
s1# of
(# State# s
s2#, Array# e
arr# #) -> (# State# s
s2#, i -> i -> Int -> Array# e -> Array i e
forall i e. i -> i -> Int -> Array# e -> Array i e
Array i
l i
u Int
n Array# e
arr# #)
{-# INLINE listArray #-}
listArray :: Ix i => (i,i) -> [e] -> Array i e
listArray :: forall i e. Ix i => (i, i) -> [e] -> Array i e
listArray (i
l,i
u) [e]
es = (forall s. ST s (Array i e)) -> Array i e
forall a. (forall s. ST s a) -> a
runST (STRep s (Array i e) -> ST s (Array i e)
forall s a. STRep s a -> ST s a
ST (STRep s (Array i e) -> ST s (Array i e))
-> STRep s (Array i e) -> ST s (Array i e)
forall a b. (a -> b) -> a -> b
$ \State# s
s1# ->
case (i, i) -> Int
forall i. Ix i => (i, i) -> Int
safeRangeSize (i
l,i
u) of { n :: Int
n@(I# Int#
n#) ->
case Int# -> e -> State# s -> (# State# s, MutableArray# s e #)
forall a d.
Int# -> a -> State# d -> (# State# d, MutableArray# d a #)
newArray# Int#
n# e
forall a. a
arrEleBottom State# s
s1# of { (# State# s
s2#, MutableArray# s e
marr# #) ->
let
go :: e -> (Int# -> State# s -> State# s) -> Int# -> State# s -> State# s
go e
y Int# -> State# s -> State# s
r = \ Int#
i# State# s
s3# ->
case MutableArray# s e -> Int# -> e -> State# s -> State# s
forall d a. MutableArray# d a -> Int# -> a -> State# d -> State# d
writeArray# MutableArray# s e
marr# Int#
i# e
y State# s
s3# of
State# s
s4# -> if (Int# -> Bool
isTrue# (Int#
i# Int# -> Int# -> Int#
==# Int#
n# Int# -> Int# -> Int#
-# Int#
1#))
then State# s
s4#
else Int# -> State# s -> State# s
r (Int#
i# Int# -> Int# -> Int#
+# Int#
1#) State# s
s4#
in
i -> i -> Int -> MutableArray# s e -> STRep s (Array i e)
forall i s e.
i -> i -> Int -> MutableArray# s e -> STRep s (Array i e)
done i
l i
u Int
n MutableArray# s e
marr# (
if Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0
then State# s
s2#
else (e
-> (Int# -> State# s -> State# s) -> Int# -> State# s -> State# s)
-> (Int# -> State# s -> State# s)
-> [e]
-> Int#
-> State# s
-> State# s
forall a b. (a -> b -> b) -> b -> [a] -> b
foldr e -> (Int# -> State# s -> State# s) -> Int# -> State# s -> State# s
go (\Int#
_ State# s
s# -> State# s
s#) [e]
es Int#
0# State# s
s2#)}})
{-# INLINE (!) #-}
(!) :: Ix i => Array i e -> i -> e
! :: forall i e. Ix i => Array i e -> i -> e
(!) arr :: Array i e
arr@(Array i
l i
u Int
n Array# e
_) i
i = Array i e -> Int -> e
forall i e. Array i e -> Int -> e
unsafeAt Array i e
arr (Int -> e) -> Int -> e
forall a b. (a -> b) -> a -> b
$ (i, i) -> Int -> i -> Int
forall i. Ix i => (i, i) -> Int -> i -> Int
safeIndex (i
l,i
u) Int
n i
i
{-# INLINE (!#) #-}
(!#) :: Ix i => Array i e -> i -> (# e #)
!# :: forall i e. Ix i => Array i e -> i -> (# e #)
(!#) arr :: Array i e
arr@(Array i
l i
u Int
n Array# e
_) i
i = Array i e -> Int -> (# e #)
forall i e. Array i e -> Int -> (# e #)
unsafeAt# Array i e
arr (Int -> (# e #)) -> Int -> (# e #)
forall a b. (a -> b) -> a -> b
$ (i, i) -> Int -> i -> Int
forall i. Ix i => (i, i) -> Int -> i -> Int
safeIndex (i
l,i
u) Int
n i
i
{-# INLINE safeRangeSize #-}
safeRangeSize :: Ix i => (i, i) -> Int
safeRangeSize :: forall i. Ix i => (i, i) -> Int
safeRangeSize (i
l,i
u) = let r :: Int
r = (i, i) -> Int
forall i. Ix i => (i, i) -> Int
rangeSize (i
l, i
u)
in if Int
r Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 then Int
negRange
else Int
r
negRange :: Int
negRange :: Int
negRange = [Char] -> Int
forall a. [Char] -> a
errorWithoutStackTrace [Char]
"Negative range size"
{-# INLINE[1] safeIndex #-}
safeIndex :: Ix i => (i, i) -> Int -> i -> Int
safeIndex :: forall i. Ix i => (i, i) -> Int -> i -> Int
safeIndex (i
l,i
u) n :: Int
n@(I# Int#
_) i
i
| (Int
0 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
i') Bool -> Bool -> Bool
&& (Int
i' Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
n) = Int
i'
| Bool
otherwise = Int -> Int -> Int
badSafeIndex Int
i' Int
n
where
i' :: Int
i' = (i, i) -> i -> Int
forall a. Ix a => (a, a) -> a -> Int
index (i
l,i
u) i
i
{-# RULES
"safeIndex/I" safeIndex = lessSafeIndex :: (Int,Int) -> Int -> Int -> Int
"safeIndex/(I,I)" safeIndex = lessSafeIndex :: ((Int,Int),(Int,Int)) -> Int -> (Int,Int) -> Int
"safeIndex/(I,I,I)" safeIndex = lessSafeIndex :: ((Int,Int,Int),(Int,Int,Int)) -> Int -> (Int,Int,Int) -> Int
#-}
lessSafeIndex :: Ix i => (i, i) -> Int -> i -> Int
lessSafeIndex :: forall i. Ix i => (i, i) -> Int -> i -> Int
lessSafeIndex (i
l,i
u) Int
_ i
i = (i, i) -> i -> Int
forall a. Ix a => (a, a) -> a -> Int
index (i
l,i
u) i
i
badSafeIndex :: Int
-> Int
-> Int
badSafeIndex :: Int -> Int -> Int
badSafeIndex Int
i' Int
n = [Char] -> Int
forall a. [Char] -> a
errorWithoutStackTrace ([Char]
"Error in array index; " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ Int -> [Char]
forall a. Show a => a -> [Char]
show Int
i' [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++
[Char]
" not in range [0.." [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ Int -> [Char]
forall a. Show a => a -> [Char]
show Int
n [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
")")
{-# INLINE unsafeAt #-}
unsafeAt :: Array i e -> Int -> e
unsafeAt :: forall i e. Array i e -> Int -> e
unsafeAt (Array i
_ i
_ Int
_ Array# e
arr#) (I# Int#
i#) =
case Array# e -> Int# -> (# e #)
forall a. Array# a -> Int# -> (# a #)
indexArray# Array# e
arr# Int#
i# of (# e
e #) -> e
e
unsafeAt# :: Array i e -> Int -> (# e #)
unsafeAt# :: forall i e. Array i e -> Int -> (# e #)
unsafeAt# (Array i
_ i
_ Int
_ Array# e
arr#) (I# Int#
i#) = Array# e -> Int# -> (# e #)
forall a. Array# a -> Int# -> (# a #)
indexArray# Array# e
arr# Int#
i#
unsafeAtA :: Applicative f
=> Array i e -> Int -> f e
unsafeAtA :: forall (f :: * -> *) i e. Applicative f => Array i e -> Int -> f e
unsafeAtA Array i e
ary Int
i = case Array i e -> Int -> (# e #)
forall i e. Array i e -> Int -> (# e #)
unsafeAt# Array i e
ary Int
i of (# e
e #) -> e -> f e
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure e
e
{-# INLINE bounds #-}
bounds :: Array i e -> (i,i)
bounds :: forall i e. Array i e -> (i, i)
bounds (Array i
l i
u Int
_ Array# e
_) = (i
l,i
u)
{-# INLINE numElements #-}
numElements :: Array i e -> Int
numElements :: forall i e. Array i e -> Int
numElements (Array i
_ i
_ Int
n Array# e
_) = Int
n
{-# INLINE indices #-}
indices :: Ix i => Array i e -> [i]
indices :: forall i e. Ix i => Array i e -> [i]
indices (Array i
l i
u Int
_ Array# e
_) = (i, i) -> [i]
forall a. Ix a => (a, a) -> [a]
range (i
l,i
u)
{-# INLINE elems #-}
elems :: Array i e -> [e]
elems :: forall i e. Array i e -> [e]
elems arr :: Array i e
arr@(Array i
_ i
_ Int
n Array# e
_) =
[e
e | Int
i <- [Int
0 .. Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1], e
e <- Array i e -> Int -> [e]
forall (f :: * -> *) i e. Applicative f => Array i e -> Int -> f e
unsafeAtA Array i e
arr Int
i]
{-# INLINABLE foldrElems #-}
foldrElems :: (a -> b -> b) -> b -> Array i a -> b
foldrElems :: forall a b i. (a -> b -> b) -> b -> Array i a -> b
foldrElems a -> b -> b
f b
b0 = \ arr :: Array i a
arr@(Array i
_ i
_ Int
n Array# a
_) ->
let
go :: Int -> b
go Int
i | Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
n = b
b0
| (# a
e #) <- Array i a -> Int -> (# a #)
forall i e. Array i e -> Int -> (# e #)
unsafeAt# Array i a
arr Int
i
= a -> b -> b
f a
e (Int -> b
go (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1))
in Int -> b
go Int
0
{-# INLINABLE foldlElems #-}
foldlElems :: (b -> a -> b) -> b -> Array i a -> b
foldlElems :: forall b a i. (b -> a -> b) -> b -> Array i a -> b
foldlElems b -> a -> b
f b
b0 = \ arr :: Array i a
arr@(Array i
_ i
_ Int
n Array# a
_) ->
let
go :: Int -> b
go Int
i | Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== (-Int
1) = b
b0
| (# a
e #) <- Array i a -> Int -> (# a #)
forall i e. Array i e -> Int -> (# e #)
unsafeAt# Array i a
arr Int
i
= b -> a -> b
f (Int -> b
go (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)) a
e
in Int -> b
go (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)
{-# INLINABLE foldrElems' #-}
foldrElems' :: (a -> b -> b) -> b -> Array i a -> b
foldrElems' :: forall a b i. (a -> b -> b) -> b -> Array i a -> b
foldrElems' a -> b -> b
f b
b0 = \ arr :: Array i a
arr@(Array i
_ i
_ Int
n Array# a
_) ->
let
go :: Int -> b -> b
go Int
i b
a | Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== (-Int
1) = b
a
| (# a
e #) <- Array i a -> Int -> (# a #)
forall i e. Array i e -> Int -> (# e #)
unsafeAt# Array i a
arr Int
i
= Int -> b -> b
go (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) (a -> b -> b
f a
e (b -> b) -> b -> b
forall a b. (a -> b) -> a -> b
$! b
a)
in Int -> b -> b
go (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) b
b0
{-# INLINABLE foldlElems' #-}
foldlElems' :: (b -> a -> b) -> b -> Array i a -> b
foldlElems' :: forall b a i. (b -> a -> b) -> b -> Array i a -> b
foldlElems' b -> a -> b
f b
b0 = \ arr :: Array i a
arr@(Array i
_ i
_ Int
n Array# a
_) ->
let
go :: Int -> b -> b
go Int
i b
a | Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
n = b
a
| (# a
e #) <- Array i a -> Int -> (# a #)
forall i e. Array i e -> Int -> (# e #)
unsafeAt# Array i a
arr Int
i
= Int -> b -> b
go (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) (b
a b -> b -> b
forall a b. a -> b -> b
`seq` b -> a -> b
f b
a a
e)
in Int -> b -> b
go Int
0 b
b0
{-# INLINABLE foldl1Elems #-}
foldl1Elems :: (a -> a -> a) -> Array i a -> a
foldl1Elems :: forall a i. (a -> a -> a) -> Array i a -> a
foldl1Elems a -> a -> a
f = \ arr :: Array i a
arr@(Array i
_ i
_ Int
n Array# a
_) ->
let
go :: Int -> a
go Int
i | Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = Array i a -> Int -> a
forall i e. Array i e -> Int -> e
unsafeAt Array i a
arr Int
0
| (# a
e #) <- Array i a -> Int -> (# a #)
forall i e. Array i e -> Int -> (# e #)
unsafeAt# Array i a
arr Int
i
= a -> a -> a
f (Int -> a
go (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)) a
e
in
if Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 then [Char] -> a
forall a. [Char] -> a
errorWithoutStackTrace [Char]
"foldl1: empty Array" else Int -> a
go (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)
{-# INLINABLE foldr1Elems #-}
foldr1Elems :: (a -> a -> a) -> Array i a -> a
foldr1Elems :: forall a i. (a -> a -> a) -> Array i a -> a
foldr1Elems a -> a -> a
f = \ arr :: Array i a
arr@(Array i
_ i
_ Int
n Array# a
_) ->
let
go :: Int -> a
go Int
i | Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1 = Array i a -> Int -> a
forall i e. Array i e -> Int -> e
unsafeAt Array i a
arr Int
i
| (# a
e #) <- Array i a -> Int -> (# a #)
forall i e. Array i e -> Int -> (# e #)
unsafeAt# Array i a
arr Int
i
= a -> a -> a
f a
e (Int -> a
go (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1))
in
if Int
n Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 then [Char] -> a
forall a. [Char] -> a
errorWithoutStackTrace [Char]
"foldr1: empty Array" else Int -> a
go Int
0
{-# INLINE assocs #-}
assocs :: Ix i => Array i e -> [(i, e)]
assocs :: forall i e. Ix i => Array i e -> [(i, e)]
assocs arr :: Array i e
arr@(Array i
l i
u Int
_ Array# e
_) =
[(i
i, e
e) | i
i <- (i, i) -> [i]
forall a. Ix a => (a, a) -> [a]
range (i
l,i
u), let !(# e
e #) = Array i e
arr Array i e -> i -> (# e #)
forall i e. Ix i => Array i e -> i -> (# e #)
!# i
i]
{-# INLINE accumArray #-}
accumArray :: Ix i
=> (e -> a -> e)
-> e
-> (i,i)
-> [(i, a)]
-> Array i e
accumArray :: forall i e a.
Ix i =>
(e -> a -> e) -> e -> (i, i) -> [(i, a)] -> Array i e
accumArray e -> a -> e
f e
initial (i
l,i
u) [(i, a)]
ies =
let n :: Int
n = (i, i) -> Int
forall i. Ix i => (i, i) -> Int
safeRangeSize (i
l,i
u)
in (e -> a -> e) -> e -> (i, i) -> Int -> [(Int, a)] -> Array i e
forall e a i.
(e -> a -> e) -> e -> (i, i) -> Int -> [(Int, a)] -> Array i e
unsafeAccumArray' e -> a -> e
f e
initial (i
l,i
u) Int
n
[((i, i) -> Int -> i -> Int
forall i. Ix i => (i, i) -> Int -> i -> Int
safeIndex (i
l,i
u) Int
n i
i, a
e) | (i
i, a
e) <- [(i, a)]
ies]
{-# INLINE unsafeAccumArray #-}
unsafeAccumArray :: Ix i => (e -> a -> e) -> e -> (i,i) -> [(Int, a)] -> Array i e
unsafeAccumArray :: forall i e a.
Ix i =>
(e -> a -> e) -> e -> (i, i) -> [(Int, a)] -> Array i e
unsafeAccumArray e -> a -> e
f e
initial (i, i)
b [(Int, a)]
ies = (e -> a -> e) -> e -> (i, i) -> Int -> [(Int, a)] -> Array i e
forall e a i.
(e -> a -> e) -> e -> (i, i) -> Int -> [(Int, a)] -> Array i e
unsafeAccumArray' e -> a -> e
f e
initial (i, i)
b ((i, i) -> Int
forall i. Ix i => (i, i) -> Int
rangeSize (i, i)
b) [(Int, a)]
ies
{-# INLINE unsafeAccumArray' #-}
unsafeAccumArray' :: (e -> a -> e) -> e -> (i,i) -> Int -> [(Int, a)] -> Array i e
unsafeAccumArray' :: forall e a i.
(e -> a -> e) -> e -> (i, i) -> Int -> [(Int, a)] -> Array i e
unsafeAccumArray' e -> a -> e
f e
initial (i
l,i
u) n :: Int
n@(I# Int#
n#) [(Int, a)]
ies = (forall s. ST s (Array i e)) -> Array i e
forall a. (forall s. ST s a) -> a
runST (STRep s (Array i e) -> ST s (Array i e)
forall s a. STRep s a -> ST s a
ST (STRep s (Array i e) -> ST s (Array i e))
-> STRep s (Array i e) -> ST s (Array i e)
forall a b. (a -> b) -> a -> b
$ \State# s
s1# ->
case Int# -> e -> State# s -> (# State# s, MutableArray# s e #)
forall a d.
Int# -> a -> State# d -> (# State# d, MutableArray# d a #)
newArray# Int#
n# e
initial State# s
s1# of { (# State# s
s2#, MutableArray# s e
marr# #) ->
((Int, a) -> STRep s (Array i e) -> STRep s (Array i e))
-> STRep s (Array i e) -> [(Int, a)] -> STRep s (Array i e)
forall a b. (a -> b -> b) -> b -> [a] -> b
foldr ((e -> a -> e)
-> MutableArray# s e
-> (Int, a)
-> STRep s (Array i e)
-> STRep s (Array i e)
forall e a s b.
(e -> a -> e)
-> MutableArray# s e -> (Int, a) -> STRep s b -> STRep s b
adjust' e -> a -> e
f MutableArray# s e
marr#) (i -> i -> Int -> MutableArray# s e -> STRep s (Array i e)
forall i s e.
i -> i -> Int -> MutableArray# s e -> STRep s (Array i e)
done i
l i
u Int
n MutableArray# s e
marr#) [(Int, a)]
ies State# s
s2# })
{-# INLINE adjust #-}
adjust :: (e -> a -> e) -> MutableArray# s e -> (Int, a) -> STRep s b -> STRep s b
adjust :: forall e a s b.
(e -> a -> e)
-> MutableArray# s e -> (Int, a) -> STRep s b -> STRep s b
adjust e -> a -> e
f MutableArray# s e
marr# (I# Int#
i#, a
new) STRep s b
next
= \State# s
s1# -> case MutableArray# s e -> Int# -> State# s -> (# State# s, e #)
forall d a.
MutableArray# d a -> Int# -> State# d -> (# State# d, a #)
readArray# MutableArray# s e
marr# Int#
i# State# s
s1# of
(# State# s
s2#, e
old #) ->
case MutableArray# s e -> Int# -> e -> State# s -> State# s
forall d a. MutableArray# d a -> Int# -> a -> State# d -> State# d
writeArray# MutableArray# s e
marr# Int#
i# (e -> a -> e
f e
old a
new) State# s
s2# of
State# s
s3# -> STRep s b
next State# s
s3#
{-# INLINE adjust' #-}
adjust' :: (e -> a -> e)
-> MutableArray# s e
-> (Int, a)
-> STRep s b -> STRep s b
adjust' :: forall e a s b.
(e -> a -> e)
-> MutableArray# s e -> (Int, a) -> STRep s b -> STRep s b
adjust' e -> a -> e
f MutableArray# s e
marr# (I# Int#
i#, a
new) STRep s b
next
= \State# s
s1# -> case MutableArray# s e -> Int# -> State# s -> (# State# s, e #)
forall d a.
MutableArray# d a -> Int# -> State# d -> (# State# d, a #)
readArray# MutableArray# s e
marr# Int#
i# State# s
s1# of
(# State# s
s2#, e
old #) ->
let !combined :: e
combined = e -> a -> e
f e
old a
new
in STRep s b
next (MutableArray# s e -> Int# -> e -> State# s -> State# s
forall d a. MutableArray# d a -> Int# -> a -> State# d -> State# d
writeArray# MutableArray# s e
marr# Int#
i# e
combined State# s
s2#)
{-# INLINE (//) #-}
(//) :: Ix i => Array i e -> [(i, e)] -> Array i e
arr :: Array i e
arr@(Array i
l i
u Int
n Array# e
_) // :: forall i e. Ix i => Array i e -> [(i, e)] -> Array i e
// [(i, e)]
ies =
Array i e -> [(Int, e)] -> Array i e
forall i e. Array i e -> [(Int, e)] -> Array i e
unsafeReplace Array i e
arr [((i, i) -> Int -> i -> Int
forall i. Ix i => (i, i) -> Int -> i -> Int
safeIndex (i
l,i
u) Int
n i
i, e
e) | (i
i, e
e) <- [(i, e)]
ies]
{-# INLINE unsafeReplace #-}
unsafeReplace :: Array i e -> [(Int, e)] -> Array i e
unsafeReplace :: forall i e. Array i e -> [(Int, e)] -> Array i e
unsafeReplace Array i e
arr [(Int, e)]
ies = (forall s. ST s (Array i e)) -> Array i e
forall a. (forall s. ST s a) -> a
runST (do
STArray l u n marr# <- Array i e -> ST s (STArray s i e)
forall i e s. Array i e -> ST s (STArray s i e)
thawSTArray Array i e
arr
ST (foldr (fill marr#) (done l u n marr#) ies))
{-# INLINE accum #-}
accum :: Ix i => (e -> a -> e) -> Array i e -> [(i, a)] -> Array i e
accum :: forall i e a.
Ix i =>
(e -> a -> e) -> Array i e -> [(i, a)] -> Array i e
accum e -> a -> e
f arr :: Array i e
arr@(Array i
l i
u Int
n Array# e
_) [(i, a)]
ies =
(e -> a -> e) -> Array i e -> [(Int, a)] -> Array i e
forall e a i. (e -> a -> e) -> Array i e -> [(Int, a)] -> Array i e
unsafeAccum e -> a -> e
f Array i e
arr [((i, i) -> Int -> i -> Int
forall i. Ix i => (i, i) -> Int -> i -> Int
safeIndex (i
l,i
u) Int
n i
i, a
e) | (i
i, a
e) <- [(i, a)]
ies]
{-# INLINE unsafeAccum #-}
unsafeAccum :: (e -> a -> e) -> Array i e -> [(Int, a)] -> Array i e
unsafeAccum :: forall e a i. (e -> a -> e) -> Array i e -> [(Int, a)] -> Array i e
unsafeAccum e -> a -> e
f Array i e
arr [(Int, a)]
ies = (forall s. ST s (Array i e)) -> Array i e
forall a. (forall s. ST s a) -> a
runST (do
STArray l u n marr# <- Array i e -> ST s (STArray s i e)
forall i e s. Array i e -> ST s (STArray s i e)
thawSTArray Array i e
arr
ST (foldr (adjust' f marr#) (done l u n marr#) ies))
{-# INLINE [1] amap #-}
amap :: (a -> b) -> Array i a -> Array i b
amap :: forall a b i. (a -> b) -> Array i a -> Array i b
amap a -> b
f arr :: Array i a
arr@(Array i
l i
u n :: Int
n@(I# Int#
n#) Array# a
_) = (forall s. ST s (Array i b)) -> Array i b
forall a. (forall s. ST s a) -> a
runST (STRep s (Array i b) -> ST s (Array i b)
forall s a. STRep s a -> ST s a
ST (STRep s (Array i b) -> ST s (Array i b))
-> STRep s (Array i b) -> ST s (Array i b)
forall a b. (a -> b) -> a -> b
$ \State# s
s1# ->
case Int# -> b -> State# s -> (# State# s, MutableArray# s b #)
forall a d.
Int# -> a -> State# d -> (# State# d, MutableArray# d a #)
newArray# Int#
n# b
forall a. a
arrEleBottom State# s
s1# of
(# State# s
s2#, MutableArray# s b
marr# #) ->
let go :: Int -> STRep s (Array i b)
go Int
i State# s
s#
| Int
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
n = i -> i -> Int -> MutableArray# s b -> STRep s (Array i b)
forall i s e.
i -> i -> Int -> MutableArray# s e -> STRep s (Array i e)
done i
l i
u Int
n MutableArray# s b
marr# State# s
s#
| (# a
e #) <- Array i a -> Int -> (# a #)
forall i e. Array i e -> Int -> (# e #)
unsafeAt# Array i a
arr Int
i
= MutableArray# s b
-> (Int, b) -> STRep s (Array i b) -> STRep s (Array i b)
forall s e a.
MutableArray# s e -> (Int, e) -> STRep s a -> STRep s a
fill MutableArray# s b
marr# (Int
i, a -> b
f a
e) (Int -> STRep s (Array i b)
go (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1)) State# s
s#
in Int -> STRep s (Array i b)
go Int
0 State# s
s2# )
{-# RULES
"amap/coerce" amap coerce = coerce -- See Note [amap]
#-}
{-# RULES
"amap/amap" forall f g a . amap f (amap g a) = amap (f . g) a
#-}
{-# INLINE ixmap #-}
ixmap :: (Ix i, Ix j) => (i,i) -> (i -> j) -> Array j e -> Array i e
ixmap :: forall i j e.
(Ix i, Ix j) =>
(i, i) -> (i -> j) -> Array j e -> Array i e
ixmap (i
l,i
u) i -> j
f Array j e
arr =
(i, i) -> [(i, e)] -> Array i e
forall i e. Ix i => (i, i) -> [(i, e)] -> Array i e
array (i
l,i
u) [(i
i, Array j e
arr Array j e -> j -> e
forall i e. Ix i => Array i e -> i -> e
! i -> j
f i
i) | i
i <- (i, i) -> [i]
forall a. Ix a => (a, a) -> [a]
range (i
l,i
u)]
{-# INLINE eqArray #-}
eqArray :: (Ix i, Eq e) => Array i e -> Array i e -> Bool
eqArray :: forall i e. (Ix i, Eq e) => Array i e -> Array i e -> Bool
eqArray arr1 :: Array i e
arr1@(Array i
l1 i
u1 Int
n1 Array# e
_) arr2 :: Array i e
arr2@(Array i
l2 i
u2 Int
n2 Array# e
_) =
if Int
n1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 then Int
n2 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 else
i
l1 i -> i -> Bool
forall a. Eq a => a -> a -> Bool
== i
l2 Bool -> Bool -> Bool
&& i
u1 i -> i -> Bool
forall a. Eq a => a -> a -> Bool
== i
u2 Bool -> Bool -> Bool
&&
[Bool] -> Bool
and [Array i e -> Int -> e
forall i e. Array i e -> Int -> e
unsafeAt Array i e
arr1 Int
i e -> e -> Bool
forall a. Eq a => a -> a -> Bool
== Array i e -> Int -> e
forall i e. Array i e -> Int -> e
unsafeAt Array i e
arr2 Int
i | Int
i <- [Int
0 .. Int
n1 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1]]
{-# INLINE [2] cmpArray #-}
cmpArray :: (Ix i, Ord e) => Array i e -> Array i e -> Ordering
cmpArray :: forall i e. (Ix i, Ord e) => Array i e -> Array i e -> Ordering
cmpArray Array i e
arr1 Array i e
arr2 = [(i, e)] -> [(i, e)] -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Array i e -> [(i, e)]
forall i e. Ix i => Array i e -> [(i, e)]
assocs Array i e
arr1) (Array i e -> [(i, e)]
forall i e. Ix i => Array i e -> [(i, e)]
assocs Array i e
arr2)
{-# INLINE cmpIntArray #-}
cmpIntArray :: Ord e => Array Int e -> Array Int e -> Ordering
cmpIntArray :: forall e. Ord e => Array Int e -> Array Int e -> Ordering
cmpIntArray arr1 :: Array Int e
arr1@(Array Int
l1 Int
u1 Int
n1 Array# e
_) arr2 :: Array Int e
arr2@(Array Int
l2 Int
u2 Int
n2 Array# e
_) =
if Int
n1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 then
if Int
n2 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 then Ordering
EQ else Ordering
LT
else if Int
n2 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 then Ordering
GT
else case Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Int
l1 Int
l2 of
Ordering
EQ -> (Int -> Ordering -> Ordering) -> Ordering -> [Int] -> Ordering
forall a b. (a -> b -> b) -> b -> [a] -> b
foldr Int -> Ordering -> Ordering
cmp (Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Int
u1 Int
u2) [Int
0 .. (Int
n1 Int -> Int -> Int
forall a. Ord a => a -> a -> a
`min` Int
n2) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1]
Ordering
other -> Ordering
other
where
cmp :: Int -> Ordering -> Ordering
cmp Int
i Ordering
rest = case e -> e -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Array Int e -> Int -> e
forall i e. Array i e -> Int -> e
unsafeAt Array Int e
arr1 Int
i) (Array Int e -> Int -> e
forall i e. Array i e -> Int -> e
unsafeAt Array Int e
arr2 Int
i) of
Ordering
EQ -> Ordering
rest
Ordering
other -> Ordering
other
{-# RULES "cmpArray/Int" cmpArray = cmpIntArray #-}
instance Functor (Array i) where
fmap :: forall a b. (a -> b) -> Array i a -> Array i b
fmap = (a -> b) -> Array i a -> Array i b
forall a b i. (a -> b) -> Array i a -> Array i b
amap
{-# INLINE (<$) #-}
a
x <$ :: forall a b. a -> Array i b -> Array i a
<$ Array i
l i
u n :: Int
n@(I# Int#
n#) Array# b
_ =
(forall s. ST s (Array i a)) -> Array i a
forall a. (forall s. ST s a) -> a
runST ((forall s. ST s (Array i a)) -> Array i a)
-> (forall s. ST s (Array i a)) -> Array i a
forall a b. (a -> b) -> a -> b
$ STRep s (Array i a) -> ST s (Array i a)
forall s a. STRep s a -> ST s a
ST (STRep s (Array i a) -> ST s (Array i a))
-> STRep s (Array i a) -> ST s (Array i a)
forall a b. (a -> b) -> a -> b
$ \State# s
s1# ->
case Int# -> a -> State# s -> (# State# s, MutableArray# s a #)
forall a d.
Int# -> a -> State# d -> (# State# d, MutableArray# d a #)
newArray# Int#
n# a
x State# s
s1# of
(# State# s
s2#, MutableArray# s a
marr# #) -> i -> i -> Int -> MutableArray# s a -> STRep s (Array i a)
forall i s e.
i -> i -> Int -> MutableArray# s e -> STRep s (Array i e)
done i
l i
u Int
n MutableArray# s a
marr# State# s
s2#
instance (Ix i, Eq e) => Eq (Array i e) where
== :: Array i e -> Array i e -> Bool
(==) = Array i e -> Array i e -> Bool
forall i e. (Ix i, Eq e) => Array i e -> Array i e -> Bool
eqArray
instance (Ix i, Ord e) => Ord (Array i e) where
compare :: Array i e -> Array i e -> Ordering
compare = Array i e -> Array i e -> Ordering
forall i e. (Ix i, Ord e) => Array i e -> Array i e -> Ordering
cmpArray
instance (Ix a, Show a, Show b) => Show (Array a b) where
showsPrec :: Int -> Array a b -> [Char] -> [Char]
showsPrec Int
p Array a b
a =
Bool -> ([Char] -> [Char]) -> [Char] -> [Char]
showParen (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
appPrec) (([Char] -> [Char]) -> [Char] -> [Char])
-> ([Char] -> [Char]) -> [Char] -> [Char]
forall a b. (a -> b) -> a -> b
$
[Char] -> [Char] -> [Char]
showString [Char]
"array " ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Int -> (a, a) -> [Char] -> [Char]
forall a. Show a => Int -> a -> [Char] -> [Char]
showsPrec Int
appPrec1 (Array a b -> (a, a)
forall i e. Array i e -> (i, i)
bounds Array a b
a) ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Char -> [Char] -> [Char]
showChar Char
' ' ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Int -> [(a, b)] -> [Char] -> [Char]
forall a. Show a => Int -> a -> [Char] -> [Char]
showsPrec Int
appPrec1 (Array a b -> [(a, b)]
forall i e. Ix i => Array i e -> [(i, e)]
assocs Array a b
a)
{-# INLINE newSTArray #-}
newSTArray :: Ix i => (i,i) -> e -> ST s (STArray s i e)
newSTArray :: forall i e s. Ix i => (i, i) -> e -> ST s (STArray s i e)
newSTArray (i
l,i
u) e
initial = STRep s (STArray s i e) -> ST s (STArray s i e)
forall s a. STRep s a -> ST s a
ST (STRep s (STArray s i e) -> ST s (STArray s i e))
-> STRep s (STArray s i e) -> ST s (STArray s i e)
forall a b. (a -> b) -> a -> b
$ \State# s
s1# ->
case (i, i) -> Int
forall i. Ix i => (i, i) -> Int
safeRangeSize (i
l,i
u) of { n :: Int
n@(I# Int#
n#) ->
case Int# -> e -> State# s -> (# State# s, MutableArray# s e #)
forall a d.
Int# -> a -> State# d -> (# State# d, MutableArray# d a #)
newArray# Int#
n# e
initial State# s
s1# of { (# State# s
s2#, MutableArray# s e
marr# #) ->
(# State# s
s2#, i -> i -> Int -> MutableArray# s e -> STArray s i e
forall s i e. i -> i -> Int -> MutableArray# s e -> STArray s i e
STArray i
l i
u Int
n MutableArray# s e
marr# #) }}
{-# INLINE boundsSTArray #-}
boundsSTArray :: STArray s i e -> (i,i)
boundsSTArray :: forall s i e. STArray s i e -> (i, i)
boundsSTArray (STArray i
l i
u Int
_ MutableArray# s e
_) = (i
l,i
u)
{-# INLINE numElementsSTArray #-}
numElementsSTArray :: STArray s i e -> Int
numElementsSTArray :: forall s i e. STArray s i e -> Int
numElementsSTArray (STArray i
_ i
_ Int
n MutableArray# s e
_) = Int
n
{-# INLINE readSTArray #-}
readSTArray :: Ix i => STArray s i e -> i -> ST s e
readSTArray :: forall i s e. Ix i => STArray s i e -> i -> ST s e
readSTArray marr :: STArray s i e
marr@(STArray i
l i
u Int
n MutableArray# s e
_) i
i =
STArray s i e -> Int -> ST s e
forall s i e. STArray s i e -> Int -> ST s e
unsafeReadSTArray STArray s i e
marr ((i, i) -> Int -> i -> Int
forall i. Ix i => (i, i) -> Int -> i -> Int
safeIndex (i
l,i
u) Int
n i
i)
{-# INLINE unsafeReadSTArray #-}
unsafeReadSTArray :: STArray s i e -> Int -> ST s e
unsafeReadSTArray :: forall s i e. STArray s i e -> Int -> ST s e
unsafeReadSTArray (STArray i
_ i
_ Int
_ MutableArray# s e
marr#) (I# Int#
i#)
= STRep s e -> ST s e
forall s a. STRep s a -> ST s a
ST (STRep s e -> ST s e) -> STRep s e -> ST s e
forall a b. (a -> b) -> a -> b
$ \State# s
s1# -> MutableArray# s e -> Int# -> STRep s e
forall d a.
MutableArray# d a -> Int# -> State# d -> (# State# d, a #)
readArray# MutableArray# s e
marr# Int#
i# State# s
s1#
{-# INLINE writeSTArray #-}
writeSTArray :: Ix i => STArray s i e -> i -> e -> ST s ()
writeSTArray :: forall i s e. Ix i => STArray s i e -> i -> e -> ST s ()
writeSTArray marr :: STArray s i e
marr@(STArray i
l i
u Int
n MutableArray# s e
_) i
i e
e =
STArray s i e -> Int -> e -> ST s ()
forall s i e. STArray s i e -> Int -> e -> ST s ()
unsafeWriteSTArray STArray s i e
marr ((i, i) -> Int -> i -> Int
forall i. Ix i => (i, i) -> Int -> i -> Int
safeIndex (i
l,i
u) Int
n i
i) e
e
{-# INLINE unsafeWriteSTArray #-}
unsafeWriteSTArray :: STArray s i e -> Int -> e -> ST s ()
unsafeWriteSTArray :: forall s i e. STArray s i e -> Int -> e -> ST s ()
unsafeWriteSTArray (STArray i
_ i
_ Int
_ MutableArray# s e
marr#) (I# Int#
i#) e
e = STRep s () -> ST s ()
forall s a. STRep s a -> ST s a
ST (STRep s () -> ST s ()) -> STRep s () -> ST s ()
forall a b. (a -> b) -> a -> b
$ \State# s
s1# ->
case MutableArray# s e -> Int# -> e -> State# s -> State# s
forall d a. MutableArray# d a -> Int# -> a -> State# d -> State# d
writeArray# MutableArray# s e
marr# Int#
i# e
e State# s
s1# of
State# s
s2# -> (# State# s
s2#, () #)
freezeSTArray :: STArray s i e -> ST s (Array i e)
freezeSTArray :: forall s i e. STArray s i e -> ST s (Array i e)
freezeSTArray (STArray i
l i
u n :: Int
n@(I# Int#
n#) MutableArray# s e
marr#) = STRep s (Array i e) -> ST s (Array i e)
forall s a. STRep s a -> ST s a
ST (STRep s (Array i e) -> ST s (Array i e))
-> STRep s (Array i e) -> ST s (Array i e)
forall a b. (a -> b) -> a -> b
$ \State# s
s1# ->
case Int# -> e -> State# s -> (# State# s, MutableArray# s e #)
forall a d.
Int# -> a -> State# d -> (# State# d, MutableArray# d a #)
newArray# Int#
n# e
forall a. a
arrEleBottom State# s
s1# of { (# State# s
s2#, MutableArray# s e
marr'# #) ->
let copy :: Int# -> State# s -> State# s
copy Int#
i# State# s
s3# | Int# -> Bool
isTrue# (Int#
i# Int# -> Int# -> Int#
==# Int#
n#) = State# s
s3#
| Bool
otherwise =
case MutableArray# s e -> Int# -> State# s -> (# State# s, e #)
forall d a.
MutableArray# d a -> Int# -> State# d -> (# State# d, a #)
readArray# MutableArray# s e
marr# Int#
i# State# s
s3# of { (# State# s
s4#, e
e #) ->
case MutableArray# s e -> Int# -> e -> State# s -> State# s
forall d a. MutableArray# d a -> Int# -> a -> State# d -> State# d
writeArray# MutableArray# s e
marr'# Int#
i# e
e State# s
s4# of { State# s
s5# ->
Int# -> State# s -> State# s
copy (Int#
i# Int# -> Int# -> Int#
+# Int#
1#) State# s
s5# }} in
case Int# -> State# s -> State# s
copy Int#
0# State# s
s2# of { State# s
s3# ->
case MutableArray# s e -> State# s -> (# State# s, Array# e #)
forall d a.
MutableArray# d a -> State# d -> (# State# d, Array# a #)
unsafeFreezeArray# MutableArray# s e
marr'# State# s
s3# of { (# State# s
s4#, Array# e
arr# #) ->
(# State# s
s4#, i -> i -> Int -> Array# e -> Array i e
forall i e. i -> i -> Int -> Array# e -> Array i e
Array i
l i
u Int
n Array# e
arr# #) }}}
{-# INLINE unsafeFreezeSTArray #-}
unsafeFreezeSTArray :: STArray s i e -> ST s (Array i e)
unsafeFreezeSTArray :: forall s i e. STArray s i e -> ST s (Array i e)
unsafeFreezeSTArray (STArray i
l i
u Int
n MutableArray# s e
marr#) = STRep s (Array i e) -> ST s (Array i e)
forall s a. STRep s a -> ST s a
ST (STRep s (Array i e) -> ST s (Array i e))
-> STRep s (Array i e) -> ST s (Array i e)
forall a b. (a -> b) -> a -> b
$ \State# s
s1# ->
case MutableArray# s e -> State# s -> (# State# s, Array# e #)
forall d a.
MutableArray# d a -> State# d -> (# State# d, Array# a #)
unsafeFreezeArray# MutableArray# s e
marr# State# s
s1# of { (# State# s
s2#, Array# e
arr# #) ->
(# State# s
s2#, i -> i -> Int -> Array# e -> Array i e
forall i e. i -> i -> Int -> Array# e -> Array i e
Array i
l i
u Int
n Array# e
arr# #) }
thawSTArray :: Array i e -> ST s (STArray s i e)
thawSTArray :: forall i e s. Array i e -> ST s (STArray s i e)
thawSTArray (Array i
l i
u n :: Int
n@(I# Int#
n#) Array# e
arr#) = STRep s (STArray s i e) -> ST s (STArray s i e)
forall s a. STRep s a -> ST s a
ST (STRep s (STArray s i e) -> ST s (STArray s i e))
-> STRep s (STArray s i e) -> ST s (STArray s i e)
forall a b. (a -> b) -> a -> b
$ \State# s
s1# ->
case Int# -> e -> State# s -> (# State# s, MutableArray# s e #)
forall a d.
Int# -> a -> State# d -> (# State# d, MutableArray# d a #)
newArray# Int#
n# e
forall a. a
arrEleBottom State# s
s1# of { (# State# s
s2#, MutableArray# s e
marr# #) ->
let copy :: Int# -> State# s -> State# s
copy Int#
i# State# s
s3# | Int# -> Bool
isTrue# (Int#
i# Int# -> Int# -> Int#
==# Int#
n#) = State# s
s3#
| Bool
otherwise =
case Array# e -> Int# -> (# e #)
forall a. Array# a -> Int# -> (# a #)
indexArray# Array# e
arr# Int#
i# of { (# e
e #) ->
case MutableArray# s e -> Int# -> e -> State# s -> State# s
forall d a. MutableArray# d a -> Int# -> a -> State# d -> State# d
writeArray# MutableArray# s e
marr# Int#
i# e
e State# s
s3# of { State# s
s4# ->
Int# -> State# s -> State# s
copy (Int#
i# Int# -> Int# -> Int#
+# Int#
1#) State# s
s4# }} in
case Int# -> State# s -> State# s
copy Int#
0# State# s
s2# of { State# s
s3# ->
(# State# s
s3#, i -> i -> Int -> MutableArray# s e -> STArray s i e
forall s i e. i -> i -> Int -> MutableArray# s e -> STArray s i e
STArray i
l i
u Int
n MutableArray# s e
marr# #) }}
{-# INLINE unsafeThawSTArray #-}
unsafeThawSTArray :: Array i e -> ST s (STArray s i e)
unsafeThawSTArray :: forall i e s. Array i e -> ST s (STArray s i e)
unsafeThawSTArray (Array i
l i
u Int
n Array# e
arr#) = STRep s (STArray s i e) -> ST s (STArray s i e)
forall s a. STRep s a -> ST s a
ST (STRep s (STArray s i e) -> ST s (STArray s i e))
-> STRep s (STArray s i e) -> ST s (STArray s i e)
forall a b. (a -> b) -> a -> b
$ \State# s
s1# ->
case Array# e -> State# s -> (# State# s, MutableArray# s e #)
forall a d.
Array# a -> State# d -> (# State# d, MutableArray# d a #)
unsafeThawArray# Array# e
arr# State# s
s1# of { (# State# s
s2#, MutableArray# s e
marr# #) ->
(# State# s
s2#, i -> i -> Int -> MutableArray# s e -> STArray s i e
forall s i e. i -> i -> Int -> MutableArray# s e -> STArray s i e
STArray i
l i
u Int
n MutableArray# s e
marr# #) }