functor-combinators-0.1.1.1: Tools for functor combinator-based program design

Copyright(c) Justin Le 2019
LicenseBSD3
Maintainerjustin@jle.im
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Functor.Combinator

Contents

Description

Functor combinators and tools (typeclasses and utiility functions) to manipulate them. This is the main "entrypoint" of the library.

Classes include:

We have some helpful utility functions, as well, built on top of these typeclasses.

The second half of this module exports the various useful functor combinators that can modify functors to add extra functionality, or join two functors together and mix them in different ways. Use them to build your final structure by combining simpler ones in composable ways!

See https://blog.jle.im/entry/functor-combinatorpedia.html and the README for a tutorial and a rundown on each different functor combinator.

Synopsis

Classes

A lot of type signatures are stated in terms of ~>. ~> represents a "natural transformation" between two functors: a value of type f ~> g is a value of type 'f a -> g a that works for any a@.

type (~>) (f :: k -> Type) (g :: k -> Type) = forall (x :: k). f x -> g x infixr 0 #

A natural transformation from f to g.

type (<~>) f g = forall p a. Profunctor p => p (g a) (g a) -> p (f a) (f a) infixr 0 Source #

The type of an isomorphism between two functors. f <~> g means that f and g are isomorphic to each other.

We can effectively use an f <~> g with:

viewF   :: (f <~> g) -> f a -> g a
reviewF :: (f <~> g) -> g a -> a a

Use viewF to extract the "f to g" function, and reviewF to extract the "g to f" function. Reviewing and viewing the same value (or vice versa) leaves the value unchanged.

One nice thing is that we can compose isomorphisms using . from Prelude:

(.) :: f <~> g
    -> g <~> h
    -> f <~> h

Another nice thing about this representation is that we have the "identity" isomorphism by using id from Prelude.

id :: f <~> g

As a convention, most isomorphisms have form "X-ing", where the forwards function is "ing". For example, we have:

splittingSF :: Monoidal t => SF t a <~> t f (MF t f)
splitSF     :: Monoidal t => SF t a  ~> t f (MF t f)

Single Functors

Classes that deal with single-functor combinators, that enhance a single functor.

class HFunctor t where Source #

An HFunctor can be thought of a unary "functor transformer" --- a basic functor combinator. It takes a functor as input and returns a functor as output.

It "enhances" a functor with extra structure (sort of like how a monad transformer enhances a Monad with extra structure).

As a uniform inteface, we can "swap the underlying functor" (also sometimes called "hoisting"). This is what hmap does: it lets us swap out the f in a t f for a t g.

For example, the free monad Free takes a Functor and returns a new Functor. In the process, it provides a monadic structure over f. hmap lets us turn a Free f into a Free g: a monad built over f can be turned into a monad built over g.

For the ability to move in and out of the enhanced functor, see Inject and Interpret.

This class is similar to MFunctor from Control.Monad.Morph, but instances must work without a Monad constraint.

This class is also found in the hschema library with the same name.

Methods

hmap :: (f ~> g) -> t f ~> t g Source #

If we can turn an f into a g, then we can turn a t f into a t g.

It must be the case that

hmap id == id

Essentially, t f adds some "extra structure" to f. hmap must swap out the functor, without affecting the added structure.

For example, ListF f a is essentially a list of f as. If we hmap to swap out the f as for g as, then we must ensure that the "added structure" (here, the number of items in the list, and the ordering of those items) remains the same. So, hmap must preserve the number of items in the list, and must maintain the ordering.

The law hmap id == id is a way of formalizing this property.

Instances
HFunctor Ap1 Source # 
Instance details

Defined in Data.Functor.Apply.Free

Methods

hmap :: (f ~> g) -> Ap1 f ~> Ap1 g Source #

HFunctor (Reverse :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Reverse f ~> Reverse g Source #

HFunctor (Backwards :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Backwards f ~> Backwards g Source #

HFunctor (IdentityT :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> IdentityT f ~> IdentityT g Source #

HFunctor (Flagged :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Flagged f ~> Flagged g Source #

HFunctor (Steps :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Steps f ~> Steps g Source #

HFunctor (Step :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Step f ~> Step g Source #

HFunctor (Void2 :: (k1 -> Type) -> k2 -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Void2 f ~> Void2 g Source #

HFunctor (ReaderT r :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> ReaderT r f ~> ReaderT r g Source #

HFunctor (Sum f :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f0 ~> g) -> Sum f f0 ~> Sum f g Source #

HFunctor (Product f :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f0 ~> g) -> Product f f0 ~> Product f g Source #

HFunctor ((:+:) f :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f0 ~> g) -> (f :+: f0) ~> (f :+: g) Source #

HFunctor ((:*:) f :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f0 ~> g) -> (f :*: f0) ~> (f :*: g) Source #

HFunctor (ProxyF :: (k1 -> Type) -> k2 -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

hmap :: (f ~> g) -> ProxyF f ~> ProxyF g Source #

HFunctor t => HFunctor (HLift t :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

hmap :: (f ~> g) -> HLift t f ~> HLift t g Source #

HFunctor t => HFunctor (HFree t :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

hmap :: (f ~> g) -> HFree t f ~> HFree t g Source #

HBifunctor t => HFunctor (Chain1 t :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Chain

Methods

hmap :: (f ~> g) -> Chain1 t f ~> Chain1 t g Source #

HFunctor (M1 i c :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> M1 i c f ~> M1 i c g Source #

Functor f => HFunctor ((:.:) f :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f0 ~> g) -> (f :.: f0) ~> (f :.: g) Source #

HFunctor (Joker f :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f0 ~> g) -> Joker f f0 ~> Joker f g Source #

HFunctor (ConstF e :: (k1 -> Type) -> k2 -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

hmap :: (f ~> g) -> ConstF e f ~> ConstF e g Source #

HFunctor (LeftF f :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Methods

hmap :: (f0 ~> g) -> LeftF f f0 ~> LeftF f g Source #

HFunctor (RightF f :: (k1 -> Type) -> k1 -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Methods

hmap :: (f0 ~> g) -> RightF f f0 ~> RightF f g Source #

HFunctor (RightF f :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Methods

hmap :: (f0 ~> g) -> RightF f f0 ~> RightF f g Source #

HBifunctor t => HFunctor (WrappedHBifunctor t f :: (k1 -> Type) -> k2 -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f0 ~> g) -> WrappedHBifunctor t f f0 ~> WrappedHBifunctor t f g Source #

HFunctor (Void3 f :: (k2 -> Type) -> k1 -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f0 ~> g) -> Void3 f f0 ~> Void3 f g Source #

HBifunctor t => HFunctor (Chain t i :: (k1 -> Type) -> k2 -> Type) Source # 
Instance details

Defined in Data.HFunctor.Chain

Methods

hmap :: (f ~> g) -> Chain t i f ~> Chain t i g Source #

HFunctor (CoRec :: (k -> Type) -> [k] -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> CoRec f ~> CoRec g Source #

HFunctor (Rec :: (k -> Type) -> [k] -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Rec f ~> Rec g Source #

HFunctor (Tagged :: (k -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Tagged f ~> Tagged g Source #

HFunctor MaybeT Source #

Note that there is no Interpret or Bind instance, because inject requires Functor f.

Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> MaybeT f ~> MaybeT g Source #

HFunctor F Source #

Note that there is no Interpret or Bind instance, because inject requires Functor f.

Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> F f ~> F g Source #

HFunctor Ap Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Ap f ~> Ap g Source #

HFunctor Ap Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Ap f ~> Ap g Source #

HFunctor Ap Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Ap f ~> Ap g Source #

HFunctor Alt Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Alt f ~> Alt g Source #

HFunctor Yoneda Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Yoneda f ~> Yoneda g Source #

HFunctor Coyoneda Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Coyoneda f ~> Coyoneda g Source #

HFunctor WrappedApplicative Source # 
Instance details

Defined in Data.HFunctor.Internal

HFunctor MaybeApply Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> MaybeApply f ~> MaybeApply g Source #

HFunctor Lift Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Lift f ~> Lift g Source #

HFunctor ListF Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> ListF f ~> ListF g Source #

HFunctor NonEmptyF Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> NonEmptyF f ~> NonEmptyF g Source #

HFunctor MaybeF Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> MaybeF f ~> MaybeF g Source #

HFunctor Free1 Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Free1 f ~> Free1 g Source #

HFunctor Free Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Free f ~> Free g Source #

HFunctor (EnvT e :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> EnvT e f ~> EnvT e g Source #

HFunctor (Day f :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f0 ~> g) -> Day f f0 ~> Day f g Source #

HFunctor (These1 f :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f0 ~> g) -> These1 f f0 ~> These1 f g Source #

HFunctor (MapF k :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> MapF k f ~> MapF k g Source #

HFunctor (NEMapF k :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> NEMapF k f ~> NEMapF k g Source #

HFunctor (Comp f :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f0 ~> g) -> Comp f f0 ~> Comp f g Source #

HFunctor (Final c :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

hmap :: (f ~> g) -> Final c f ~> Final c g Source #

(HFunctor s, HFunctor t) => HFunctor (ComposeT s t :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> ComposeT s t f ~> ComposeT s t g Source #

class HFunctor t => Inject t where Source #

A typeclass for HFunctors where you can "inject" an f a into a t f a:

inject :: f a -> t f a

If you think of t f a as an "enhanced f", then inject allows you to use an f as its enhanced form.

With the exception of directly pattern matching on the result, inject itself is not too useful in the general case without Interpret to allow us to interpret or retrieve back the f.

Methods

inject :: f ~> t f Source #

Lift from f into the enhanced t f structure. Analogous to lift from MonadTrans.

Note that this lets us "lift" a f a; if you want to lift an a with a -> t f a, check if t f is an instance of Applicative or Pointed.

Instances
Inject Ap1 Source # 
Instance details

Defined in Data.Functor.Apply.Free

Methods

inject :: f ~> Ap1 f Source #

Inject (Reverse :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Reverse f Source #

Inject (Backwards :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Backwards f Source #

Inject (IdentityT :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> IdentityT f Source #

Inject (Flagged :: (k -> Type) -> k -> Type) Source #

Injects with False.

Equivalent to instance for EnvT Any and HLift IdentityT.

Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Flagged f Source #

Inject (Steps :: (k -> Type) -> k -> Type) Source #

Injects into a singleton map at 0; same behavior as NEMapF (Sum Natural).

Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Steps f Source #

Inject (Step :: (k -> Type) -> k -> Type) Source #

Injects with 0.

Equivalent to instance for EnvT (Sum Natural).

Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Step f Source #

HFunctor t => Inject (HFree t :: (k -> Type) -> k -> Type) Source #

HFree is the "free HBind and Inject" for any HFunctor

Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> HFree t f Source #

HFunctor t => Inject (HLift t :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> HLift t f Source #

Inject (ProxyF :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> ProxyF f Source #

Inject (ReaderT r :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> ReaderT r f Source #

Inject (Sum f :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f0 ~> Sum f f0 Source #

Inject ((:+:) f :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f0 ~> (f :+: f0) Source #

HBifunctor t => Inject (Chain1 t :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Chain

Methods

inject :: f ~> Chain1 t f Source #

Monoid e => Inject (ConstF e :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> ConstF e f Source #

Inject (M1 i c :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> M1 i c f Source #

Applicative f => Inject ((:.:) f :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f0 ~> (f :.: f0) Source #

Inject (RightF f :: (k1 -> Type) -> k1 -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Methods

inject :: f0 ~> RightF f f0 Source #

Inject Ap Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Ap f Source #

Inject Ap Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Ap f Source #

Inject Ap Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Ap f Source #

Inject Alt Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Alt f Source #

Inject Coyoneda Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Coyoneda f Source #

Inject WrappedApplicative Source # 
Instance details

Defined in Data.HFunctor

Inject MaybeApply Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> MaybeApply f Source #

Inject Lift Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Lift f Source #

Inject ListF Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> ListF f Source #

Inject NonEmptyF Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> NonEmptyF f Source #

Inject MaybeF Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> MaybeF f Source #

Inject Free1 Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Free1 f Source #

Inject Free Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Free f Source #

Monoid e => Inject (EnvT e :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> EnvT e f Source #

Inject (These1 f :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f0 ~> These1 f f0 Source #

Monoid k => Inject (MapF k :: (Type -> Type) -> Type -> Type) Source #

Injects into a singleton map at mempty.

Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> MapF k f Source #

Monoid k => Inject (NEMapF k :: (Type -> Type) -> Type -> Type) Source #

Injects into a singleton map at mempty.

Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> NEMapF k f Source #

Applicative f => Inject (Comp f :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f0 ~> Comp f f0 Source #

Inject (Final c :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

inject :: f ~> Final c f Source #

Plus f => Inject ((:*:) f :: (Type -> Type) -> Type -> Type) Source #

Only uses zero

Instance details

Defined in Data.HFunctor

Methods

inject :: f0 ~> (f :*: f0) Source #

Plus f => Inject (Product f :: (Type -> Type) -> Type -> Type) Source #

Only uses zero

Instance details

Defined in Data.HFunctor

Methods

inject :: f0 ~> Product f f0 Source #

(Inject s, Inject t) => Inject (ComposeT s t :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> ComposeT s t f Source #

(Tensor t, i ~ I t) => Inject (Chain t i :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Chain

Methods

inject :: f ~> Chain t i f Source #

class Inject t => Interpret t where Source #

An Interpret lets us move in and out of the "enhanced" Functor.

For example, Free f is f enhanced with monadic structure. We get:

inject    :: f a -> Free f a
interpret :: Monad m => (forall x. f x -> m x) -> Free f a -> m a

inject will let us use our f inside the enhanced Free f. interpret will let us "extract" the f from a Free f if we can give an interpreting function that interprets f into some target Monad.

The type family C tells us the typeclass constraint of the "target" functor. For Free, it is Monad, but for other Interpret instances, we might have other constraints.

We enforce that:

interpret id . inject == id
-- or
retract . inject == id

That is, if we lift a value into our structure, then immediately interpret it out as itself, it should lave the value unchanged.

Minimal complete definition

retract | interpret

Associated Types

type C t :: (Type -> Type) -> Constraint Source #

The constraint on the target context of interpret. It's basically the constraint that allows you to "exit" or "run" an Interpret.

Methods

retract :: C t f => t f ~> f Source #

Remove the f out of the enhanced t f structure, provided that f satisfies the necessary constraints. If it doesn't, it needs to be properly interpreted out.

interpret :: C t g => (f ~> g) -> t f ~> g Source #

Given an "interpeting function" from f to g, interpret the f out of the t f into a final context g.

Instances
Interpret Ap Source #

A free Applicative

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Ap :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Ap f => Ap f ~> f Source #

interpret :: C Ap g => (f ~> g) -> Ap f ~> g Source #

Interpret Ap Source #

A free Applicative

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Ap :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Ap f => Ap f ~> f Source #

interpret :: C Ap g => (f ~> g) -> Ap f ~> g Source #

Interpret Ap Source #

A free Applicative

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Ap :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Ap f => Ap f ~> f Source #

interpret :: C Ap g => (f ~> g) -> Ap f ~> g Source #

Interpret Alt Source #

A free Alternative

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Alt :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Alt f => Alt f ~> f Source #

interpret :: C Alt g => (f ~> g) -> Alt f ~> g Source #

Interpret Coyoneda Source #

A free Functor

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Coyoneda :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Coyoneda f => Coyoneda f ~> f Source #

interpret :: C Coyoneda g => (f ~> g) -> Coyoneda f ~> g Source #

Interpret WrappedApplicative Source # 
Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C WrappedApplicative :: (Type -> Type) -> Constraint Source #

Interpret MaybeApply Source #

A free Pointed

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C MaybeApply :: (Type -> Type) -> Constraint Source #

Methods

retract :: C MaybeApply f => MaybeApply f ~> f Source #

interpret :: C MaybeApply g => (f ~> g) -> MaybeApply f ~> g Source #

Interpret Lift Source #

A free Pointed

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Lift :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Lift f => Lift f ~> f Source #

interpret :: C Lift g => (f ~> g) -> Lift f ~> g Source #

Interpret ListF Source #

A free Plus

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C ListF :: (Type -> Type) -> Constraint Source #

Methods

retract :: C ListF f => ListF f ~> f Source #

interpret :: C ListF g => (f ~> g) -> ListF f ~> g Source #

Interpret NonEmptyF Source #

A free Alt

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C NonEmptyF :: (Type -> Type) -> Constraint Source #

Methods

retract :: C NonEmptyF f => NonEmptyF f ~> f Source #

interpret :: C NonEmptyF g => (f ~> g) -> NonEmptyF f ~> g Source #

Interpret MaybeF Source #

Technically, C is over-constrained: we only need zero :: f a, but we don't really have that typeclass in any standard hierarchies. We use Plus here instead, but we never use <!>. This would only go wrong in situations where your type supports zero but not <!>, like instances of MonadFail without MonadPlus.

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C MaybeF :: (Type -> Type) -> Constraint Source #

Methods

retract :: C MaybeF f => MaybeF f ~> f Source #

interpret :: C MaybeF g => (f ~> g) -> MaybeF f ~> g Source #

Interpret Free1 Source #

A free Bind

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Free1 :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Free1 f => Free1 f ~> f Source #

interpret :: C Free1 g => (f ~> g) -> Free1 f ~> g Source #

Interpret Free Source #

A free Monad

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Free :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Free f => Free f ~> f Source #

interpret :: C Free g => (f ~> g) -> Free f ~> g Source #

Interpret Ap1 Source # 
Instance details

Defined in Data.Functor.Apply.Free

Associated Types

type C Ap1 :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Ap1 f => Ap1 f ~> f Source #

interpret :: C Ap1 g => (f ~> g) -> Ap1 f ~> g Source #

Monoid e => Interpret (EnvT e) Source #

This ignores the environment, so interpret /= hbind

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (EnvT e) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (EnvT e) f => EnvT e f ~> f Source #

interpret :: C (EnvT e) g => (f ~> g) -> EnvT e f ~> g Source #

Interpret (IdentityT :: (Type -> Type) -> Type -> Type) Source #

A free Unconstrained

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C IdentityT :: (Type -> Type) -> Constraint Source #

Methods

retract :: C IdentityT f => IdentityT f ~> f Source #

interpret :: C IdentityT g => (f ~> g) -> IdentityT f ~> g Source #

Interpret (These1 f) Source #

Technically, C is over-constrained: we only need zero :: f a, but we don't really have that typeclass in any standard hierarchies. We use Plus here instead, but we never use <!>. This would only go wrong in situations where your type supports zero but not <!>, like instances of MonadFail without MonadPlus.

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (These1 f) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (These1 f) f0 => These1 f f0 ~> f0 Source #

interpret :: C (These1 f) g => (f0 ~> g) -> These1 f f0 ~> g Source #

Interpret (Reverse :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Reverse :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Reverse f => Reverse f ~> f Source #

interpret :: C Reverse g => (f ~> g) -> Reverse f ~> g Source #

Interpret (Backwards :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Backwards :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Backwards f => Backwards f ~> f Source #

interpret :: C Backwards g => (f ~> g) -> Backwards f ~> g Source #

Monoid k => Interpret (MapF k) Source # 
Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (MapF k) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (MapF k) f => MapF k f ~> f Source #

interpret :: C (MapF k) g => (f ~> g) -> MapF k f ~> g Source #

Monoid k => Interpret (NEMapF k) Source # 
Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (NEMapF k) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (NEMapF k) f => NEMapF k f ~> f Source #

interpret :: C (NEMapF k) g => (f ~> g) -> NEMapF k f ~> g Source #

Interpret (Step :: (Type -> Type) -> Type -> Type) Source #

Equivalent to instance for EnvT (Sum Natural).

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Step :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Step f => Step f ~> f Source #

interpret :: C Step g => (f ~> g) -> Step f ~> g Source #

Interpret (Steps :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Steps :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Steps f => Steps f ~> f Source #

interpret :: C Steps g => (f ~> g) -> Steps f ~> g Source #

Interpret (Flagged :: (Type -> Type) -> Type -> Type) Source #

Equivalent to instance for EnvT Any and HLift IdentityT.

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Flagged :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Flagged f => Flagged f ~> f Source #

interpret :: C Flagged g => (f ~> g) -> Flagged f ~> g Source #

Interpret (Final c) Source # 
Instance details

Defined in Data.HFunctor.Final

Associated Types

type C (Final c) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (Final c) f => Final c f ~> f Source #

interpret :: C (Final c) g => (f ~> g) -> Final c f ~> g Source #

Interpret ((:+:) f) Source #

Technically, C is over-constrained: we only need zero :: f a, but we don't really have that typeclass in any standard hierarchies. We use Plus here instead, but we never use <!>. This would only go wrong in situations where your type supports zero but not <!>, like instances of MonadFail without MonadPlus.

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C ((:+:) f) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C ((:+:) f) f0 => (f :+: f0) ~> f0 Source #

interpret :: C ((:+:) f) g => (f0 ~> g) -> (f :+: f0) ~> g Source #

Plus f => Interpret ((:*:) f) Source # 
Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C ((:*:) f) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C ((:*:) f) f0 => (f :*: f0) ~> f0 Source #

interpret :: C ((:*:) f) g => (f0 ~> g) -> (f :*: f0) ~> g Source #

Plus f => Interpret (Product f) Source # 
Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (Product f) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (Product f) f0 => Product f f0 ~> f0 Source #

interpret :: C (Product f) g => (f0 ~> g) -> Product f f0 ~> g Source #

Interpret (Sum f) Source #

Technically, C is over-constrained: we only need zero :: f a, but we don't really have that typeclass in any standard hierarchies. We use Plus here instead, but we never use <!>. This would only go wrong in situations where your type supports zero but not <!>, like instances of MonadFail without MonadPlus.

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (Sum f) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (Sum f) f0 => Sum f f0 ~> f0 Source #

interpret :: C (Sum f) g => (f0 ~> g) -> Sum f f0 ~> g Source #

(Interpret s, Interpret t) => Interpret (ComposeT s t) Source # 
Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (ComposeT s t) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (ComposeT s t) f => ComposeT s t f ~> f Source #

interpret :: C (ComposeT s t) g => (f ~> g) -> ComposeT s t f ~> g Source #

Interpret (ReaderT r :: (Type -> Type) -> Type -> Type) Source #

A free MonadReader, but only when applied to a Monad.

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (ReaderT r) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (ReaderT r) f => ReaderT r f ~> f Source #

interpret :: C (ReaderT r) g => (f ~> g) -> ReaderT r f ~> g Source #

Interpret (ProxyF :: (Type -> Type) -> Type -> Type) Source #

The only way for this to obey retract . inject == id is to have it impossible to retract out of.

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C ProxyF :: (Type -> Type) -> Constraint Source #

Methods

retract :: C ProxyF f => ProxyF f ~> f Source #

interpret :: C ProxyF g => (f ~> g) -> ProxyF f ~> g Source #

Interpret t => Interpret (HFree t) Source #

Never uses inject

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (HFree t) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (HFree t) f => HFree t f ~> f Source #

interpret :: C (HFree t) g => (f ~> g) -> HFree t f ~> g Source #

Interpret t => Interpret (HLift t) Source #

Never uses inject

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (HLift t) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (HLift t) f => HLift t f ~> f Source #

interpret :: C (HLift t) g => (f ~> g) -> HLift t f ~> g Source #

(HBifunctor t, Semigroupoidal t) => Interpret (Chain1 t) Source # 
Instance details

Defined in Data.HFunctor.Chain

Associated Types

type C (Chain1 t) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (Chain1 t) f => Chain1 t f ~> f Source #

interpret :: C (Chain1 t) g => (f ~> g) -> Chain1 t f ~> g Source #

Interpret (M1 i c :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (M1 i c) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (M1 i c) f => M1 i c f ~> f Source #

interpret :: C (M1 i c) g => (f ~> g) -> M1 i c f ~> g Source #

Monoid e => Interpret (ConstF e :: (Type -> Type) -> Type -> Type) Source #

The only way for this to obey retract . inject == id is to have it impossible to retract out of.

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (ConstF e) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (ConstF e) f => ConstF e f ~> f Source #

interpret :: C (ConstF e) g => (f ~> g) -> ConstF e f ~> g Source #

Interpret (RightF f :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Associated Types

type C (RightF f) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (RightF f) f0 => RightF f f0 ~> f0 Source #

interpret :: C (RightF f) g => (f0 ~> g) -> RightF f f0 ~> g Source #

(Monoidal t, i ~ I t) => Interpret (Chain t i) Source #

We can collapse and interpret an Chain t i if we have Tensor t.

Instance details

Defined in Data.HFunctor.Chain

Associated Types

type C (Chain t i) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (Chain t i) f => Chain t i f ~> f Source #

interpret :: C (Chain t i) g => (f ~> g) -> Chain t i f ~> g Source #

forI :: (Interpret t, C t g) => t f a -> (f ~> g) -> g a Source #

A convenient flipped version of interpret.

getI :: (Interpret t, C t (Const b)) => (forall x. f x -> b) -> t f a -> b Source #

Useful wrapper over interpret to allow you to directly extract a value b out of the t f a, if you can convert f x into b.

Note that depending on the constraints on the interpretation of t, you may have extra constraints on b.

For some constraints (like Monad), this will not be usable.

-- get the length of the Map String in the Step.
collectI length
     :: Step (Map String) Bool
     -> Int

collectI :: (Interpret t, C t (Const [b])) => (forall x. f x -> b) -> t f a -> [b] Source #

Useful wrapper over getI to allow you to collect a b from all instances of f inside a t f a.

This will work if C t is Unconstrained, Apply, or Applicative.

-- get the lengths of all Map Strings in the Ap.
collectI length
     :: Ap (Map String) Bool
     -> [Int]

Multi-Functors

Classes that deal with two-functor combinators, that "mix" two functors together in some way.

class HBifunctor t where Source #

A HBifunctor is like an HFunctor, but it enhances two different functors instead of just one.

Usually, it enhaces them "together" in some sort of combining way.

This typeclass provides a uniform instance for "swapping out" or "hoisting" the enhanced functors. We can hoist the first one with hleft, the second one with hright, or both at the same time with hbimap.

For example, the f :*: g type gives us "both f and g":

data (f :*: g) a = f a :*: g a

It combines both f and g into a unified structure --- here, it does it by providing both f and g.

The single law is:

hbimap id id == id

This ensures that hleft, hright, and hbimap do not affect the structure that t adds on top of the underlying functors.

Minimal complete definition

hleft, hright | hbimap

Methods

hleft :: (f ~> j) -> t f g ~> t j g Source #

Swap out the first transformed functor.

hright :: (g ~> k) -> t f g ~> t f k Source #

Swap out the second transformed functor.

hbimap :: (f ~> j) -> (g ~> k) -> t f g ~> t j k Source #

Swap out both transformed functors at the same time.

Instances
HBifunctor (Sum :: (k -> Type) -> (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hleft :: (f ~> j) -> Sum f g ~> Sum j g Source #

hright :: (g ~> k0) -> Sum f g ~> Sum f k0 Source #

hbimap :: (f ~> j) -> (g ~> k0) -> Sum f g ~> Sum j k0 Source #

HBifunctor ((:+:) :: (k -> Type) -> (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hleft :: (f ~> j) -> (f :+: g) ~> (j :+: g) Source #

hright :: (g ~> k0) -> (f :+: g) ~> (f :+: k0) Source #

hbimap :: (f ~> j) -> (g ~> k0) -> (f :+: g) ~> (j :+: k0) Source #

HBifunctor (Product :: (k -> Type) -> (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hleft :: (f ~> j) -> Product f g ~> Product j g Source #

hright :: (g ~> k0) -> Product f g ~> Product f k0 Source #

hbimap :: (f ~> j) -> (g ~> k0) -> Product f g ~> Product j k0 Source #

HBifunctor ((:*:) :: (k -> Type) -> (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hleft :: (f ~> j) -> (f :*: g) ~> (j :*: g) Source #

hright :: (g ~> k0) -> (f :*: g) ~> (f :*: k0) Source #

hbimap :: (f ~> j) -> (g ~> k0) -> (f :*: g) ~> (j :*: k0) Source #

HBifunctor (Joker :: (k2 -> Type) -> (k1 -> Type) -> k2 -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hleft :: (f ~> j) -> Joker f g ~> Joker j g Source #

hright :: (g ~> k) -> Joker f g ~> Joker f k Source #

hbimap :: (f ~> j) -> (g ~> k) -> Joker f g ~> Joker j k Source #

HBifunctor (LeftF :: (k2 -> Type) -> (k1 -> Type) -> k2 -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Methods

hleft :: (f ~> j) -> LeftF f g ~> LeftF j g Source #

hright :: (g ~> k) -> LeftF f g ~> LeftF f k Source #

hbimap :: (f ~> j) -> (g ~> k) -> LeftF f g ~> LeftF j k Source #

HBifunctor (RightF :: (k1 -> Type) -> (k2 -> Type) -> k2 -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Methods

hleft :: (f ~> j) -> RightF f g ~> RightF j g Source #

hright :: (g ~> k) -> RightF f g ~> RightF f k Source #

hbimap :: (f ~> j) -> (g ~> k) -> RightF f g ~> RightF j k Source #

HBifunctor (Void3 :: (k1 -> Type) -> (k2 -> Type) -> k3 -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hleft :: (f ~> j) -> Void3 f g ~> Void3 j g Source #

hright :: (g ~> k) -> Void3 f g ~> Void3 f k Source #

hbimap :: (f ~> j) -> (g ~> k) -> Void3 f g ~> Void3 j k Source #

HBifunctor Day Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hleft :: (f ~> j) -> Day f g ~> Day j g Source #

hright :: (g ~> k) -> Day f g ~> Day f k Source #

hbimap :: (f ~> j) -> (g ~> k) -> Day f g ~> Day j k Source #

HBifunctor These1 Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hleft :: (f ~> j) -> These1 f g ~> These1 j g Source #

hright :: (g ~> k) -> These1 f g ~> These1 f k Source #

hbimap :: (f ~> j) -> (g ~> k) -> These1 f g ~> These1 j k Source #

HBifunctor Comp Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hleft :: (f ~> j) -> Comp f g ~> Comp j g Source #

hright :: (g ~> k) -> Comp f g ~> Comp f k Source #

hbimap :: (f ~> j) -> (g ~> k) -> Comp f g ~> Comp j k Source #

Associative

class HBifunctor t => Associative t where Source #

An HBifunctor where it doesn't matter which binds first is Associative. Knowing this gives us a lot of power to rearrange the internals of our HFunctor at will.

For example, for the functor product:

data (f :*: g) a = f a :*: g a

We know that f :*: (g :*: h) is the same as (f :*: g) :*: h.

Methods

associating :: (Functor f, Functor g, Functor h) => t f (t g h) <~> t (t f g) h Source #

The isomorphism between t f (t g h) a and t (t f g) h a. To use this isomorphism, see assoc and disassoc.

Instances
Associative Day Source # 
Instance details

Defined in Data.HBifunctor.Associative

Methods

associating :: (Functor f, Functor g, Functor h) => Day f (Day g h) <~> Day (Day f g) h Source #

Associative These1 Source # 
Instance details

Defined in Data.HBifunctor.Associative

Methods

associating :: (Functor f, Functor g, Functor h) => These1 f (These1 g h) <~> These1 (These1 f g) h Source #

Associative Comp Source # 
Instance details

Defined in Data.HBifunctor.Associative

Methods

associating :: (Functor f, Functor g, Functor h) => Comp f (Comp g h) <~> Comp (Comp f g) h Source #

Associative ((:+:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Methods

associating :: (Functor f, Functor g, Functor h) => (f :+: (g :+: h)) <~> ((f :+: g) :+: h) Source #

Associative ((:*:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Methods

associating :: (Functor f, Functor g, Functor h) => (f :*: (g :*: h)) <~> ((f :*: g) :*: h) Source #

Associative (Product :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Methods

associating :: (Functor f, Functor g, Functor h) => Product f (Product g h) <~> Product (Product f g) h Source #

Associative (Sum :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Methods

associating :: (Functor f, Functor g, Functor h) => Sum f (Sum g h) <~> Sum (Sum f g) h Source #

Associative (Joker :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Methods

associating :: (Functor f, Functor g, Functor h) => Joker f (Joker g h) <~> Joker (Joker f g) h Source #

Associative (LeftF :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Methods

associating :: (Functor f, Functor g, Functor h) => LeftF f (LeftF g h) <~> LeftF (LeftF f g) h Source #

Associative (RightF :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Methods

associating :: (Functor f, Functor g, Functor h) => RightF f (RightF g h) <~> RightF (RightF f g) h Source #

Associative (Void3 :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Methods

associating :: (Functor f, Functor g, Functor h) => Void3 f (Void3 g h) <~> Void3 (Void3 f g) h Source #

class (Associative t, Interpret (SF t)) => Semigroupoidal t where Source #

For some ts, you can represent the act of applying a functor f to t many times, as a single type. That is, there is some type SF t f that is equivalent to one of:

  • f a -- 1 time
  • t f f a -- 2 times
  • t f (t f f) a -- 3 times
  • t f (t f (t f f)) a -- 4 times
  • t f (t f (t f (t f f))) a -- 5 times
  • .. etc

This typeclass associates each t with its "induced semigroupoidal functor combinator" SF t.

This is useful because sometimes you might want to describe a type that can be t f f, t f (t f f), t f (t f (t f f)), etc.; "f applied to itself", with at least one f. This typeclass lets you use a type like NonEmptyF in terms of repeated applications of :*:, or Ap1 in terms of repeated applications of Day, or Free1 in terms of repeated applications of Comp, etc.

For example, f :*: f can be interpreted as "a free selection of two fs", allowing you to specify "I have to fs that I can use". If you want to specify "I want 1, 2, or many different fs that I can use", you can use NonEmptyF f.

At the high level, the main way to use a Semigroupoidal is with biretract and binterpret:

biretract :: t f f ~> f
binterpret :: (f ~> h) -> (g ~> h) -> t f g ~> h

which are like the HBifunctor versions of retract and interpret: they fully "mix" together the two inputs of t.

Also useful is:

toSF :: t f f a -> SF t f a

Which converts a t into its aggregate type SF.

In reality, most Semigroupoidal instances are also Monoidal instances, so you can think of the separation as mostly to help organize functionality. However, there are two non-monoidal semigroupoidal instances of note: LeftF and RightF, which are higher order analogues of the First and Last semigroups, roughly.

Minimal complete definition

appendSF, matchSF

Associated Types

type SF t :: (Type -> Type) -> Type -> Type Source #

The "semigroup functor combinator" generated by t.

A value of type SF t f a is equivalent to one of:

  • f a
  • t f f a
  • t f (t f f) a
  • t f (t f (t f f)) a
  • t f (t f (t f (t f f))) a
  • .. etc

For example, for :*:, we have NonEmptyF. This is because:

x             ~ NonEmptyF (x :| [])      ~ inject x
x :*: y       ~ NonEmptyF (x :| [y])     ~ toSF (x :*: y)
x :*: y :*: z ~ NonEmptyF (x :| [y,z])
-- etc.

You can create an "singleton" one with inject, or else one from a single t f f with toSF.

Methods

appendSF :: t (SF t f) (SF t f) ~> SF t f Source #

If a SF t f represents multiple applications of t f to itself, then we can also "append" two SF t fs applied to themselves into one giant SF t f containing all of the t fs.

consSF :: t f (SF t f) ~> SF t f Source #

Prepend an application of t f to the front of a SF t f.

toSF :: t f f ~> SF t f Source #

Embed a direct application of f to itself into a SF t f.

biretract :: CS t f => t f f ~> f Source #

The HBifunctor analogy of retract. It retracts both fs into a single f, effectively fully mixing them together.

binterpret :: CS t h => (f ~> h) -> (g ~> h) -> t f g ~> h Source #

The HBifunctor analogy of interpret. It takes two interpreting functions, and mixes them together into a target functor h.

Instances
Semigroupoidal Day Source # 
Instance details

Defined in Data.HBifunctor.Associative

Associated Types

type SF Day :: (Type -> Type) -> Type -> Type Source #

Methods

appendSF :: Day (SF Day f) (SF Day f) ~> SF Day f Source #

matchSF :: Functor f => SF Day f ~> (f :+: Day f (SF Day f)) Source #

consSF :: Day f (SF Day f) ~> SF Day f Source #

toSF :: Day f f ~> SF Day f Source #

biretract :: CS Day f => Day f f ~> f Source #

binterpret :: CS Day h => (f ~> h) -> (g ~> h) -> Day f g ~> h Source #

Semigroupoidal These1 Source #

Ideally here SF would be equivalent to MF, just like for :+:. This should be possible if we can write a bijection. This bijection should be possible in theory --- but it has not yet been implemented.

Instance details

Defined in Data.HBifunctor.Associative

Associated Types

type SF These1 :: (Type -> Type) -> Type -> Type Source #

Methods

appendSF :: These1 (SF These1 f) (SF These1 f) ~> SF These1 f Source #

matchSF :: Functor f => SF These1 f ~> (f :+: These1 f (SF These1 f)) Source #

consSF :: These1 f (SF These1 f) ~> SF These1 f Source #

toSF :: These1 f f ~> SF These1 f Source #

biretract :: CS These1 f => These1 f f ~> f Source #

binterpret :: CS These1 h => (f ~> h) -> (g ~> h) -> These1 f g ~> h Source #

Semigroupoidal Comp Source # 
Instance details

Defined in Data.HBifunctor.Associative

Associated Types

type SF Comp :: (Type -> Type) -> Type -> Type Source #

Methods

appendSF :: Comp (SF Comp f) (SF Comp f) ~> SF Comp f Source #

matchSF :: Functor f => SF Comp f ~> (f :+: Comp f (SF Comp f)) Source #

consSF :: Comp f (SF Comp f) ~> SF Comp f Source #

toSF :: Comp f f ~> SF Comp f Source #

biretract :: CS Comp f => Comp f f ~> f Source #

binterpret :: CS Comp h => (f ~> h) -> (g ~> h) -> Comp f g ~> h Source #

Semigroupoidal ((:+:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Associated Types

type SF (:+:) :: (Type -> Type) -> Type -> Type Source #

Methods

appendSF :: (SF (:+:) f :+: SF (:+:) f) ~> SF (:+:) f Source #

matchSF :: Functor f => SF (:+:) f ~> (f :+: (f :+: SF (:+:) f)) Source #

consSF :: (f :+: SF (:+:) f) ~> SF (:+:) f Source #

toSF :: (f :+: f) ~> SF (:+:) f Source #

biretract :: CS (:+:) f => (f :+: f) ~> f Source #

binterpret :: CS (:+:) h => (f ~> h) -> (g ~> h) -> (f :+: g) ~> h Source #

Semigroupoidal ((:*:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Associated Types

type SF (:*:) :: (Type -> Type) -> Type -> Type Source #

Methods

appendSF :: (SF (:*:) f :*: SF (:*:) f) ~> SF (:*:) f Source #

matchSF :: Functor f => SF (:*:) f ~> (f :+: (f :*: SF (:*:) f)) Source #

consSF :: (f :*: SF (:*:) f) ~> SF (:*:) f Source #

toSF :: (f :*: f) ~> SF (:*:) f Source #

biretract :: CS (:*:) f => (f :*: f) ~> f Source #

binterpret :: CS (:*:) h => (f ~> h) -> (g ~> h) -> (f :*: g) ~> h Source #

Semigroupoidal (Product :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Associated Types

type SF Product :: (Type -> Type) -> Type -> Type Source #

Semigroupoidal (Sum :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Associated Types

type SF Sum :: (Type -> Type) -> Type -> Type Source #

Methods

appendSF :: Sum (SF Sum f) (SF Sum f) ~> SF Sum f Source #

matchSF :: Functor f => SF Sum f ~> (f :+: Sum f (SF Sum f)) Source #

consSF :: Sum f (SF Sum f) ~> SF Sum f Source #

toSF :: Sum f f ~> SF Sum f Source #

biretract :: CS Sum f => Sum f f ~> f Source #

binterpret :: CS Sum h => (f ~> h) -> (g ~> h) -> Sum f g ~> h Source #

Semigroupoidal (Joker :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Associated Types

type SF Joker :: (Type -> Type) -> Type -> Type Source #

Methods

appendSF :: Joker (SF Joker f) (SF Joker f) ~> SF Joker f Source #

matchSF :: Functor f => SF Joker f ~> (f :+: Joker f (SF Joker f)) Source #

consSF :: Joker f (SF Joker f) ~> SF Joker f Source #

toSF :: Joker f f ~> SF Joker f Source #

biretract :: CS Joker f => Joker f f ~> f Source #

binterpret :: CS Joker h => (f ~> h) -> (g ~> h) -> Joker f g ~> h Source #

Semigroupoidal (LeftF :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Associated Types

type SF LeftF :: (Type -> Type) -> Type -> Type Source #

Methods

appendSF :: LeftF (SF LeftF f) (SF LeftF f) ~> SF LeftF f Source #

matchSF :: Functor f => SF LeftF f ~> (f :+: LeftF f (SF LeftF f)) Source #

consSF :: LeftF f (SF LeftF f) ~> SF LeftF f Source #

toSF :: LeftF f f ~> SF LeftF f Source #

biretract :: CS LeftF f => LeftF f f ~> f Source #

binterpret :: CS LeftF h => (f ~> h) -> (g ~> h) -> LeftF f g ~> h Source #

Semigroupoidal (RightF :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Associated Types

type SF RightF :: (Type -> Type) -> Type -> Type Source #

Methods

appendSF :: RightF (SF RightF f) (SF RightF f) ~> SF RightF f Source #

matchSF :: Functor f => SF RightF f ~> (f :+: RightF f (SF RightF f)) Source #

consSF :: RightF f (SF RightF f) ~> SF RightF f Source #

toSF :: RightF f f ~> SF RightF f Source #

biretract :: CS RightF f => RightF f f ~> f Source #

binterpret :: CS RightF h => (f ~> h) -> (g ~> h) -> RightF f g ~> h Source #

type CS t = C (SF t) Source #

Convenient alias for the constraint required for biretract, binterpret, etc.

It's usually a constraint on the target/result context of interpretation that allows you to "exit" or "run" a Semigroupoidal t.

biget :: (Semigroupoidal t, CS t (Const b)) => (forall x. f x -> b) -> (forall x. g x -> b) -> t f g a -> b Source #

Useful wrapper over binterpret to allow you to directly extract a value b out of the t f a, if you can convert f x into b.

Note that depending on the constraints on the interpretation of t, you may have extra constraints on b.

For some constraints (like Monad), this will not be usable.

-- Return the length of either the list, or the Map, depending on which
--   one s in the +
biget length length
    :: ([] :+: Map Int) Char
    -> Int

-- Return the length of both the list and the map, added together
biget (Sum . length) (Sum . length)
    :: Day [] (Map Int) Char
    -> Sum Int

bicollect :: (Semigroupoidal t, CS t (Const [b])) => (forall x. f x -> b) -> (forall x. g x -> b) -> t f g a -> [b] Source #

Useful wrapper over biget to allow you to collect a b from all instances of f and g inside a t f g a.

This will work if C t is Unconstrained, Apply, or Applicative.

(!*!) :: (Semigroupoidal t, CS t h) => (f ~> h) -> (g ~> h) -> t f g ~> h infixr 5 Source #

Infix alias for binterpret

(!$!) :: (Semigroupoidal t, CS t (Const b)) => (forall x. f x -> b) -> (forall x. g x -> b) -> t f g a -> b infixr 5 Source #

Infix alias for biget

-- Return the length of either the list, or the Map, depending on which
--   one s in the +
length !$! length
    :: ([] :+: Map Int) Char
    -> Int

-- Return the length of both the list and the map, added together
Sum . length !$! Sum . length
    :: Day [] (Map Int) Char
    -> Sum Int

Tensor

class Associative t => Tensor t where Source #

An Associative HBifunctor can be a Tensor if there is some identity i where t i f is equivalent to just f.

That is, "enhancing" f with t i does nothing.

The methods in this class provide us useful ways of navigating a Tensor t with respect to this property.

The Tensor is essentially the HBifunctor equivalent of Inject, with intro1 and intro2 taking the place of inject.

Associated Types

type I t :: Type -> Type Source #

The identity of Tensor t. If you "combine" f with the identity, it leaves f unchanged.

For example, the identity of :*: is Proxy. This is because

(Proxy :*: f) a

is equivalent to just

f a

:*:-ing f with Proxy gives you no additional structure.

Another example:

(V1 :+: f) a

is equivalent to just

f a

because the L1 case is unconstructable.

Methods

intro1 :: f ~> t f (I t) Source #

Because t f (I t) is equivalent to f, we can always "insert" f into t f (I t).

This is analogous to inject from Inject, but for HBifunctors.

intro2 :: g ~> t (I t) g Source #

Because t (I t) g is equivalent to f, we can always "insert" g into t (I t) g.

This is analogous to inject from Inject, but for HBifunctors.

elim1 :: Functor f => t f (I t) ~> f Source #

Witnesses the property that I t is the identity of t: t f (I t) always leaves f unchanged, so we can always just drop the I t.

elim2 :: Functor g => t (I t) g ~> g Source #

Witnesses the property that I t is the identity of t: t (I t) g always leaves g unchanged, so we can always just drop the I t.

Instances
Tensor Day Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type I Day :: Type -> Type Source #

Methods

intro1 :: f ~> Day f (I Day) Source #

intro2 :: g ~> Day (I Day) g Source #

elim1 :: Functor f => Day f (I Day) ~> f Source #

elim2 :: Functor g => Day (I Day) g ~> g Source #

Tensor These1 Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type I These1 :: Type -> Type Source #

Tensor Comp Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type I Comp :: Type -> Type Source #

Methods

intro1 :: f ~> Comp f (I Comp) Source #

intro2 :: g ~> Comp (I Comp) g Source #

elim1 :: Functor f => Comp f (I Comp) ~> f Source #

elim2 :: Functor g => Comp (I Comp) g ~> g Source #

Tensor ((:+:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type I (:+:) :: Type -> Type Source #

Methods

intro1 :: f ~> (f :+: I (:+:)) Source #

intro2 :: g ~> (I (:+:) :+: g) Source #

elim1 :: Functor f => (f :+: I (:+:)) ~> f Source #

elim2 :: Functor g => (I (:+:) :+: g) ~> g Source #

Tensor ((:*:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type I (:*:) :: Type -> Type Source #

Methods

intro1 :: f ~> (f :*: I (:*:)) Source #

intro2 :: g ~> (I (:*:) :*: g) Source #

elim1 :: Functor f => (f :*: I (:*:)) ~> f Source #

elim2 :: Functor g => (I (:*:) :*: g) ~> g Source #

Tensor (Product :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type I Product :: Type -> Type Source #

Tensor (Sum :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type I Sum :: Type -> Type Source #

Methods

intro1 :: f ~> Sum f (I Sum) Source #

intro2 :: g ~> Sum (I Sum) g Source #

elim1 :: Functor f => Sum f (I Sum) ~> f Source #

elim2 :: Functor g => Sum (I Sum) g ~> g Source #

class (Tensor t, Semigroupoidal t, Interpret (MF t)) => Monoidal t where Source #

A Monoidal t is a Semigroupoidal, in that it provides some type MF t f that is equivalent to one of:

  • I a -- 0 times
  • f a -- 1 time
  • t f f a -- 2 times
  • t f (t f f) a -- 3 times
  • t f (t f (t f f)) a -- 4 times
  • t f (t f (t f (t f f))) a -- 5 times
  • .. etc

The difference is that unlike SF t, MF t has the "zero times" value.

This typeclass lets you use a type like ListF in terms of repeated applications of :*:, or Ap in terms of repeated applications of Day, or Free in terms of repeated applications of Comp, etc.

For example, f :*: f can be interpreted as "a free selection of two fs", allowing you to specify "I have to fs that I can use". If you want to specify "I want 0, 1, or many different fs that I can use", you can use ListF f.

At the high level, the thing that Monoidal adds to Semigroupoidal is inL, inR, and nilMF:

inL    :: f a -> t f g a
inR    :: g a -> t f g a
nilMF  :: I a -> MF t f a

which are like the HBifunctor versions of inject: it lets you inject an f into t f g, so you can start doing useful mixing operations with it. nilMF lets you construct an "empty" MF t.

Also useful is:

toMF :: t f f a -> MF t f a

Which converts a t into its aggregate type MF

Minimal complete definition

appendMF, splitSF, splittingMF, upgradeC

Associated Types

type MF t :: (Type -> Type) -> Type -> Type Source #

The "monoidal functor combinator" induced by t.

A value of type MF t f a is equivalent to one of:

  • I a -- zero fs
  • f a -- one f
  • t f f a -- two fs
  • t f (t f f) a -- three fs
  • t f (t f (t f f)) a
  • t f (t f (t f (t f f))) a
  • .. etc

For example, for :*:, we have ListF. This is because:

Proxy         ~ ListF []         ~ nilMF @(:*:)
x             ~ ListF [x]        ~ inject x
x :*: y       ~ ListF [x,y]      ~ toMF (x :*: y)
x :*: y :*: z ~ ListF [x,y,z]
-- etc.

You can create an "empty" one with nilMF, a "singleton" one with inject, or else one from a single t f f with toMF.

Methods

appendMF :: t (MF t f) (MF t f) ~> MF t f Source #

If a MF t f represents multiple applications of t f to itself, then we can also "append" two MF t fs applied to themselves into one giant MF t f containing all of the t fs.

splitSF :: SF t f ~> t f (MF t f) Source #

Lets you convert an SF t f into a single application of f to MF t f.

Analogous to a function NonEmpty a -> (a, [a])

Note that this is not reversible in general unless we have Matchable t.

toMF :: t f f ~> MF t f Source #

Embed a direct application of f to itself into a MF t f.

fromSF :: SF t f ~> MF t f Source #

SF t f is "one or more fs", and 'MF t f is "zero or more fs". This function lets us convert from one to the other.

This is analogous to a function NonEmpty a -> [a].

Note that because t is not inferrable from the input or output type, you should call this using -XTypeApplications:

fromSF @(:*:) :: NonEmptyF f a -> ListF f a
fromSF @Comp  :: Free1 f a -> Free f a

pureT :: CM t f => I t ~> f Source #

If we have an I t, we can generate an f based on how it interacts with t.

Specialized (and simplified), this type is:

pureT @Day   :: Applicative f => Identity a -> f a  -- pure
pureT @Comp  :: Monad f => Identity a -> f a        -- return
pureT @(:*:) :: Plus f => Proxy a -> f a            -- zero

Note that because t appears nowhere in the input or output types, you must always use this with explicit type application syntax (like pureT @Day)

upgradeC :: CM t f => proxy f -> (CS t f => r) -> r Source #

If we have a constraint on the Monoidal satisfied, it should also imply the constraint on the Semigroupoidal.

This is basically saying that C (SF t) should be a superclass of C (MF t).

For example, for :*:, this type signature says that Alt is a superclass of Plus, so whenever you have Plus, you should always also have Alt.

For Day, this type signature says that Apply is a superclass of Applicative, so whenever you have Applicative, you should always also have Apply.

This is necessary because in the current class hierarchy, Apply isn't a true superclass of Applicative. upgradeC basically "imbues" f with an Apply instance based on its Applicative instance, so things can be easier to use.

For example, let's say I have a type Parser that is an Applicative instance, but the source library does not define an Apply instance. I cannot use biretract or binterpret with it, even though I should be able to, because they require Apply.

That is:

biretract :: Day Parser Parser a -> Parser a

is a type error, because it requires Apply Parser.

But, if we know that Parser has an Applicative instance, we can use:

upgradeC @Day (Proxy @Parser) biretract
  :: Day Parser Parser a -> a

and this will now typecheck properly.

Ideally, Parser would also have an Apply instance. But we cannot control this if an external library defines Parser.

(Alternatively you can just use biretractT.)

Note that you should only use this if f doesn't already have the SF constraint. If it does, this could lead to conflicting instances. Only use this with specific, concrete fs. Otherwise this is unsafe and can possibly break coherence guarantees.

The proxy argument can be provided using something like Proxy @f, to specify which f you want to upgrade.

Instances
Monoidal Day Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type MF Day :: (Type -> Type) -> Type -> Type Source #

Methods

appendMF :: Day (MF Day f) (MF Day f) ~> MF Day f Source #

splitSF :: SF Day f ~> Day f (MF Day f) Source #

splittingMF :: MF Day f <~> (I Day :+: Day f (MF Day f)) Source #

toMF :: Day f f ~> MF Day f Source #

fromSF :: SF Day f ~> MF Day f Source #

pureT :: CM Day f => I Day ~> f Source #

upgradeC :: CM Day f => proxy f -> (CS Day f -> r) -> r Source #

Monoidal These1 Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type MF These1 :: (Type -> Type) -> Type -> Type Source #

Monoidal Comp Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type MF Comp :: (Type -> Type) -> Type -> Type Source #

Methods

appendMF :: Comp (MF Comp f) (MF Comp f) ~> MF Comp f Source #

splitSF :: SF Comp f ~> Comp f (MF Comp f) Source #

splittingMF :: MF Comp f <~> (I Comp :+: Comp f (MF Comp f)) Source #

toMF :: Comp f f ~> MF Comp f Source #

fromSF :: SF Comp f ~> MF Comp f Source #

pureT :: CM Comp f => I Comp ~> f Source #

upgradeC :: CM Comp f => proxy f -> (CS Comp f -> r) -> r Source #

Monoidal ((:+:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type MF (:+:) :: (Type -> Type) -> Type -> Type Source #

Methods

appendMF :: (MF (:+:) f :+: MF (:+:) f) ~> MF (:+:) f Source #

splitSF :: SF (:+:) f ~> (f :+: MF (:+:) f) Source #

splittingMF :: MF (:+:) f <~> (I (:+:) :+: (f :+: MF (:+:) f)) Source #

toMF :: (f :+: f) ~> MF (:+:) f Source #

fromSF :: SF (:+:) f ~> MF (:+:) f Source #

pureT :: CM (:+:) f => I (:+:) ~> f Source #

upgradeC :: CM (:+:) f => proxy f -> (CS (:+:) f -> r) -> r Source #

Monoidal ((:*:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type MF (:*:) :: (Type -> Type) -> Type -> Type Source #

Methods

appendMF :: (MF (:*:) f :*: MF (:*:) f) ~> MF (:*:) f Source #

splitSF :: SF (:*:) f ~> (f :*: MF (:*:) f) Source #

splittingMF :: MF (:*:) f <~> (I (:*:) :+: (f :*: MF (:*:) f)) Source #

toMF :: (f :*: f) ~> MF (:*:) f Source #

fromSF :: SF (:*:) f ~> MF (:*:) f Source #

pureT :: CM (:*:) f => I (:*:) ~> f Source #

upgradeC :: CM (:*:) f => proxy f -> (CS (:*:) f -> r) -> r Source #

Monoidal (Product :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type MF Product :: (Type -> Type) -> Type -> Type Source #

Monoidal (Sum :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type MF Sum :: (Type -> Type) -> Type -> Type Source #

Methods

appendMF :: Sum (MF Sum f) (MF Sum f) ~> MF Sum f Source #

splitSF :: SF Sum f ~> Sum f (MF Sum f) Source #

splittingMF :: MF Sum f <~> (I Sum :+: Sum f (MF Sum f)) Source #

toMF :: Sum f f ~> MF Sum f Source #

fromSF :: SF Sum f ~> MF Sum f Source #

pureT :: CM Sum f => I Sum ~> f Source #

upgradeC :: CM Sum f => proxy f -> (CS Sum f -> r) -> r Source #

type CM t = C (MF t) Source #

Convenient alias for the constraint required for inL, inR, pureT, etc.

It's usually a constraint on the target/result context of interpretation that allows you to "exit" or "run" a Monoidal t.

nilMF :: forall t f. Monoidal t => I t ~> MF t f Source #

Create the "empty MF@.

If MF t f represents multiple applications of t f with itself, then nilMF gives us "zero applications of f".

Note that t cannot be inferred from the input or output type of nilMF, so this function must always be called with -XTypeApplications:

nilMF @Day :: Identity ~> Ap f
nilMF @Comp :: Identity ~> Free f
nilMF @(:*:) :: Proxy ~> ListF f

consMF :: Monoidal t => t f (MF t f) ~> MF t f Source #

Lets us "cons" an application of f to the front of an MF t f.

inL :: forall t f g. (Monoidal t, CM t g) => f ~> t f g Source #

Convenient wrapper over intro1 that lets us introduce an arbitrary functor g to the right of an f.

You can think of this as an HBifunctor analogue of inject.

inR :: forall t f g. (Monoidal t, CM t f) => g ~> t f g Source #

Convenient wrapper over intro2 that lets us introduce an arbitrary functor f to the right of a g.

You can think of this as an HBifunctor analogue of inject.

outL :: (Tensor t, I t ~ Proxy, Functor f) => t f g ~> f Source #

Convenient wrapper over elim1 that lets us drop one of the arguments of a Tensor for free, without requiring any extra constraints (like for binterpret).

See prodOutL for a version that does not require Functor f, specifically for :*:.

outR :: (Tensor t, I t ~ Proxy, Functor g) => t f g ~> g Source #

Convenient wrapper over elim2 that lets us drop one of the arguments of a Tensor for free, without requiring any constraints (like for binterpret).

See prodOutR for a version that does not require Functor g, specifically for :*:.

Combinators

Functor combinators ** Single

data Coyoneda (f :: Type -> Type) a where #

A covariant Functor suitable for Yoneda reduction

Constructors

Coyoneda :: forall (f :: Type -> Type) a b. (b -> a) -> f b -> Coyoneda f a 
Instances
ComonadTrans Coyoneda 
Instance details

Defined in Data.Functor.Coyoneda

Methods

lower :: Comonad w => Coyoneda w a -> w a #

MonadTrans Coyoneda 
Instance details

Defined in Data.Functor.Coyoneda

Methods

lift :: Monad m => m a -> Coyoneda m a #

Interpret Coyoneda Source #

A free Functor

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Coyoneda :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Coyoneda f => Coyoneda f ~> f Source #

interpret :: C Coyoneda g => (f ~> g) -> Coyoneda f ~> g Source #

FreeOf Functor Coyoneda Source # 
Instance details

Defined in Data.HFunctor.Final

Monad m => Monad (Coyoneda m) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

(>>=) :: Coyoneda m a -> (a -> Coyoneda m b) -> Coyoneda m b #

(>>) :: Coyoneda m a -> Coyoneda m b -> Coyoneda m b #

return :: a -> Coyoneda m a #

fail :: String -> Coyoneda m a #

Functor (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

fmap :: (a -> b) -> Coyoneda f a -> Coyoneda f b #

(<$) :: a -> Coyoneda f b -> Coyoneda f a #

MonadFix f => MonadFix (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

mfix :: (a -> Coyoneda f a) -> Coyoneda f a #

Applicative f => Applicative (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

pure :: a -> Coyoneda f a #

(<*>) :: Coyoneda f (a -> b) -> Coyoneda f a -> Coyoneda f b #

liftA2 :: (a -> b -> c) -> Coyoneda f a -> Coyoneda f b -> Coyoneda f c #

(*>) :: Coyoneda f a -> Coyoneda f b -> Coyoneda f b #

(<*) :: Coyoneda f a -> Coyoneda f b -> Coyoneda f a #

Foldable f => Foldable (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

fold :: Monoid m => Coyoneda f m -> m #

foldMap :: Monoid m => (a -> m) -> Coyoneda f a -> m #

foldr :: (a -> b -> b) -> b -> Coyoneda f a -> b #

foldr' :: (a -> b -> b) -> b -> Coyoneda f a -> b #

foldl :: (b -> a -> b) -> b -> Coyoneda f a -> b #

foldl' :: (b -> a -> b) -> b -> Coyoneda f a -> b #

foldr1 :: (a -> a -> a) -> Coyoneda f a -> a #

foldl1 :: (a -> a -> a) -> Coyoneda f a -> a #

toList :: Coyoneda f a -> [a] #

null :: Coyoneda f a -> Bool #

length :: Coyoneda f a -> Int #

elem :: Eq a => a -> Coyoneda f a -> Bool #

maximum :: Ord a => Coyoneda f a -> a #

minimum :: Ord a => Coyoneda f a -> a #

sum :: Num a => Coyoneda f a -> a #

product :: Num a => Coyoneda f a -> a #

Traversable f => Traversable (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Coyoneda f a -> f0 (Coyoneda f b) #

sequenceA :: Applicative f0 => Coyoneda f (f0 a) -> f0 (Coyoneda f a) #

mapM :: Monad m => (a -> m b) -> Coyoneda f a -> m (Coyoneda f b) #

sequence :: Monad m => Coyoneda f (m a) -> m (Coyoneda f a) #

Distributive f => Distributive (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

distribute :: Functor f0 => f0 (Coyoneda f a) -> Coyoneda f (f0 a) #

collect :: Functor f0 => (a -> Coyoneda f b) -> f0 a -> Coyoneda f (f0 b) #

distributeM :: Monad m => m (Coyoneda f a) -> Coyoneda f (m a) #

collectM :: Monad m => (a -> Coyoneda f b) -> m a -> Coyoneda f (m b) #

Representable f => Representable (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

Associated Types

type Rep (Coyoneda f) :: Type #

Methods

tabulate :: (Rep (Coyoneda f) -> a) -> Coyoneda f a #

index :: Coyoneda f a -> Rep (Coyoneda f) -> a #

Alternative f => Alternative (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

empty :: Coyoneda f a #

(<|>) :: Coyoneda f a -> Coyoneda f a -> Coyoneda f a #

some :: Coyoneda f a -> Coyoneda f [a] #

many :: Coyoneda f a -> Coyoneda f [a] #

MonadPlus f => MonadPlus (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

mzero :: Coyoneda f a #

mplus :: Coyoneda f a -> Coyoneda f a -> Coyoneda f a #

Eq1 f => Eq1 (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

liftEq :: (a -> b -> Bool) -> Coyoneda f a -> Coyoneda f b -> Bool #

Ord1 f => Ord1 (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

liftCompare :: (a -> b -> Ordering) -> Coyoneda f a -> Coyoneda f b -> Ordering #

Read1 f => Read1 (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Coyoneda f a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Coyoneda f a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Coyoneda f a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Coyoneda f a] #

(Functor f, Show1 f) => Show1 (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Coyoneda f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Coyoneda f a] -> ShowS #

Comonad w => Comonad (Coyoneda w) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

extract :: Coyoneda w a -> a #

duplicate :: Coyoneda w a -> Coyoneda w (Coyoneda w a) #

extend :: (Coyoneda w a -> b) -> Coyoneda w a -> Coyoneda w b #

Foldable1 f => Foldable1 (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

fold1 :: Semigroup m => Coyoneda f m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Coyoneda f a -> m #

toNonEmpty :: Coyoneda f a -> NonEmpty a #

Apply f => Apply (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

(<.>) :: Coyoneda f (a -> b) -> Coyoneda f a -> Coyoneda f b #

(.>) :: Coyoneda f a -> Coyoneda f b -> Coyoneda f b #

(<.) :: Coyoneda f a -> Coyoneda f b -> Coyoneda f a #

liftF2 :: (a -> b -> c) -> Coyoneda f a -> Coyoneda f b -> Coyoneda f c #

Traversable1 f => Traversable1 (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Coyoneda f a -> f0 (Coyoneda f b) #

sequence1 :: Apply f0 => Coyoneda f (f0 b) -> f0 (Coyoneda f b) #

Plus f => Plus (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

zero :: Coyoneda f a #

Alt f => Alt (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

(<!>) :: Coyoneda f a -> Coyoneda f a -> Coyoneda f a #

some :: Applicative (Coyoneda f) => Coyoneda f a -> Coyoneda f [a] #

many :: Applicative (Coyoneda f) => Coyoneda f a -> Coyoneda f [a] #

Bind m => Bind (Coyoneda m) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

(>>-) :: Coyoneda m a -> (a -> Coyoneda m b) -> Coyoneda m b #

join :: Coyoneda m (Coyoneda m a) -> Coyoneda m a #

Extend w => Extend (Coyoneda w) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

duplicated :: Coyoneda w a -> Coyoneda w (Coyoneda w a) #

extended :: (Coyoneda w a -> b) -> Coyoneda w a -> Coyoneda w b #

HBind Coyoneda Source # 
Instance details

Defined in Data.HFunctor

Inject Coyoneda Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Coyoneda f Source #

Adjunction f g => Adjunction (Coyoneda f) (Coyoneda g) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

unit :: a -> Coyoneda g (Coyoneda f a) #

counit :: Coyoneda f (Coyoneda g a) -> a #

leftAdjunct :: (Coyoneda f a -> b) -> a -> Coyoneda g b #

rightAdjunct :: (a -> Coyoneda g b) -> Coyoneda f a -> b #

HFunctor Coyoneda Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Coyoneda f ~> Coyoneda g Source #

(Functor f, Eq1 f, Eq a) => Eq (Coyoneda f a) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

(==) :: Coyoneda f a -> Coyoneda f a -> Bool #

(/=) :: Coyoneda f a -> Coyoneda f a -> Bool #

(Functor f, Ord1 f, Ord a) => Ord (Coyoneda f a) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

compare :: Coyoneda f a -> Coyoneda f a -> Ordering #

(<) :: Coyoneda f a -> Coyoneda f a -> Bool #

(<=) :: Coyoneda f a -> Coyoneda f a -> Bool #

(>) :: Coyoneda f a -> Coyoneda f a -> Bool #

(>=) :: Coyoneda f a -> Coyoneda f a -> Bool #

max :: Coyoneda f a -> Coyoneda f a -> Coyoneda f a #

min :: Coyoneda f a -> Coyoneda f a -> Coyoneda f a #

Read (f a) => Read (Coyoneda f a) 
Instance details

Defined in Data.Functor.Coyoneda

(Functor f, Show1 f, Show a) => Show (Coyoneda f a) 
Instance details

Defined in Data.Functor.Coyoneda

Methods

showsPrec :: Int -> Coyoneda f a -> ShowS #

show :: Coyoneda f a -> String #

showList :: [Coyoneda f a] -> ShowS #

type C Coyoneda Source # 
Instance details

Defined in Data.HFunctor.Interpret

type Rep (Coyoneda f) 
Instance details

Defined in Data.Functor.Coyoneda

type Rep (Coyoneda f) = Rep f

newtype ListF f a Source #

A list of f as. Can be used to describe a product of many different values of type f a.

This is the Free Plus.

Constructors

ListF 

Fields

Instances
Interpret ListF Source #

A free Plus

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C ListF :: (Type -> Type) -> Constraint Source #

Methods

retract :: C ListF f => ListF f ~> f Source #

interpret :: C ListF g => (f ~> g) -> ListF f ~> g Source #

FreeOf Plus ListF Source # 
Instance details

Defined in Data.HFunctor.Final

Functor f => Functor (ListF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

fmap :: (a -> b) -> ListF f a -> ListF f b #

(<$) :: a -> ListF f b -> ListF f a #

Applicative f => Applicative (ListF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

pure :: a -> ListF f a #

(<*>) :: ListF f (a -> b) -> ListF f a -> ListF f b #

liftA2 :: (a -> b -> c) -> ListF f a -> ListF f b -> ListF f c #

(*>) :: ListF f a -> ListF f b -> ListF f b #

(<*) :: ListF f a -> ListF f b -> ListF f a #

Foldable f => Foldable (ListF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

fold :: Monoid m => ListF f m -> m #

foldMap :: Monoid m => (a -> m) -> ListF f a -> m #

foldr :: (a -> b -> b) -> b -> ListF f a -> b #

foldr' :: (a -> b -> b) -> b -> ListF f a -> b #

foldl :: (b -> a -> b) -> b -> ListF f a -> b #

foldl' :: (b -> a -> b) -> b -> ListF f a -> b #

foldr1 :: (a -> a -> a) -> ListF f a -> a #

foldl1 :: (a -> a -> a) -> ListF f a -> a #

toList :: ListF f a -> [a] #

null :: ListF f a -> Bool #

length :: ListF f a -> Int #

elem :: Eq a => a -> ListF f a -> Bool #

maximum :: Ord a => ListF f a -> a #

minimum :: Ord a => ListF f a -> a #

sum :: Num a => ListF f a -> a #

product :: Num a => ListF f a -> a #

Traversable f => Traversable (ListF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

traverse :: Applicative f0 => (a -> f0 b) -> ListF f a -> f0 (ListF f b) #

sequenceA :: Applicative f0 => ListF f (f0 a) -> f0 (ListF f a) #

mapM :: Monad m => (a -> m b) -> ListF f a -> m (ListF f b) #

sequence :: Monad m => ListF f (m a) -> m (ListF f a) #

Applicative f => Alternative (ListF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

empty :: ListF f a #

(<|>) :: ListF f a -> ListF f a -> ListF f a #

some :: ListF f a -> ListF f [a] #

many :: ListF f a -> ListF f [a] #

Eq1 f => Eq1 (ListF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftEq :: (a -> b -> Bool) -> ListF f a -> ListF f b -> Bool #

Ord1 f => Ord1 (ListF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftCompare :: (a -> b -> Ordering) -> ListF f a -> ListF f b -> Ordering #

Read1 f => Read1 (ListF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (ListF f a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [ListF f a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (ListF f a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [ListF f a] #

Show1 f => Show1 (ListF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> ListF f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [ListF f a] -> ShowS #

Apply f => Apply (ListF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

(<.>) :: ListF f (a -> b) -> ListF f a -> ListF f b #

(.>) :: ListF f a -> ListF f b -> ListF f b #

(<.) :: ListF f a -> ListF f b -> ListF f a #

liftF2 :: (a -> b -> c) -> ListF f a -> ListF f b -> ListF f c #

Pointed f => Pointed (ListF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

point :: a -> ListF f a #

Functor f => Plus (ListF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

zero :: ListF f a #

Functor f => Alt (ListF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

(<!>) :: ListF f a -> ListF f a -> ListF f a #

some :: Applicative (ListF f) => ListF f a -> ListF f [a] #

many :: Applicative (ListF f) => ListF f a -> ListF f [a] #

HBind ListF Source # 
Instance details

Defined in Data.HFunctor

Methods

hbind :: (f ~> ListF g) -> ListF f ~> ListF g Source #

hjoin :: ListF (ListF f) ~> ListF f Source #

Inject ListF Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> ListF f Source #

HFunctor ListF Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> ListF f ~> ListF g Source #

Eq (f a) => Eq (ListF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

(==) :: ListF f a -> ListF f a -> Bool #

(/=) :: ListF f a -> ListF f a -> Bool #

(Typeable f, Typeable a, Data (f a)) => Data (ListF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ListF f a -> c (ListF f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ListF f a) #

toConstr :: ListF f a -> Constr #

dataTypeOf :: ListF f a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ListF f a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ListF f a)) #

gmapT :: (forall b. Data b => b -> b) -> ListF f a -> ListF f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ListF f a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ListF f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> ListF f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ListF f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ListF f a -> m (ListF f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ListF f a -> m (ListF f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ListF f a -> m (ListF f a) #

Ord (f a) => Ord (ListF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

compare :: ListF f a -> ListF f a -> Ordering #

(<) :: ListF f a -> ListF f a -> Bool #

(<=) :: ListF f a -> ListF f a -> Bool #

(>) :: ListF f a -> ListF f a -> Bool #

(>=) :: ListF f a -> ListF f a -> Bool #

max :: ListF f a -> ListF f a -> ListF f a #

min :: ListF f a -> ListF f a -> ListF f a #

Read (f a) => Read (ListF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Show (f a) => Show (ListF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

showsPrec :: Int -> ListF f a -> ShowS #

show :: ListF f a -> String #

showList :: [ListF f a] -> ShowS #

Generic (ListF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Associated Types

type Rep (ListF f a) :: Type -> Type #

Methods

from :: ListF f a -> Rep (ListF f a) x #

to :: Rep (ListF f a) x -> ListF f a #

Semigroup (ListF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

(<>) :: ListF f a -> ListF f a -> ListF f a #

sconcat :: NonEmpty (ListF f a) -> ListF f a #

stimes :: Integral b => b -> ListF f a -> ListF f a #

Monoid (ListF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

mempty :: ListF f a #

mappend :: ListF f a -> ListF f a -> ListF f a #

mconcat :: [ListF f a] -> ListF f a #

type C ListF Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C ListF = Plus
type Rep (ListF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

type Rep (ListF f a) = D1 (MetaData "ListF" "Control.Applicative.ListF" "functor-combinators-0.1.1.1-B2oyFu2GVTM8ySAuzVPoNk" True) (C1 (MetaCons "ListF" PrefixI True) (S1 (MetaSel (Just "runListF") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 [f a])))

newtype NonEmptyF f a Source #

A non-empty list of f as. Can be used to describe a product between many different possible values of type f a.

Essentially:

NonEmptyF f
    ~ f                          -- one f
  :+: (f :*: f)              -- two f's
  :+: (f :*: f :*: f)            -- three f's
  :+: (f :*: f :*: f :*: f)      -- four f's
  :+: ...                        -- etc.

This is the Free Plus.

Constructors

NonEmptyF 

Fields

Bundled Patterns

pattern ProdNonEmpty :: (f :*: ListF f) a -> NonEmptyF f a

Treat a NonEmptyF f as a product between an f and a ListF f.

nonEmptyProd is the record accessor.

Instances
Interpret NonEmptyF Source #

A free Alt

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C NonEmptyF :: (Type -> Type) -> Constraint Source #

Methods

retract :: C NonEmptyF f => NonEmptyF f ~> f Source #

interpret :: C NonEmptyF g => (f ~> g) -> NonEmptyF f ~> g Source #

FreeOf Alt NonEmptyF Source # 
Instance details

Defined in Data.HFunctor.Final

Functor f => Functor (NonEmptyF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

fmap :: (a -> b) -> NonEmptyF f a -> NonEmptyF f b #

(<$) :: a -> NonEmptyF f b -> NonEmptyF f a #

Applicative f => Applicative (NonEmptyF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

pure :: a -> NonEmptyF f a #

(<*>) :: NonEmptyF f (a -> b) -> NonEmptyF f a -> NonEmptyF f b #

liftA2 :: (a -> b -> c) -> NonEmptyF f a -> NonEmptyF f b -> NonEmptyF f c #

(*>) :: NonEmptyF f a -> NonEmptyF f b -> NonEmptyF f b #

(<*) :: NonEmptyF f a -> NonEmptyF f b -> NonEmptyF f a #

Foldable f => Foldable (NonEmptyF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

fold :: Monoid m => NonEmptyF f m -> m #

foldMap :: Monoid m => (a -> m) -> NonEmptyF f a -> m #

foldr :: (a -> b -> b) -> b -> NonEmptyF f a -> b #

foldr' :: (a -> b -> b) -> b -> NonEmptyF f a -> b #

foldl :: (b -> a -> b) -> b -> NonEmptyF f a -> b #

foldl' :: (b -> a -> b) -> b -> NonEmptyF f a -> b #

foldr1 :: (a -> a -> a) -> NonEmptyF f a -> a #

foldl1 :: (a -> a -> a) -> NonEmptyF f a -> a #

toList :: NonEmptyF f a -> [a] #

null :: NonEmptyF f a -> Bool #

length :: NonEmptyF f a -> Int #

elem :: Eq a => a -> NonEmptyF f a -> Bool #

maximum :: Ord a => NonEmptyF f a -> a #

minimum :: Ord a => NonEmptyF f a -> a #

sum :: Num a => NonEmptyF f a -> a #

product :: Num a => NonEmptyF f a -> a #

Traversable f => Traversable (NonEmptyF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

traverse :: Applicative f0 => (a -> f0 b) -> NonEmptyF f a -> f0 (NonEmptyF f b) #

sequenceA :: Applicative f0 => NonEmptyF f (f0 a) -> f0 (NonEmptyF f a) #

mapM :: Monad m => (a -> m b) -> NonEmptyF f a -> m (NonEmptyF f b) #

sequence :: Monad m => NonEmptyF f (m a) -> m (NonEmptyF f a) #

Eq1 f => Eq1 (NonEmptyF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftEq :: (a -> b -> Bool) -> NonEmptyF f a -> NonEmptyF f b -> Bool #

Ord1 f => Ord1 (NonEmptyF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftCompare :: (a -> b -> Ordering) -> NonEmptyF f a -> NonEmptyF f b -> Ordering #

Read1 f => Read1 (NonEmptyF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (NonEmptyF f a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [NonEmptyF f a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (NonEmptyF f a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [NonEmptyF f a] #

Show1 f => Show1 (NonEmptyF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> NonEmptyF f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [NonEmptyF f a] -> ShowS #

Pointed f => Pointed (NonEmptyF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

point :: a -> NonEmptyF f a #

Functor f => Alt (NonEmptyF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

(<!>) :: NonEmptyF f a -> NonEmptyF f a -> NonEmptyF f a #

some :: Applicative (NonEmptyF f) => NonEmptyF f a -> NonEmptyF f [a] #

many :: Applicative (NonEmptyF f) => NonEmptyF f a -> NonEmptyF f [a] #

HBind NonEmptyF Source # 
Instance details

Defined in Data.HFunctor

Inject NonEmptyF Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> NonEmptyF f Source #

HFunctor NonEmptyF Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> NonEmptyF f ~> NonEmptyF g Source #

Eq (f a) => Eq (NonEmptyF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

(==) :: NonEmptyF f a -> NonEmptyF f a -> Bool #

(/=) :: NonEmptyF f a -> NonEmptyF f a -> Bool #

(Typeable f, Typeable a, Data (f a)) => Data (NonEmptyF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmptyF f a -> c (NonEmptyF f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmptyF f a) #

toConstr :: NonEmptyF f a -> Constr #

dataTypeOf :: NonEmptyF f a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmptyF f a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmptyF f a)) #

gmapT :: (forall b. Data b => b -> b) -> NonEmptyF f a -> NonEmptyF f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmptyF f a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmptyF f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> NonEmptyF f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmptyF f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmptyF f a -> m (NonEmptyF f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmptyF f a -> m (NonEmptyF f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmptyF f a -> m (NonEmptyF f a) #

Ord (f a) => Ord (NonEmptyF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

compare :: NonEmptyF f a -> NonEmptyF f a -> Ordering #

(<) :: NonEmptyF f a -> NonEmptyF f a -> Bool #

(<=) :: NonEmptyF f a -> NonEmptyF f a -> Bool #

(>) :: NonEmptyF f a -> NonEmptyF f a -> Bool #

(>=) :: NonEmptyF f a -> NonEmptyF f a -> Bool #

max :: NonEmptyF f a -> NonEmptyF f a -> NonEmptyF f a #

min :: NonEmptyF f a -> NonEmptyF f a -> NonEmptyF f a #

Read (f a) => Read (NonEmptyF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Show (f a) => Show (NonEmptyF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

showsPrec :: Int -> NonEmptyF f a -> ShowS #

show :: NonEmptyF f a -> String #

showList :: [NonEmptyF f a] -> ShowS #

Generic (NonEmptyF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Associated Types

type Rep (NonEmptyF f a) :: Type -> Type #

Methods

from :: NonEmptyF f a -> Rep (NonEmptyF f a) x #

to :: Rep (NonEmptyF f a) x -> NonEmptyF f a #

Semigroup (NonEmptyF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

(<>) :: NonEmptyF f a -> NonEmptyF f a -> NonEmptyF f a #

sconcat :: NonEmpty (NonEmptyF f a) -> NonEmptyF f a #

stimes :: Integral b => b -> NonEmptyF f a -> NonEmptyF f a #

type C NonEmptyF Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C NonEmptyF = Alt
type Rep (NonEmptyF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

type Rep (NonEmptyF f a) = D1 (MetaData "NonEmptyF" "Control.Applicative.ListF" "functor-combinators-0.1.1.1-B2oyFu2GVTM8ySAuzVPoNk" True) (C1 (MetaCons "NonEmptyF" PrefixI True) (S1 (MetaSel (Just "runNonEmptyF") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (NonEmpty (f a)))))

newtype MaybeF f a Source #

A maybe f a.

Can be useful for describing a "an f a that may or may not be there".

This is the free structure for a "fail"-like typeclass that would only have zero :: f a.

Constructors

MaybeF 

Fields

Instances
Interpret MaybeF Source #

Technically, C is over-constrained: we only need zero :: f a, but we don't really have that typeclass in any standard hierarchies. We use Plus here instead, but we never use <!>. This would only go wrong in situations where your type supports zero but not <!>, like instances of MonadFail without MonadPlus.

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C MaybeF :: (Type -> Type) -> Constraint Source #

Methods

retract :: C MaybeF f => MaybeF f ~> f Source #

interpret :: C MaybeF g => (f ~> g) -> MaybeF f ~> g Source #

Functor f => Functor (MaybeF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

fmap :: (a -> b) -> MaybeF f a -> MaybeF f b #

(<$) :: a -> MaybeF f b -> MaybeF f a #

Applicative f => Applicative (MaybeF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

pure :: a -> MaybeF f a #

(<*>) :: MaybeF f (a -> b) -> MaybeF f a -> MaybeF f b #

liftA2 :: (a -> b -> c) -> MaybeF f a -> MaybeF f b -> MaybeF f c #

(*>) :: MaybeF f a -> MaybeF f b -> MaybeF f b #

(<*) :: MaybeF f a -> MaybeF f b -> MaybeF f a #

Foldable f => Foldable (MaybeF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

fold :: Monoid m => MaybeF f m -> m #

foldMap :: Monoid m => (a -> m) -> MaybeF f a -> m #

foldr :: (a -> b -> b) -> b -> MaybeF f a -> b #

foldr' :: (a -> b -> b) -> b -> MaybeF f a -> b #

foldl :: (b -> a -> b) -> b -> MaybeF f a -> b #

foldl' :: (b -> a -> b) -> b -> MaybeF f a -> b #

foldr1 :: (a -> a -> a) -> MaybeF f a -> a #

foldl1 :: (a -> a -> a) -> MaybeF f a -> a #

toList :: MaybeF f a -> [a] #

null :: MaybeF f a -> Bool #

length :: MaybeF f a -> Int #

elem :: Eq a => a -> MaybeF f a -> Bool #

maximum :: Ord a => MaybeF f a -> a #

minimum :: Ord a => MaybeF f a -> a #

sum :: Num a => MaybeF f a -> a #

product :: Num a => MaybeF f a -> a #

Traversable f => Traversable (MaybeF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

traverse :: Applicative f0 => (a -> f0 b) -> MaybeF f a -> f0 (MaybeF f b) #

sequenceA :: Applicative f0 => MaybeF f (f0 a) -> f0 (MaybeF f a) #

mapM :: Monad m => (a -> m b) -> MaybeF f a -> m (MaybeF f b) #

sequence :: Monad m => MaybeF f (m a) -> m (MaybeF f a) #

Applicative f => Alternative (MaybeF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

empty :: MaybeF f a #

(<|>) :: MaybeF f a -> MaybeF f a -> MaybeF f a #

some :: MaybeF f a -> MaybeF f [a] #

many :: MaybeF f a -> MaybeF f [a] #

Eq1 f => Eq1 (MaybeF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftEq :: (a -> b -> Bool) -> MaybeF f a -> MaybeF f b -> Bool #

Ord1 f => Ord1 (MaybeF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftCompare :: (a -> b -> Ordering) -> MaybeF f a -> MaybeF f b -> Ordering #

Read1 f => Read1 (MaybeF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (MaybeF f a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [MaybeF f a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (MaybeF f a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [MaybeF f a] #

Show1 f => Show1 (MaybeF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> MaybeF f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [MaybeF f a] -> ShowS #

Pointed f => Pointed (MaybeF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

point :: a -> MaybeF f a #

Functor f => Plus (MaybeF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

zero :: MaybeF f a #

Functor f => Alt (MaybeF f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

(<!>) :: MaybeF f a -> MaybeF f a -> MaybeF f a #

some :: Applicative (MaybeF f) => MaybeF f a -> MaybeF f [a] #

many :: Applicative (MaybeF f) => MaybeF f a -> MaybeF f [a] #

HBind MaybeF Source # 
Instance details

Defined in Data.HFunctor

Methods

hbind :: (f ~> MaybeF g) -> MaybeF f ~> MaybeF g Source #

hjoin :: MaybeF (MaybeF f) ~> MaybeF f Source #

Inject MaybeF Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> MaybeF f Source #

HFunctor MaybeF Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> MaybeF f ~> MaybeF g Source #

Eq (f a) => Eq (MaybeF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

(==) :: MaybeF f a -> MaybeF f a -> Bool #

(/=) :: MaybeF f a -> MaybeF f a -> Bool #

(Typeable f, Typeable a, Data (f a)) => Data (MaybeF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MaybeF f a -> c (MaybeF f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (MaybeF f a) #

toConstr :: MaybeF f a -> Constr #

dataTypeOf :: MaybeF f a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (MaybeF f a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (MaybeF f a)) #

gmapT :: (forall b. Data b => b -> b) -> MaybeF f a -> MaybeF f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MaybeF f a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MaybeF f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> MaybeF f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> MaybeF f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> MaybeF f a -> m (MaybeF f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MaybeF f a -> m (MaybeF f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MaybeF f a -> m (MaybeF f a) #

Ord (f a) => Ord (MaybeF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

compare :: MaybeF f a -> MaybeF f a -> Ordering #

(<) :: MaybeF f a -> MaybeF f a -> Bool #

(<=) :: MaybeF f a -> MaybeF f a -> Bool #

(>) :: MaybeF f a -> MaybeF f a -> Bool #

(>=) :: MaybeF f a -> MaybeF f a -> Bool #

max :: MaybeF f a -> MaybeF f a -> MaybeF f a #

min :: MaybeF f a -> MaybeF f a -> MaybeF f a #

Read (f a) => Read (MaybeF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Show (f a) => Show (MaybeF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

showsPrec :: Int -> MaybeF f a -> ShowS #

show :: MaybeF f a -> String #

showList :: [MaybeF f a] -> ShowS #

Generic (MaybeF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Associated Types

type Rep (MaybeF f a) :: Type -> Type #

Methods

from :: MaybeF f a -> Rep (MaybeF f a) x #

to :: Rep (MaybeF f a) x -> MaybeF f a #

Semigroup (MaybeF f a) Source #

Picks the first Just.

Instance details

Defined in Control.Applicative.ListF

Methods

(<>) :: MaybeF f a -> MaybeF f a -> MaybeF f a #

sconcat :: NonEmpty (MaybeF f a) -> MaybeF f a #

stimes :: Integral b => b -> MaybeF f a -> MaybeF f a #

Monoid (MaybeF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

mempty :: MaybeF f a #

mappend :: MaybeF f a -> MaybeF f a -> MaybeF f a #

mconcat :: [MaybeF f a] -> MaybeF f a #

type C MaybeF Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C MaybeF = Plus
type Rep (MaybeF f a) Source # 
Instance details

Defined in Control.Applicative.ListF

type Rep (MaybeF f a) = D1 (MetaData "MaybeF" "Control.Applicative.ListF" "functor-combinators-0.1.1.1-B2oyFu2GVTM8ySAuzVPoNk" True) (C1 (MetaCons "MaybeF" PrefixI True) (S1 (MetaSel (Just "runMaybeF") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (Maybe (f a)))))

newtype MapF k f a Source #

A map of f as, indexed by keys of type k. It can be useful for represeting a product of many different values of type f a, each "at" a different k location.

Can be considered a combination of EnvT and ListF, in a way --- a MapF k f a is like a ListF (EnvT k f) a with unique (and ordered) keys.

One use case might be to extend a schema with many "options", indexed by some string.

For example, if you had a command line argument parser for a single command

data Command a

Then you can represent a command line argument parser for multiple named commands with

type Commands = MapF String Command

See NEMapF for a non-empty variant, if you want to enforce that your bag has at least one f a.

Constructors

MapF 

Fields

Instances
Monoid k => Interpret (MapF k) Source # 
Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (MapF k) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (MapF k) f => MapF k f ~> f Source #

interpret :: C (MapF k) g => (f ~> g) -> MapF k f ~> g Source #

Monoid k => Inject (MapF k :: (Type -> Type) -> Type -> Type) Source #

Injects into a singleton map at mempty.

Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> MapF k f Source #

HFunctor (MapF k :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> MapF k f ~> MapF k g Source #

Functor f => Functor (MapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

fmap :: (a -> b) -> MapF k f a -> MapF k f b #

(<$) :: a -> MapF k f b -> MapF k f a #

Foldable f => Foldable (MapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

fold :: Monoid m => MapF k f m -> m #

foldMap :: Monoid m => (a -> m) -> MapF k f a -> m #

foldr :: (a -> b -> b) -> b -> MapF k f a -> b #

foldr' :: (a -> b -> b) -> b -> MapF k f a -> b #

foldl :: (b -> a -> b) -> b -> MapF k f a -> b #

foldl' :: (b -> a -> b) -> b -> MapF k f a -> b #

foldr1 :: (a -> a -> a) -> MapF k f a -> a #

foldl1 :: (a -> a -> a) -> MapF k f a -> a #

toList :: MapF k f a -> [a] #

null :: MapF k f a -> Bool #

length :: MapF k f a -> Int #

elem :: Eq a => a -> MapF k f a -> Bool #

maximum :: Ord a => MapF k f a -> a #

minimum :: Ord a => MapF k f a -> a #

sum :: Num a => MapF k f a -> a #

product :: Num a => MapF k f a -> a #

Traversable f => Traversable (MapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

traverse :: Applicative f0 => (a -> f0 b) -> MapF k f a -> f0 (MapF k f b) #

sequenceA :: Applicative f0 => MapF k f (f0 a) -> f0 (MapF k f a) #

mapM :: Monad m => (a -> m b) -> MapF k f a -> m (MapF k f b) #

sequence :: Monad m => MapF k f (m a) -> m (MapF k f a) #

(Eq k, Eq1 f) => Eq1 (MapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftEq :: (a -> b -> Bool) -> MapF k f a -> MapF k f b -> Bool #

(Ord k, Ord1 f) => Ord1 (MapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftCompare :: (a -> b -> Ordering) -> MapF k f a -> MapF k f b -> Ordering #

(Ord k, Read k, Read1 f) => Read1 (MapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (MapF k f a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [MapF k f a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (MapF k f a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [MapF k f a] #

(Show k, Show1 f) => Show1 (MapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> MapF k f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [MapF k f a] -> ShowS #

(Monoid k, Pointed f) => Pointed (MapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

point :: a -> MapF k f a #

(Functor f, Ord k) => Plus (MapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

zero :: MapF k f a #

(Functor f, Ord k) => Alt (MapF k f) Source #

Left-biased union

Instance details

Defined in Control.Applicative.ListF

Methods

(<!>) :: MapF k f a -> MapF k f a -> MapF k f a #

some :: Applicative (MapF k f) => MapF k f a -> MapF k f [a] #

many :: Applicative (MapF k f) => MapF k f a -> MapF k f [a] #

(Eq k, Eq (f a)) => Eq (MapF k f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

(==) :: MapF k f a -> MapF k f a -> Bool #

(/=) :: MapF k f a -> MapF k f a -> Bool #

(Typeable f, Typeable a, Data k, Data (f a), Ord k) => Data (MapF k f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MapF k f a -> c (MapF k f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (MapF k f a) #

toConstr :: MapF k f a -> Constr #

dataTypeOf :: MapF k f a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (MapF k f a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (MapF k f a)) #

gmapT :: (forall b. Data b => b -> b) -> MapF k f a -> MapF k f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MapF k f a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MapF k f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> MapF k f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> MapF k f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> MapF k f a -> m (MapF k f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MapF k f a -> m (MapF k f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MapF k f a -> m (MapF k f a) #

(Ord k, Ord (f a)) => Ord (MapF k f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

compare :: MapF k f a -> MapF k f a -> Ordering #

(<) :: MapF k f a -> MapF k f a -> Bool #

(<=) :: MapF k f a -> MapF k f a -> Bool #

(>) :: MapF k f a -> MapF k f a -> Bool #

(>=) :: MapF k f a -> MapF k f a -> Bool #

max :: MapF k f a -> MapF k f a -> MapF k f a #

min :: MapF k f a -> MapF k f a -> MapF k f a #

(Ord k, Read k, Read (f a)) => Read (MapF k f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

readsPrec :: Int -> ReadS (MapF k f a) #

readList :: ReadS [MapF k f a] #

readPrec :: ReadPrec (MapF k f a) #

readListPrec :: ReadPrec [MapF k f a] #

(Show k, Show (f a)) => Show (MapF k f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

showsPrec :: Int -> MapF k f a -> ShowS #

show :: MapF k f a -> String #

showList :: [MapF k f a] -> ShowS #

Generic (MapF k f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Associated Types

type Rep (MapF k f a) :: Type -> Type #

Methods

from :: MapF k f a -> Rep (MapF k f a) x #

to :: Rep (MapF k f a) x -> MapF k f a #

(Ord k, Alt f) => Semigroup (MapF k f a) Source #

A union, combining matching keys with <!>.

Instance details

Defined in Control.Applicative.ListF

Methods

(<>) :: MapF k f a -> MapF k f a -> MapF k f a #

sconcat :: NonEmpty (MapF k f a) -> MapF k f a #

stimes :: Integral b => b -> MapF k f a -> MapF k f a #

(Ord k, Alt f) => Monoid (MapF k f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

mempty :: MapF k f a #

mappend :: MapF k f a -> MapF k f a -> MapF k f a #

mconcat :: [MapF k f a] -> MapF k f a #

type C (MapF k) Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C (MapF k) = Plus
type Rep (MapF k f a) Source # 
Instance details

Defined in Control.Applicative.ListF

type Rep (MapF k f a) = D1 (MetaData "MapF" "Control.Applicative.ListF" "functor-combinators-0.1.1.1-B2oyFu2GVTM8ySAuzVPoNk" True) (C1 (MetaCons "MapF" PrefixI True) (S1 (MetaSel (Just "runMapF") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (Map k (f a)))))

newtype NEMapF k f a Source #

A non-empty map of f as, indexed by keys of type k. It can be useful for represeting a product of many different values of type f a, each "at" a different k location, where you need to have at least one f a at all times.

Can be considered a combination of EnvT and NonEmptyF, in a way --- an NEMapF k f a is like a NonEmptyF (EnvT k f) a with unique (and ordered) keys.

See MapF for some use cases.

Constructors

NEMapF 

Fields

Instances
Monoid k => Interpret (NEMapF k) Source # 
Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (NEMapF k) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (NEMapF k) f => NEMapF k f ~> f Source #

interpret :: C (NEMapF k) g => (f ~> g) -> NEMapF k f ~> g Source #

Monoid k => Inject (NEMapF k :: (Type -> Type) -> Type -> Type) Source #

Injects into a singleton map at mempty.

Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> NEMapF k f Source #

HFunctor (NEMapF k :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> NEMapF k f ~> NEMapF k g Source #

Functor f => Functor (NEMapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

fmap :: (a -> b) -> NEMapF k f a -> NEMapF k f b #

(<$) :: a -> NEMapF k f b -> NEMapF k f a #

Foldable f => Foldable (NEMapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

fold :: Monoid m => NEMapF k f m -> m #

foldMap :: Monoid m => (a -> m) -> NEMapF k f a -> m #

foldr :: (a -> b -> b) -> b -> NEMapF k f a -> b #

foldr' :: (a -> b -> b) -> b -> NEMapF k f a -> b #

foldl :: (b -> a -> b) -> b -> NEMapF k f a -> b #

foldl' :: (b -> a -> b) -> b -> NEMapF k f a -> b #

foldr1 :: (a -> a -> a) -> NEMapF k f a -> a #

foldl1 :: (a -> a -> a) -> NEMapF k f a -> a #

toList :: NEMapF k f a -> [a] #

null :: NEMapF k f a -> Bool #

length :: NEMapF k f a -> Int #

elem :: Eq a => a -> NEMapF k f a -> Bool #

maximum :: Ord a => NEMapF k f a -> a #

minimum :: Ord a => NEMapF k f a -> a #

sum :: Num a => NEMapF k f a -> a #

product :: Num a => NEMapF k f a -> a #

Traversable f => Traversable (NEMapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

traverse :: Applicative f0 => (a -> f0 b) -> NEMapF k f a -> f0 (NEMapF k f b) #

sequenceA :: Applicative f0 => NEMapF k f (f0 a) -> f0 (NEMapF k f a) #

mapM :: Monad m => (a -> m b) -> NEMapF k f a -> m (NEMapF k f b) #

sequence :: Monad m => NEMapF k f (m a) -> m (NEMapF k f a) #

(Eq k, Eq1 f) => Eq1 (NEMapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftEq :: (a -> b -> Bool) -> NEMapF k f a -> NEMapF k f b -> Bool #

(Ord k, Ord1 f) => Ord1 (NEMapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftCompare :: (a -> b -> Ordering) -> NEMapF k f a -> NEMapF k f b -> Ordering #

(Ord k, Read k, Read1 f) => Read1 (NEMapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (NEMapF k f a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [NEMapF k f a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (NEMapF k f a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [NEMapF k f a] #

(Show k, Show1 f) => Show1 (NEMapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> NEMapF k f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [NEMapF k f a] -> ShowS #

Foldable1 f => Foldable1 (NEMapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

fold1 :: Semigroup m => NEMapF k f m -> m #

foldMap1 :: Semigroup m => (a -> m) -> NEMapF k f a -> m #

toNonEmpty :: NEMapF k f a -> NonEmpty a #

(Monoid k, Pointed f) => Pointed (NEMapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

point :: a -> NEMapF k f a #

Traversable1 f => Traversable1 (NEMapF k f) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> NEMapF k f a -> f0 (NEMapF k f b) #

sequence1 :: Apply f0 => NEMapF k f (f0 b) -> f0 (NEMapF k f b) #

(Functor f, Ord k) => Alt (NEMapF k f) Source #

Left-biased union

Instance details

Defined in Control.Applicative.ListF

Methods

(<!>) :: NEMapF k f a -> NEMapF k f a -> NEMapF k f a #

some :: Applicative (NEMapF k f) => NEMapF k f a -> NEMapF k f [a] #

many :: Applicative (NEMapF k f) => NEMapF k f a -> NEMapF k f [a] #

(Eq k, Eq (f a)) => Eq (NEMapF k f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

(==) :: NEMapF k f a -> NEMapF k f a -> Bool #

(/=) :: NEMapF k f a -> NEMapF k f a -> Bool #

(Typeable f, Typeable a, Data k, Data (f a), Ord k) => Data (NEMapF k f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NEMapF k f a -> c (NEMapF k f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NEMapF k f a) #

toConstr :: NEMapF k f a -> Constr #

dataTypeOf :: NEMapF k f a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NEMapF k f a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NEMapF k f a)) #

gmapT :: (forall b. Data b => b -> b) -> NEMapF k f a -> NEMapF k f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NEMapF k f a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NEMapF k f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> NEMapF k f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> NEMapF k f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> NEMapF k f a -> m (NEMapF k f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NEMapF k f a -> m (NEMapF k f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NEMapF k f a -> m (NEMapF k f a) #

(Ord k, Ord (f a)) => Ord (NEMapF k f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

compare :: NEMapF k f a -> NEMapF k f a -> Ordering #

(<) :: NEMapF k f a -> NEMapF k f a -> Bool #

(<=) :: NEMapF k f a -> NEMapF k f a -> Bool #

(>) :: NEMapF k f a -> NEMapF k f a -> Bool #

(>=) :: NEMapF k f a -> NEMapF k f a -> Bool #

max :: NEMapF k f a -> NEMapF k f a -> NEMapF k f a #

min :: NEMapF k f a -> NEMapF k f a -> NEMapF k f a #

(Ord k, Read k, Read (f a)) => Read (NEMapF k f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

readsPrec :: Int -> ReadS (NEMapF k f a) #

readList :: ReadS [NEMapF k f a] #

readPrec :: ReadPrec (NEMapF k f a) #

readListPrec :: ReadPrec [NEMapF k f a] #

(Show k, Show (f a)) => Show (NEMapF k f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Methods

showsPrec :: Int -> NEMapF k f a -> ShowS #

show :: NEMapF k f a -> String #

showList :: [NEMapF k f a] -> ShowS #

Generic (NEMapF k f a) Source # 
Instance details

Defined in Control.Applicative.ListF

Associated Types

type Rep (NEMapF k f a) :: Type -> Type #

Methods

from :: NEMapF k f a -> Rep (NEMapF k f a) x #

to :: Rep (NEMapF k f a) x -> NEMapF k f a #

(Ord k, Alt f) => Semigroup (NEMapF k f a) Source #

A union, combining matching keys with <!>.

Instance details

Defined in Control.Applicative.ListF

Methods

(<>) :: NEMapF k f a -> NEMapF k f a -> NEMapF k f a #

sconcat :: NonEmpty (NEMapF k f a) -> NEMapF k f a #

stimes :: Integral b => b -> NEMapF k f a -> NEMapF k f a #

type C (NEMapF k) Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C (NEMapF k) = Alt
type Rep (NEMapF k f a) Source # 
Instance details

Defined in Control.Applicative.ListF

type Rep (NEMapF k f a) = D1 (MetaData "NEMapF" "Control.Applicative.ListF" "functor-combinators-0.1.1.1-B2oyFu2GVTM8ySAuzVPoNk" True) (C1 (MetaCons "NEMapF" PrefixI True) (S1 (MetaSel (Just "runNEMapF") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (NEMap k (f a)))))

data Ap (f :: Type -> Type) a #

The free Applicative for a Functor f.

Instances
Interpret Ap Source #

A free Applicative

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Ap :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Ap f => Ap f ~> f Source #

interpret :: C Ap g => (f ~> g) -> Ap f ~> g Source #

FreeOf Applicative Ap Source # 
Instance details

Defined in Data.HFunctor.Final

Functor (Ap f) 
Instance details

Defined in Control.Applicative.Free

Methods

fmap :: (a -> b) -> Ap f a -> Ap f b #

(<$) :: a -> Ap f b -> Ap f a #

Applicative (Ap f) 
Instance details

Defined in Control.Applicative.Free

Methods

pure :: a -> Ap f a #

(<*>) :: Ap f (a -> b) -> Ap f a -> Ap f b #

liftA2 :: (a -> b -> c) -> Ap f a -> Ap f b -> Ap f c #

(*>) :: Ap f a -> Ap f b -> Ap f b #

(<*) :: Ap f a -> Ap f b -> Ap f a #

Comonad f => Comonad (Ap f) 
Instance details

Defined in Control.Applicative.Free

Methods

extract :: Ap f a -> a #

duplicate :: Ap f a -> Ap f (Ap f a) #

extend :: (Ap f a -> b) -> Ap f a -> Ap f b #

Apply (Ap f) 
Instance details

Defined in Control.Applicative.Free

Methods

(<.>) :: Ap f (a -> b) -> Ap f a -> Ap f b #

(.>) :: Ap f a -> Ap f b -> Ap f b #

(<.) :: Ap f a -> Ap f b -> Ap f a #

liftF2 :: (a -> b -> c) -> Ap f a -> Ap f b -> Ap f c #

HBind Ap Source # 
Instance details

Defined in Data.HFunctor

Methods

hbind :: (f ~> Ap g) -> Ap f ~> Ap g Source #

hjoin :: Ap (Ap f) ~> Ap f Source #

Inject Ap Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Ap f Source #

HFunctor Ap Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Ap f ~> Ap g Source #

type C Ap Source # 
Instance details

Defined in Data.HFunctor.Interpret

data Ap1 :: (Type -> Type) -> Type -> Type where Source #

One or more fs convolved with itself.

Essentially:

Ap1 f
    ~ f                            -- one f
  :+: (f `Day' f)          -- two f's
  :+: (f `Day` f `Day` f)           -- three f's
  :+: (f `Day` f `Day` f `Day` f)  -- four f's
  :+: ...                          -- etc.

Useful if you want to promote an f to a situation with "at least one f sequenced with itself".

Mostly useful for its HFunctor and Interpret instance, along with its relationship with Ap and Day.

This is the free Apply --- Basically a "non-empty" Ap.

The construction here is based on Ap, similar to now NonEmpty is built on list.

Constructors

Ap1 :: f a -> Ap f (a -> b) -> Ap1 f b 

Bundled Patterns

pattern DayAp1 :: Day f (Ap f) a -> Ap1 f a

An Ap1 f is just a Day f (Ap f). This bidirectional pattern synonym lets you treat it as such.

Instances
Interpret Ap1 Source # 
Instance details

Defined in Data.Functor.Apply.Free

Associated Types

type C Ap1 :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Ap1 f => Ap1 f ~> f Source #

interpret :: C Ap1 g => (f ~> g) -> Ap1 f ~> g Source #

HBind Ap1 Source # 
Instance details

Defined in Data.Functor.Apply.Free

Methods

hbind :: (f ~> Ap1 g) -> Ap1 f ~> Ap1 g Source #

hjoin :: Ap1 (Ap1 f) ~> Ap1 f Source #

Inject Ap1 Source # 
Instance details

Defined in Data.Functor.Apply.Free

Methods

inject :: f ~> Ap1 f Source #

FreeOf Apply Ap1 Source # 
Instance details

Defined in Data.HFunctor.Final

HFunctor Ap1 Source # 
Instance details

Defined in Data.Functor.Apply.Free

Methods

hmap :: (f ~> g) -> Ap1 f ~> Ap1 g Source #

Functor (Ap1 f) Source # 
Instance details

Defined in Data.Functor.Apply.Free

Methods

fmap :: (a -> b) -> Ap1 f a -> Ap1 f b #

(<$) :: a -> Ap1 f b -> Ap1 f a #

Apply (Ap1 f) Source # 
Instance details

Defined in Data.Functor.Apply.Free

Methods

(<.>) :: Ap1 f (a -> b) -> Ap1 f a -> Ap1 f b #

(.>) :: Ap1 f a -> Ap1 f b -> Ap1 f b #

(<.) :: Ap1 f a -> Ap1 f b -> Ap1 f a #

liftF2 :: (a -> b -> c) -> Ap1 f a -> Ap1 f b -> Ap1 f c #

type C Ap1 Source # 
Instance details

Defined in Data.Functor.Apply.Free

type C Ap1 = Apply

data Alt (f :: Type -> Type) a #

Instances
Interpret Alt Source #

A free Alternative

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Alt :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Alt f => Alt f ~> f Source #

interpret :: C Alt g => (f ~> g) -> Alt f ~> g Source #

FreeOf Alternative Alt Source # 
Instance details

Defined in Data.HFunctor.Final

Functor (Alt f) 
Instance details

Defined in Control.Alternative.Free

Methods

fmap :: (a -> b) -> Alt f a -> Alt f b #

(<$) :: a -> Alt f b -> Alt f a #

Applicative (Alt f) 
Instance details

Defined in Control.Alternative.Free

Methods

pure :: a -> Alt f a #

(<*>) :: Alt f (a -> b) -> Alt f a -> Alt f b #

liftA2 :: (a -> b -> c) -> Alt f a -> Alt f b -> Alt f c #

(*>) :: Alt f a -> Alt f b -> Alt f b #

(<*) :: Alt f a -> Alt f b -> Alt f a #

Alternative (Alt f) 
Instance details

Defined in Control.Alternative.Free

Methods

empty :: Alt f a #

(<|>) :: Alt f a -> Alt f a -> Alt f a #

some :: Alt f a -> Alt f [a] #

many :: Alt f a -> Alt f [a] #

Apply (Alt f) 
Instance details

Defined in Control.Alternative.Free

Methods

(<.>) :: Alt f (a -> b) -> Alt f a -> Alt f b #

(.>) :: Alt f a -> Alt f b -> Alt f b #

(<.) :: Alt f a -> Alt f b -> Alt f a #

liftF2 :: (a -> b -> c) -> Alt f a -> Alt f b -> Alt f c #

Alt (Alt f) 
Instance details

Defined in Control.Alternative.Free

Methods

(<!>) :: Alt f a -> Alt f a -> Alt f a #

some :: Applicative (Alt f) => Alt f a -> Alt f [a] #

many :: Applicative (Alt f) => Alt f a -> Alt f [a] #

HBind Alt Source # 
Instance details

Defined in Data.HFunctor

Methods

hbind :: (f ~> Alt g) -> Alt f ~> Alt g Source #

hjoin :: Alt (Alt f) ~> Alt f Source #

Inject Alt Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Alt f Source #

HFunctor Alt Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Alt f ~> Alt g Source #

Semigroup (Alt f a) 
Instance details

Defined in Control.Alternative.Free

Methods

(<>) :: Alt f a -> Alt f a -> Alt f a #

sconcat :: NonEmpty (Alt f a) -> Alt f a #

stimes :: Integral b => b -> Alt f a -> Alt f a #

Monoid (Alt f a) 
Instance details

Defined in Control.Alternative.Free

Methods

mempty :: Alt f a #

mappend :: Alt f a -> Alt f a -> Alt f a #

mconcat :: [Alt f a] -> Alt f a #

type C Alt Source # 
Instance details

Defined in Data.HFunctor.Interpret

data Free f a Source #

A Free f is f enhanced with "sequential binding" capabilities. It allows you to sequence multiple fs one after the other, and also to determine "what f to sequence" based on the result of the computation so far.

Essentially, you can think of this as "giving f a Monad instance", with all that that entails (return, >>=, etc.).

Lift f into it with inject :: f a -> Free f a. When you finally want to "use" it, you can interpret it into any monadic context:

interpret
    :: Monad g
    => (forall x. f x -> g x)
    -> Free f a
    -> g a

Structurally, this is equivalent to many "nested" f's. A value of type Free f a is either:

  • a
  • f a
  • f (f a)
  • f (f (f a))
  • .. etc.

Under the hood, this is the Church-encoded Freer monad. It's Free, or F, but in a way that is compatible with HFunctor and Interpret.

Instances
Interpret Free Source #

A free Monad

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Free :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Free f => Free f ~> f Source #

interpret :: C Free g => (f ~> g) -> Free f ~> g Source #

FreeOf Monad Free Source # 
Instance details

Defined in Data.HFunctor.Final

MonadFree f (Free f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

wrap :: f (Free f a) -> Free f a #

Monad (Free f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

(>>=) :: Free f a -> (a -> Free f b) -> Free f b #

(>>) :: Free f a -> Free f b -> Free f b #

return :: a -> Free f a #

fail :: String -> Free f a #

Functor (Free f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

fmap :: (a -> b) -> Free f a -> Free f b #

(<$) :: a -> Free f b -> Free f a #

Applicative (Free f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

pure :: a -> Free f a #

(<*>) :: Free f (a -> b) -> Free f a -> Free f b #

liftA2 :: (a -> b -> c) -> Free f a -> Free f b -> Free f c #

(*>) :: Free f a -> Free f b -> Free f b #

(<*) :: Free f a -> Free f b -> Free f a #

Foldable f => Foldable (Free f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

fold :: Monoid m => Free f m -> m #

foldMap :: Monoid m => (a -> m) -> Free f a -> m #

foldr :: (a -> b -> b) -> b -> Free f a -> b #

foldr' :: (a -> b -> b) -> b -> Free f a -> b #

foldl :: (b -> a -> b) -> b -> Free f a -> b #

foldl' :: (b -> a -> b) -> b -> Free f a -> b #

foldr1 :: (a -> a -> a) -> Free f a -> a #

foldl1 :: (a -> a -> a) -> Free f a -> a #

toList :: Free f a -> [a] #

null :: Free f a -> Bool #

length :: Free f a -> Int #

elem :: Eq a => a -> Free f a -> Bool #

maximum :: Ord a => Free f a -> a #

minimum :: Ord a => Free f a -> a #

sum :: Num a => Free f a -> a #

product :: Num a => Free f a -> a #

Traversable f => Traversable (Free f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Free f a -> f0 (Free f b) #

sequenceA :: Applicative f0 => Free f (f0 a) -> f0 (Free f a) #

mapM :: Monad m => (a -> m b) -> Free f a -> m (Free f b) #

sequence :: Monad m => Free f (m a) -> m (Free f a) #

(Functor f, Eq1 f) => Eq1 (Free f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

liftEq :: (a -> b -> Bool) -> Free f a -> Free f b -> Bool #

(Functor f, Ord1 f) => Ord1 (Free f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

liftCompare :: (a -> b -> Ordering) -> Free f a -> Free f b -> Ordering #

(Functor f, Read1 f) => Read1 (Free f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Free f a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Free f a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Free f a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Free f a] #

(Functor f, Show1 f) => Show1 (Free f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Free f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Free f a] -> ShowS #

Apply (Free f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

(<.>) :: Free f (a -> b) -> Free f a -> Free f b #

(.>) :: Free f a -> Free f b -> Free f b #

(<.) :: Free f a -> Free f b -> Free f a #

liftF2 :: (a -> b -> c) -> Free f a -> Free f b -> Free f c #

Pointed (Free f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

point :: a -> Free f a #

Bind (Free f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

(>>-) :: Free f a -> (a -> Free f b) -> Free f b #

join :: Free f (Free f a) -> Free f a #

HBind Free Source # 
Instance details

Defined in Data.HFunctor

Methods

hbind :: (f ~> Free g) -> Free f ~> Free g Source #

hjoin :: Free (Free f) ~> Free f Source #

Inject Free Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Free f Source #

HFunctor Free Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Free f ~> Free g Source #

(Functor f, Eq1 f, Eq a) => Eq (Free f a) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

(==) :: Free f a -> Free f a -> Bool #

(/=) :: Free f a -> Free f a -> Bool #

(Functor f, Ord1 f, Ord a) => Ord (Free f a) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

compare :: Free f a -> Free f a -> Ordering #

(<) :: Free f a -> Free f a -> Bool #

(<=) :: Free f a -> Free f a -> Bool #

(>) :: Free f a -> Free f a -> Bool #

(>=) :: Free f a -> Free f a -> Bool #

max :: Free f a -> Free f a -> Free f a #

min :: Free f a -> Free f a -> Free f a #

(Functor f, Read1 f, Read a) => Read (Free f a) Source #

Read in terms of pure and wrap.

Instance details

Defined in Control.Monad.Freer.Church

Methods

readsPrec :: Int -> ReadS (Free f a) #

readList :: ReadS [Free f a] #

readPrec :: ReadPrec (Free f a) #

readListPrec :: ReadPrec [Free f a] #

(Functor f, Show1 f, Show a) => Show (Free f a) Source #

Show in terms of pure and wrap.

Instance details

Defined in Control.Monad.Freer.Church

Methods

showsPrec :: Int -> Free f a -> ShowS #

show :: Free f a -> String #

showList :: [Free f a] -> ShowS #

type C Free Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C Free = Monad

data Free1 f a Source #

The Free Bind. Imbues any functor f with a Bind instance.

Conceptually, this is "Free without pure". That is, while normally Free f a is an a, a f a, a f (f a), etc., a Free1 f a is an f a, f (f a), f (f (f a)), etc. It's a Free with "at least one layer of f", excluding the a case.

It can be useful as the semigroup formed by :.: (functor composition): Sometimes we want an f :.: f, or an f :.: f :.: f, or an f :.: f :.: f :.: f...just as long as we have at least one f.

Instances
Interpret Free1 Source #

A free Bind

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Free1 :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Free1 f => Free1 f ~> f Source #

interpret :: C Free1 g => (f ~> g) -> Free1 f ~> g Source #

FreeOf Bind Free1 Source # 
Instance details

Defined in Data.HFunctor.Final

Functor (Free1 f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

fmap :: (a -> b) -> Free1 f a -> Free1 f b #

(<$) :: a -> Free1 f b -> Free1 f a #

Foldable f => Foldable (Free1 f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

fold :: Monoid m => Free1 f m -> m #

foldMap :: Monoid m => (a -> m) -> Free1 f a -> m #

foldr :: (a -> b -> b) -> b -> Free1 f a -> b #

foldr' :: (a -> b -> b) -> b -> Free1 f a -> b #

foldl :: (b -> a -> b) -> b -> Free1 f a -> b #

foldl' :: (b -> a -> b) -> b -> Free1 f a -> b #

foldr1 :: (a -> a -> a) -> Free1 f a -> a #

foldl1 :: (a -> a -> a) -> Free1 f a -> a #

toList :: Free1 f a -> [a] #

null :: Free1 f a -> Bool #

length :: Free1 f a -> Int #

elem :: Eq a => a -> Free1 f a -> Bool #

maximum :: Ord a => Free1 f a -> a #

minimum :: Ord a => Free1 f a -> a #

sum :: Num a => Free1 f a -> a #

product :: Num a => Free1 f a -> a #

Traversable f => Traversable (Free1 f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Free1 f a -> f0 (Free1 f b) #

sequenceA :: Applicative f0 => Free1 f (f0 a) -> f0 (Free1 f a) #

mapM :: Monad m => (a -> m b) -> Free1 f a -> m (Free1 f b) #

sequence :: Monad m => Free1 f (m a) -> m (Free1 f a) #

(Functor f, Eq1 f) => Eq1 (Free1 f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

liftEq :: (a -> b -> Bool) -> Free1 f a -> Free1 f b -> Bool #

(Functor f, Ord1 f) => Ord1 (Free1 f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

liftCompare :: (a -> b -> Ordering) -> Free1 f a -> Free1 f b -> Ordering #

(Functor f, Read1 f) => Read1 (Free1 f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Free1 f a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Free1 f a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Free1 f a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Free1 f a] #

(Functor f, Show1 f) => Show1 (Free1 f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Free1 f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Free1 f a] -> ShowS #

Foldable1 f => Foldable1 (Free1 f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

fold1 :: Semigroup m => Free1 f m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Free1 f a -> m #

toNonEmpty :: Free1 f a -> NonEmpty a #

Apply (Free1 f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

(<.>) :: Free1 f (a -> b) -> Free1 f a -> Free1 f b #

(.>) :: Free1 f a -> Free1 f b -> Free1 f b #

(<.) :: Free1 f a -> Free1 f b -> Free1 f a #

liftF2 :: (a -> b -> c) -> Free1 f a -> Free1 f b -> Free1 f c #

Traversable1 f => Traversable1 (Free1 f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Free1 f a -> f0 (Free1 f b) #

sequence1 :: Apply f0 => Free1 f (f0 b) -> f0 (Free1 f b) #

Bind (Free1 f) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

(>>-) :: Free1 f a -> (a -> Free1 f b) -> Free1 f b #

join :: Free1 f (Free1 f a) -> Free1 f a #

HBind Free1 Source # 
Instance details

Defined in Data.HFunctor

Methods

hbind :: (f ~> Free1 g) -> Free1 f ~> Free1 g Source #

hjoin :: Free1 (Free1 f) ~> Free1 f Source #

Inject Free1 Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Free1 f Source #

HFunctor Free1 Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Free1 f ~> Free1 g Source #

(Functor f, Eq1 f, Eq a) => Eq (Free1 f a) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

(==) :: Free1 f a -> Free1 f a -> Bool #

(/=) :: Free1 f a -> Free1 f a -> Bool #

(Functor f, Ord1 f, Ord a) => Ord (Free1 f a) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

compare :: Free1 f a -> Free1 f a -> Ordering #

(<) :: Free1 f a -> Free1 f a -> Bool #

(<=) :: Free1 f a -> Free1 f a -> Bool #

(>) :: Free1 f a -> Free1 f a -> Bool #

(>=) :: Free1 f a -> Free1 f a -> Bool #

max :: Free1 f a -> Free1 f a -> Free1 f a #

min :: Free1 f a -> Free1 f a -> Free1 f a #

(Functor f, Read1 f, Read a) => Read (Free1 f a) Source #

Read in terms of DoneF1 and MoreF1.

Instance details

Defined in Control.Monad.Freer.Church

(Functor f, Show1 f, Show a) => Show (Free1 f a) Source #

Show in terms of DoneF1 and MoreF1.

Instance details

Defined in Control.Monad.Freer.Church

Methods

showsPrec :: Int -> Free1 f a -> ShowS #

show :: Free1 f a -> String #

showList :: [Free1 f a] -> ShowS #

type C Free1 Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C Free1 = Bind

data Lift (f :: Type -> Type) a #

Applicative functor formed by adding pure computations to a given applicative functor.

Instances
Interpret Lift Source #

A free Pointed

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Lift :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Lift f => Lift f ~> f Source #

interpret :: C Lift g => (f ~> g) -> Lift f ~> g Source #

FreeOf Pointed Lift Source # 
Instance details

Defined in Data.HFunctor.Final

Functor f => Functor (Lift f) 
Instance details

Defined in Control.Applicative.Lift

Methods

fmap :: (a -> b) -> Lift f a -> Lift f b #

(<$) :: a -> Lift f b -> Lift f a #

Applicative f => Applicative (Lift f)

A combination is Pure only if both parts are.

Instance details

Defined in Control.Applicative.Lift

Methods

pure :: a -> Lift f a #

(<*>) :: Lift f (a -> b) -> Lift f a -> Lift f b #

liftA2 :: (a -> b -> c) -> Lift f a -> Lift f b -> Lift f c #

(*>) :: Lift f a -> Lift f b -> Lift f b #

(<*) :: Lift f a -> Lift f b -> Lift f a #

Foldable f => Foldable (Lift f) 
Instance details

Defined in Control.Applicative.Lift

Methods

fold :: Monoid m => Lift f m -> m #

foldMap :: Monoid m => (a -> m) -> Lift f a -> m #

foldr :: (a -> b -> b) -> b -> Lift f a -> b #

foldr' :: (a -> b -> b) -> b -> Lift f a -> b #

foldl :: (b -> a -> b) -> b -> Lift f a -> b #

foldl' :: (b -> a -> b) -> b -> Lift f a -> b #

foldr1 :: (a -> a -> a) -> Lift f a -> a #

foldl1 :: (a -> a -> a) -> Lift f a -> a #

toList :: Lift f a -> [a] #

null :: Lift f a -> Bool #

length :: Lift f a -> Int #

elem :: Eq a => a -> Lift f a -> Bool #

maximum :: Ord a => Lift f a -> a #

minimum :: Ord a => Lift f a -> a #

sum :: Num a => Lift f a -> a #

product :: Num a => Lift f a -> a #

Traversable f => Traversable (Lift f) 
Instance details

Defined in Control.Applicative.Lift

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Lift f a -> f0 (Lift f b) #

sequenceA :: Applicative f0 => Lift f (f0 a) -> f0 (Lift f a) #

mapM :: Monad m => (a -> m b) -> Lift f a -> m (Lift f b) #

sequence :: Monad m => Lift f (m a) -> m (Lift f a) #

Alternative f => Alternative (Lift f)

A combination is Pure only either part is.

Instance details

Defined in Control.Applicative.Lift

Methods

empty :: Lift f a #

(<|>) :: Lift f a -> Lift f a -> Lift f a #

some :: Lift f a -> Lift f [a] #

many :: Lift f a -> Lift f [a] #

Eq1 f => Eq1 (Lift f) 
Instance details

Defined in Control.Applicative.Lift

Methods

liftEq :: (a -> b -> Bool) -> Lift f a -> Lift f b -> Bool #

Ord1 f => Ord1 (Lift f) 
Instance details

Defined in Control.Applicative.Lift

Methods

liftCompare :: (a -> b -> Ordering) -> Lift f a -> Lift f b -> Ordering #

Read1 f => Read1 (Lift f) 
Instance details

Defined in Control.Applicative.Lift

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Lift f a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Lift f a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Lift f a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Lift f a] #

Show1 f => Show1 (Lift f) 
Instance details

Defined in Control.Applicative.Lift

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Lift f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Lift f a] -> ShowS #

Foldable1 f => Foldable1 (Lift f) 
Instance details

Defined in Data.Semigroup.Foldable.Class

Methods

fold1 :: Semigroup m => Lift f m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Lift f a -> m #

toNonEmpty :: Lift f a -> NonEmpty a #

Apply f => Apply (Lift f) 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<.>) :: Lift f (a -> b) -> Lift f a -> Lift f b #

(.>) :: Lift f a -> Lift f b -> Lift f b #

(<.) :: Lift f a -> Lift f b -> Lift f a #

liftF2 :: (a -> b -> c) -> Lift f a -> Lift f b -> Lift f c #

Pointed (Lift f) 
Instance details

Defined in Data.Pointed

Methods

point :: a -> Lift f a #

Traversable1 f => Traversable1 (Lift f) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Lift f a -> f0 (Lift f b) #

sequence1 :: Apply f0 => Lift f (f0 b) -> f0 (Lift f b) #

Plus f => Plus (Lift f) 
Instance details

Defined in Data.Functor.Plus

Methods

zero :: Lift f a #

Alt f => Alt (Lift f) 
Instance details

Defined in Data.Functor.Alt

Methods

(<!>) :: Lift f a -> Lift f a -> Lift f a #

some :: Applicative (Lift f) => Lift f a -> Lift f [a] #

many :: Applicative (Lift f) => Lift f a -> Lift f [a] #

HBind Lift Source # 
Instance details

Defined in Data.HFunctor

Methods

hbind :: (f ~> Lift g) -> Lift f ~> Lift g Source #

hjoin :: Lift (Lift f) ~> Lift f Source #

Inject Lift Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Lift f Source #

HFunctor Lift Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Lift f ~> Lift g Source #

(Eq1 f, Eq a) => Eq (Lift f a) 
Instance details

Defined in Control.Applicative.Lift

Methods

(==) :: Lift f a -> Lift f a -> Bool #

(/=) :: Lift f a -> Lift f a -> Bool #

(Ord1 f, Ord a) => Ord (Lift f a) 
Instance details

Defined in Control.Applicative.Lift

Methods

compare :: Lift f a -> Lift f a -> Ordering #

(<) :: Lift f a -> Lift f a -> Bool #

(<=) :: Lift f a -> Lift f a -> Bool #

(>) :: Lift f a -> Lift f a -> Bool #

(>=) :: Lift f a -> Lift f a -> Bool #

max :: Lift f a -> Lift f a -> Lift f a #

min :: Lift f a -> Lift f a -> Lift f a #

(Read1 f, Read a) => Read (Lift f a) 
Instance details

Defined in Control.Applicative.Lift

Methods

readsPrec :: Int -> ReadS (Lift f a) #

readList :: ReadS [Lift f a] #

readPrec :: ReadPrec (Lift f a) #

readListPrec :: ReadPrec [Lift f a] #

(Show1 f, Show a) => Show (Lift f a) 
Instance details

Defined in Control.Applicative.Lift

Methods

showsPrec :: Int -> Lift f a -> ShowS #

show :: Lift f a -> String #

showList :: [Lift f a] -> ShowS #

type C Lift Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C Lift = Pointed

data Step f a Source #

An f a, along with a Natural index.

Step f a ~ (Natural, f a)
Step f   ~ ((,) Natural) :.: f       -- functor composition

It is the fixed point of infinite applications of :+: (functor sums).

Intuitively, in an infinite f :+: f :+: f :+: f ..., you have exactly one f somewhere. A Step f a has that f, with a Natural giving you "where" the f is in the long chain.

Can be useful for using with the Monoidal instance of :+:.

interpreting it requires no constraint on the target context.

Note that this type and its instances equivalent to EnvT (Sum Natural).

Constructors

Step 

Fields

Instances
HFunctor (Step :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Step f ~> Step g Source #

HBind (Step :: (k -> Type) -> k -> Type) Source #

Equivalent to instance for EnvT (Sum Natural).

Instance details

Defined in Data.HFunctor

Methods

hbind :: (f ~> Step g) -> Step f ~> Step g Source #

hjoin :: Step (Step f) ~> Step f Source #

Inject (Step :: (k -> Type) -> k -> Type) Source #

Injects with 0.

Equivalent to instance for EnvT (Sum Natural).

Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Step f Source #

Interpret (Step :: (Type -> Type) -> Type -> Type) Source #

Equivalent to instance for EnvT (Sum Natural).

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Step :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Step f => Step f ~> f Source #

interpret :: C Step g => (f ~> g) -> Step f ~> g Source #

Functor f => Functor (Step f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

fmap :: (a -> b) -> Step f a -> Step f b #

(<$) :: a -> Step f b -> Step f a #

Applicative f => Applicative (Step f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

pure :: a -> Step f a #

(<*>) :: Step f (a -> b) -> Step f a -> Step f b #

liftA2 :: (a -> b -> c) -> Step f a -> Step f b -> Step f c #

(*>) :: Step f a -> Step f b -> Step f b #

(<*) :: Step f a -> Step f b -> Step f a #

Foldable f => Foldable (Step f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

fold :: Monoid m => Step f m -> m #

foldMap :: Monoid m => (a -> m) -> Step f a -> m #

foldr :: (a -> b -> b) -> b -> Step f a -> b #

foldr' :: (a -> b -> b) -> b -> Step f a -> b #

foldl :: (b -> a -> b) -> b -> Step f a -> b #

foldl' :: (b -> a -> b) -> b -> Step f a -> b #

foldr1 :: (a -> a -> a) -> Step f a -> a #

foldl1 :: (a -> a -> a) -> Step f a -> a #

toList :: Step f a -> [a] #

null :: Step f a -> Bool #

length :: Step f a -> Int #

elem :: Eq a => a -> Step f a -> Bool #

maximum :: Ord a => Step f a -> a #

minimum :: Ord a => Step f a -> a #

sum :: Num a => Step f a -> a #

product :: Num a => Step f a -> a #

Traversable f => Traversable (Step f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Step f a -> f0 (Step f b) #

sequenceA :: Applicative f0 => Step f (f0 a) -> f0 (Step f a) #

mapM :: Monad m => (a -> m b) -> Step f a -> m (Step f b) #

sequence :: Monad m => Step f (m a) -> m (Step f a) #

Eq1 f => Eq1 (Step f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

liftEq :: (a -> b -> Bool) -> Step f a -> Step f b -> Bool #

Ord1 f => Ord1 (Step f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

liftCompare :: (a -> b -> Ordering) -> Step f a -> Step f b -> Ordering #

Read1 f => Read1 (Step f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Step f a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Step f a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Step f a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Step f a] #

Show1 f => Show1 (Step f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Step f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Step f a] -> ShowS #

Foldable1 f => Foldable1 (Step f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

fold1 :: Semigroup m => Step f m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Step f a -> m #

toNonEmpty :: Step f a -> NonEmpty a #

Pointed f => Pointed (Step f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

point :: a -> Step f a #

Traversable1 f => Traversable1 (Step f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Step f a -> f0 (Step f b) #

sequence1 :: Apply f0 => Step f (f0 b) -> f0 (Step f b) #

Eq (f a) => Eq (Step f a) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

(==) :: Step f a -> Step f a -> Bool #

(/=) :: Step f a -> Step f a -> Bool #

(Typeable a, Typeable f, Typeable k, Data (f a)) => Data (Step f a) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Step f a -> c (Step f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Step f a) #

toConstr :: Step f a -> Constr #

dataTypeOf :: Step f a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Step f a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Step f a)) #

gmapT :: (forall b. Data b => b -> b) -> Step f a -> Step f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Step f a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Step f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Step f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Step f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Step f a -> m (Step f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Step f a -> m (Step f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Step f a -> m (Step f a) #

Ord (f a) => Ord (Step f a) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

compare :: Step f a -> Step f a -> Ordering #

(<) :: Step f a -> Step f a -> Bool #

(<=) :: Step f a -> Step f a -> Bool #

(>) :: Step f a -> Step f a -> Bool #

(>=) :: Step f a -> Step f a -> Bool #

max :: Step f a -> Step f a -> Step f a #

min :: Step f a -> Step f a -> Step f a #

Read (f a) => Read (Step f a) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

readsPrec :: Int -> ReadS (Step f a) #

readList :: ReadS [Step f a] #

readPrec :: ReadPrec (Step f a) #

readListPrec :: ReadPrec [Step f a] #

Show (f a) => Show (Step f a) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

showsPrec :: Int -> Step f a -> ShowS #

show :: Step f a -> String #

showList :: [Step f a] -> ShowS #

Generic (Step f a) Source # 
Instance details

Defined in Control.Applicative.Step

Associated Types

type Rep (Step f a) :: Type -> Type #

Methods

from :: Step f a -> Rep (Step f a) x #

to :: Rep (Step f a) x -> Step f a #

type C (Step :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C (Step :: (Type -> Type) -> Type -> Type) = (Unconstrained :: (Type -> Type) -> Constraint)
type Rep (Step f a) Source # 
Instance details

Defined in Control.Applicative.Step

type Rep (Step f a) = D1 (MetaData "Step" "Control.Applicative.Step" "functor-combinators-0.1.1.1-B2oyFu2GVTM8ySAuzVPoNk" False) (C1 (MetaCons "Step" PrefixI True) (S1 (MetaSel (Just "stepPos") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 Natural) :*: S1 (MetaSel (Just "stepVal") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (f a))))

newtype Steps f a Source #

A non-empty map of Natural to f a. Basically, contains multiple f as, each at a given Natural index.

Steps f a ~ Map Natural (f a)
Steps f   ~ Map Natural :.: f       -- functor composition

It is the fixed point of applications of TheseT.

You can think of this as an infinite sparse array of f as.

Intuitively, in an infinite f `TheseT` f `TheseT` f `TheseT` f ..., each of those infinite positions may have an f in them. However, because of the at-least-one nature of TheseT, we know we have at least one f at one position somewhere.

A Steps f a has potentially many fs, each stored at a different Natural position, with the guaruntee that at least one f exists.

Can be useful for using with the Monoidal instance of TheseT.

interpreting it requires at least an Alt instance in the target context, since we have to handle potentially more than one f.

This type is essentailly the same as NEMapF (Sum Natural) (except with a different Semigroup instance).

Constructors

Steps 

Fields

Instances
HFunctor (Steps :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Steps f ~> Steps g Source #

Inject (Steps :: (k -> Type) -> k -> Type) Source #

Injects into a singleton map at 0; same behavior as NEMapF (Sum Natural).

Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Steps f Source #

Interpret (Steps :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Steps :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Steps f => Steps f ~> f Source #

interpret :: C Steps g => (f ~> g) -> Steps f ~> g Source #

Functor f => Functor (Steps f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

fmap :: (a -> b) -> Steps f a -> Steps f b #

(<$) :: a -> Steps f b -> Steps f a #

Foldable f => Foldable (Steps f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

fold :: Monoid m => Steps f m -> m #

foldMap :: Monoid m => (a -> m) -> Steps f a -> m #

foldr :: (a -> b -> b) -> b -> Steps f a -> b #

foldr' :: (a -> b -> b) -> b -> Steps f a -> b #

foldl :: (b -> a -> b) -> b -> Steps f a -> b #

foldl' :: (b -> a -> b) -> b -> Steps f a -> b #

foldr1 :: (a -> a -> a) -> Steps f a -> a #

foldl1 :: (a -> a -> a) -> Steps f a -> a #

toList :: Steps f a -> [a] #

null :: Steps f a -> Bool #

length :: Steps f a -> Int #

elem :: Eq a => a -> Steps f a -> Bool #

maximum :: Ord a => Steps f a -> a #

minimum :: Ord a => Steps f a -> a #

sum :: Num a => Steps f a -> a #

product :: Num a => Steps f a -> a #

Traversable f => Traversable (Steps f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Steps f a -> f0 (Steps f b) #

sequenceA :: Applicative f0 => Steps f (f0 a) -> f0 (Steps f a) #

mapM :: Monad m => (a -> m b) -> Steps f a -> m (Steps f b) #

sequence :: Monad m => Steps f (m a) -> m (Steps f a) #

Eq1 f => Eq1 (Steps f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

liftEq :: (a -> b -> Bool) -> Steps f a -> Steps f b -> Bool #

Ord1 f => Ord1 (Steps f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

liftCompare :: (a -> b -> Ordering) -> Steps f a -> Steps f b -> Ordering #

Read1 f => Read1 (Steps f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Steps f a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Steps f a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Steps f a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Steps f a] #

Show1 f => Show1 (Steps f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Steps f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Steps f a] -> ShowS #

Foldable1 f => Foldable1 (Steps f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

fold1 :: Semigroup m => Steps f m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Steps f a -> m #

toNonEmpty :: Steps f a -> NonEmpty a #

Pointed f => Pointed (Steps f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

point :: a -> Steps f a #

Traversable1 f => Traversable1 (Steps f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Steps f a -> f0 (Steps f b) #

sequence1 :: Apply f0 => Steps f (f0 b) -> f0 (Steps f b) #

Functor f => Alt (Steps f) Source #

Left-biased untion

Instance details

Defined in Control.Applicative.Step

Methods

(<!>) :: Steps f a -> Steps f a -> Steps f a #

some :: Applicative (Steps f) => Steps f a -> Steps f [a] #

many :: Applicative (Steps f) => Steps f a -> Steps f [a] #

Eq (f a) => Eq (Steps f a) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

(==) :: Steps f a -> Steps f a -> Bool #

(/=) :: Steps f a -> Steps f a -> Bool #

(Typeable a, Typeable f, Typeable k, Data (f a)) => Data (Steps f a) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Steps f a -> c (Steps f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Steps f a) #

toConstr :: Steps f a -> Constr #

dataTypeOf :: Steps f a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Steps f a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Steps f a)) #

gmapT :: (forall b. Data b => b -> b) -> Steps f a -> Steps f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Steps f a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Steps f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Steps f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Steps f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Steps f a -> m (Steps f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Steps f a -> m (Steps f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Steps f a -> m (Steps f a) #

Ord (f a) => Ord (Steps f a) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

compare :: Steps f a -> Steps f a -> Ordering #

(<) :: Steps f a -> Steps f a -> Bool #

(<=) :: Steps f a -> Steps f a -> Bool #

(>) :: Steps f a -> Steps f a -> Bool #

(>=) :: Steps f a -> Steps f a -> Bool #

max :: Steps f a -> Steps f a -> Steps f a #

min :: Steps f a -> Steps f a -> Steps f a #

Read (f a) => Read (Steps f a) Source # 
Instance details

Defined in Control.Applicative.Step

Show (f a) => Show (Steps f a) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

showsPrec :: Int -> Steps f a -> ShowS #

show :: Steps f a -> String #

showList :: [Steps f a] -> ShowS #

Generic (Steps f a) Source # 
Instance details

Defined in Control.Applicative.Step

Associated Types

type Rep (Steps f a) :: Type -> Type #

Methods

from :: Steps f a -> Rep (Steps f a) x #

to :: Rep (Steps f a) x -> Steps f a #

Semigroup (Steps f a) Source #

Appends the items back-to-back, shifting all of the items in the second map. Matches the behavior as the fixed-point of These1.

Instance details

Defined in Control.Applicative.Step

Methods

(<>) :: Steps f a -> Steps f a -> Steps f a #

sconcat :: NonEmpty (Steps f a) -> Steps f a #

stimes :: Integral b => b -> Steps f a -> Steps f a #

type C (Steps :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C (Steps :: (Type -> Type) -> Type -> Type) = Alt
type Rep (Steps f a) Source # 
Instance details

Defined in Control.Applicative.Step

type Rep (Steps f a) = D1 (MetaData "Steps" "Control.Applicative.Step" "functor-combinators-0.1.1.1-B2oyFu2GVTM8ySAuzVPoNk" True) (C1 (MetaCons "Steps" PrefixI True) (S1 (MetaSel (Just "getSteps") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (NEMap Natural (f a)))))

data ProxyF f a Source #

The functor combinator that forgets all structure in the input. Ignores the input structure and stores no information.

Acts like the "zero" with respect to functor combinator composition.

ComposeT ProxyF f      ~ ProxyF
ComposeT f      ProxyF ~ ProxyF

It can be injected into (losing all information), but it is impossible to ever retract or interpret it.

This is essentially ConstF ().

Constructors

ProxyF 
Instances
HFunctor (ProxyF :: (k1 -> Type) -> k2 -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

hmap :: (f ~> g) -> ProxyF f ~> ProxyF g Source #

HBind (ProxyF :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

hbind :: (f ~> ProxyF g) -> ProxyF f ~> ProxyF g Source #

hjoin :: ProxyF (ProxyF f) ~> ProxyF f Source #

Inject (ProxyF :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> ProxyF f Source #

Interpret (ProxyF :: (Type -> Type) -> Type -> Type) Source #

The only way for this to obey retract . inject == id is to have it impossible to retract out of.

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C ProxyF :: (Type -> Type) -> Constraint Source #

Methods

retract :: C ProxyF f => ProxyF f ~> f Source #

interpret :: C ProxyF g => (f ~> g) -> ProxyF f ~> g Source #

Functor (ProxyF f :: Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

fmap :: (a -> b) -> ProxyF f a -> ProxyF f b #

(<$) :: a -> ProxyF f b -> ProxyF f a #

Foldable (ProxyF f :: Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

fold :: Monoid m => ProxyF f m -> m #

foldMap :: Monoid m => (a -> m) -> ProxyF f a -> m #

foldr :: (a -> b -> b) -> b -> ProxyF f a -> b #

foldr' :: (a -> b -> b) -> b -> ProxyF f a -> b #

foldl :: (b -> a -> b) -> b -> ProxyF f a -> b #

foldl' :: (b -> a -> b) -> b -> ProxyF f a -> b #

foldr1 :: (a -> a -> a) -> ProxyF f a -> a #

foldl1 :: (a -> a -> a) -> ProxyF f a -> a #

toList :: ProxyF f a -> [a] #

null :: ProxyF f a -> Bool #

length :: ProxyF f a -> Int #

elem :: Eq a => a -> ProxyF f a -> Bool #

maximum :: Ord a => ProxyF f a -> a #

minimum :: Ord a => ProxyF f a -> a #

sum :: Num a => ProxyF f a -> a #

product :: Num a => ProxyF f a -> a #

Traversable (ProxyF f :: Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

traverse :: Applicative f0 => (a -> f0 b) -> ProxyF f a -> f0 (ProxyF f b) #

sequenceA :: Applicative f0 => ProxyF f (f0 a) -> f0 (ProxyF f a) #

mapM :: Monad m => (a -> m b) -> ProxyF f a -> m (ProxyF f b) #

sequence :: Monad m => ProxyF f (m a) -> m (ProxyF f a) #

Eq1 (ProxyF f :: Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

liftEq :: (a -> b -> Bool) -> ProxyF f a -> ProxyF f b -> Bool #

Ord1 (ProxyF f :: Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

liftCompare :: (a -> b -> Ordering) -> ProxyF f a -> ProxyF f b -> Ordering #

Read1 (ProxyF f :: Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (ProxyF f a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [ProxyF f a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (ProxyF f a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [ProxyF f a] #

Show1 (ProxyF f :: Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> ProxyF f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [ProxyF f a] -> ShowS #

Eq (ProxyF f a) Source # 
Instance details

Defined in Data.HFunctor

Methods

(==) :: ProxyF f a -> ProxyF f a -> Bool #

(/=) :: ProxyF f a -> ProxyF f a -> Bool #

(Typeable f, Typeable a, Typeable k1, Typeable k2) => Data (ProxyF f a) Source # 
Instance details

Defined in Data.HFunctor

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ProxyF f a -> c (ProxyF f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ProxyF f a) #

toConstr :: ProxyF f a -> Constr #

dataTypeOf :: ProxyF f a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ProxyF f a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ProxyF f a)) #

gmapT :: (forall b. Data b => b -> b) -> ProxyF f a -> ProxyF f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ProxyF f a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ProxyF f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> ProxyF f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ProxyF f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ProxyF f a -> m (ProxyF f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ProxyF f a -> m (ProxyF f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ProxyF f a -> m (ProxyF f a) #

Ord (ProxyF f a) Source # 
Instance details

Defined in Data.HFunctor

Methods

compare :: ProxyF f a -> ProxyF f a -> Ordering #

(<) :: ProxyF f a -> ProxyF f a -> Bool #

(<=) :: ProxyF f a -> ProxyF f a -> Bool #

(>) :: ProxyF f a -> ProxyF f a -> Bool #

(>=) :: ProxyF f a -> ProxyF f a -> Bool #

max :: ProxyF f a -> ProxyF f a -> ProxyF f a #

min :: ProxyF f a -> ProxyF f a -> ProxyF f a #

Read (ProxyF f a) Source # 
Instance details

Defined in Data.HFunctor

Show (ProxyF f a) Source # 
Instance details

Defined in Data.HFunctor

Methods

showsPrec :: Int -> ProxyF f a -> ShowS #

show :: ProxyF f a -> String #

showList :: [ProxyF f a] -> ShowS #

Generic (ProxyF f a) Source # 
Instance details

Defined in Data.HFunctor

Associated Types

type Rep (ProxyF f a) :: Type -> Type #

Methods

from :: ProxyF f a -> Rep (ProxyF f a) x #

to :: Rep (ProxyF f a) x -> ProxyF f a #

type C (ProxyF :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C (ProxyF :: (Type -> Type) -> Type -> Type) = (Impossible :: (Type -> Type) -> Constraint)
type Rep (ProxyF f a) Source # 
Instance details

Defined in Data.HFunctor

type Rep (ProxyF f a) = D1 (MetaData "ProxyF" "Data.HFunctor" "functor-combinators-0.1.1.1-B2oyFu2GVTM8ySAuzVPoNk" False) (C1 (MetaCons "ProxyF" PrefixI False) (U1 :: Type -> Type))

data ConstF e f a Source #

Functor combinator that forgets all structure on the input, and instead stores a value of type e.

Like ProxyF, acts like a "zero" with functor combinator composition.

It can be injected into (losing all information), but it is impossible to ever retract or interpret it.

Constructors

ConstF 

Fields

Instances
HFunctor (ConstF e :: (k1 -> Type) -> k2 -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

hmap :: (f ~> g) -> ConstF e f ~> ConstF e g Source #

Monoid e => Inject (ConstF e :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> ConstF e f Source #

Monoid e => Interpret (ConstF e :: (Type -> Type) -> Type -> Type) Source #

The only way for this to obey retract . inject == id is to have it impossible to retract out of.

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (ConstF e) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (ConstF e) f => ConstF e f ~> f Source #

interpret :: C (ConstF e) g => (f ~> g) -> ConstF e f ~> g Source #

Functor (ConstF e f :: Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

fmap :: (a -> b) -> ConstF e f a -> ConstF e f b #

(<$) :: a -> ConstF e f b -> ConstF e f a #

Foldable (ConstF e f :: Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

fold :: Monoid m => ConstF e f m -> m #

foldMap :: Monoid m => (a -> m) -> ConstF e f a -> m #

foldr :: (a -> b -> b) -> b -> ConstF e f a -> b #

foldr' :: (a -> b -> b) -> b -> ConstF e f a -> b #

foldl :: (b -> a -> b) -> b -> ConstF e f a -> b #

foldl' :: (b -> a -> b) -> b -> ConstF e f a -> b #

foldr1 :: (a -> a -> a) -> ConstF e f a -> a #

foldl1 :: (a -> a -> a) -> ConstF e f a -> a #

toList :: ConstF e f a -> [a] #

null :: ConstF e f a -> Bool #

length :: ConstF e f a -> Int #

elem :: Eq a => a -> ConstF e f a -> Bool #

maximum :: Ord a => ConstF e f a -> a #

minimum :: Ord a => ConstF e f a -> a #

sum :: Num a => ConstF e f a -> a #

product :: Num a => ConstF e f a -> a #

Traversable (ConstF e f :: Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

traverse :: Applicative f0 => (a -> f0 b) -> ConstF e f a -> f0 (ConstF e f b) #

sequenceA :: Applicative f0 => ConstF e f (f0 a) -> f0 (ConstF e f a) #

mapM :: Monad m => (a -> m b) -> ConstF e f a -> m (ConstF e f b) #

sequence :: Monad m => ConstF e f (m a) -> m (ConstF e f a) #

Eq e => Eq1 (ConstF e f :: Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

liftEq :: (a -> b -> Bool) -> ConstF e f a -> ConstF e f b -> Bool #

Ord e => Ord1 (ConstF e f :: Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

liftCompare :: (a -> b -> Ordering) -> ConstF e f a -> ConstF e f b -> Ordering #

Read e => Read1 (ConstF e f :: Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (ConstF e f a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [ConstF e f a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (ConstF e f a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [ConstF e f a] #

Show e => Show1 (ConstF e f :: Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> ConstF e f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [ConstF e f a] -> ShowS #

Eq e => Eq (ConstF e f a) Source # 
Instance details

Defined in Data.HFunctor

Methods

(==) :: ConstF e f a -> ConstF e f a -> Bool #

(/=) :: ConstF e f a -> ConstF e f a -> Bool #

(Typeable f, Typeable a, Typeable k1, Typeable k2, Data e) => Data (ConstF e f a) Source # 
Instance details

Defined in Data.HFunctor

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ConstF e f a -> c (ConstF e f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ConstF e f a) #

toConstr :: ConstF e f a -> Constr #

dataTypeOf :: ConstF e f a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ConstF e f a)) #

dataCast2 :: Typeable t => (forall d e0. (Data d, Data e0) => c (t d e0)) -> Maybe (c (ConstF e f a)) #

gmapT :: (forall b. Data b => b -> b) -> ConstF e f a -> ConstF e f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ConstF e f a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ConstF e f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> ConstF e f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ConstF e f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ConstF e f a -> m (ConstF e f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ConstF e f a -> m (ConstF e f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ConstF e f a -> m (ConstF e f a) #

Ord e => Ord (ConstF e f a) Source # 
Instance details

Defined in Data.HFunctor

Methods

compare :: ConstF e f a -> ConstF e f a -> Ordering #

(<) :: ConstF e f a -> ConstF e f a -> Bool #

(<=) :: ConstF e f a -> ConstF e f a -> Bool #

(>) :: ConstF e f a -> ConstF e f a -> Bool #

(>=) :: ConstF e f a -> ConstF e f a -> Bool #

max :: ConstF e f a -> ConstF e f a -> ConstF e f a #

min :: ConstF e f a -> ConstF e f a -> ConstF e f a #

Read e => Read (ConstF e f a) Source # 
Instance details

Defined in Data.HFunctor

Methods

readsPrec :: Int -> ReadS (ConstF e f a) #

readList :: ReadS [ConstF e f a] #

readPrec :: ReadPrec (ConstF e f a) #

readListPrec :: ReadPrec [ConstF e f a] #

Show e => Show (ConstF e f a) Source # 
Instance details

Defined in Data.HFunctor

Methods

showsPrec :: Int -> ConstF e f a -> ShowS #

show :: ConstF e f a -> String #

showList :: [ConstF e f a] -> ShowS #

Generic (ConstF e f a) Source # 
Instance details

Defined in Data.HFunctor

Associated Types

type Rep (ConstF e f a) :: Type -> Type #

Methods

from :: ConstF e f a -> Rep (ConstF e f a) x #

to :: Rep (ConstF e f a) x -> ConstF e f a #

type C (ConstF e :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C (ConstF e :: (Type -> Type) -> Type -> Type) = (Impossible :: (Type -> Type) -> Constraint)
type Rep (ConstF e f a) Source # 
Instance details

Defined in Data.HFunctor

type Rep (ConstF e f a) = D1 (MetaData "ConstF" "Data.HFunctor" "functor-combinators-0.1.1.1-B2oyFu2GVTM8ySAuzVPoNk" False) (C1 (MetaCons "ConstF" PrefixI True) (S1 (MetaSel (Just "getConstF") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 e)))

data EnvT e (w :: Type -> Type) a #

Constructors

EnvT e (w a) 
Instances
ComonadTrans (EnvT e) 
Instance details

Defined in Control.Comonad.Trans.Env

Methods

lower :: Comonad w => EnvT e w a -> w a #

ComonadHoist (EnvT e) 
Instance details

Defined in Control.Comonad.Trans.Env

Methods

cohoist :: (Comonad w, Comonad v) => (forall x. w x -> v x) -> EnvT e w a -> EnvT e v a #

Monoid e => Interpret (EnvT e) Source #

This ignores the environment, so interpret /= hbind

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (EnvT e) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (EnvT e) f => EnvT e f ~> f Source #

interpret :: C (EnvT e) g => (f ~> g) -> EnvT e f ~> g Source #

Monoid e => HBind (EnvT e :: (Type -> Type) -> Type -> Type) Source #

Combines the accumulators, Writer-style

Instance details

Defined in Data.HFunctor

Methods

hbind :: (f ~> EnvT e g) -> EnvT e f ~> EnvT e g Source #

hjoin :: EnvT e (EnvT e f) ~> EnvT e f Source #

Monoid e => Inject (EnvT e :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> EnvT e f Source #

HFunctor (EnvT e :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> EnvT e f ~> EnvT e g Source #

Functor w => Functor (EnvT e w) 
Instance details

Defined in Control.Comonad.Trans.Env

Methods

fmap :: (a -> b) -> EnvT e w a -> EnvT e w b #

(<$) :: a -> EnvT e w b -> EnvT e w a #

(Monoid e, Applicative m) => Applicative (EnvT e m) 
Instance details

Defined in Control.Comonad.Trans.Env

Methods

pure :: a -> EnvT e m a #

(<*>) :: EnvT e m (a -> b) -> EnvT e m a -> EnvT e m b #

liftA2 :: (a -> b -> c) -> EnvT e m a -> EnvT e m b -> EnvT e m c #

(*>) :: EnvT e m a -> EnvT e m b -> EnvT e m b #

(<*) :: EnvT e m a -> EnvT e m b -> EnvT e m a #

Foldable w => Foldable (EnvT e w) 
Instance details

Defined in Control.Comonad.Trans.Env

Methods

fold :: Monoid m => EnvT e w m -> m #

foldMap :: Monoid m => (a -> m) -> EnvT e w a -> m #

foldr :: (a -> b -> b) -> b -> EnvT e w a -> b #

foldr' :: (a -> b -> b) -> b -> EnvT e w a -> b #

foldl :: (b -> a -> b) -> b -> EnvT e w a -> b #

foldl' :: (b -> a -> b) -> b -> EnvT e w a -> b #

foldr1 :: (a -> a -> a) -> EnvT e w a -> a #

foldl1 :: (a -> a -> a) -> EnvT e w a -> a #

toList :: EnvT e w a -> [a] #

null :: EnvT e w a -> Bool #

length :: EnvT e w a -> Int #

elem :: Eq a => a -> EnvT e w a -> Bool #

maximum :: Ord a => EnvT e w a -> a #

minimum :: Ord a => EnvT e w a -> a #

sum :: Num a => EnvT e w a -> a #

product :: Num a => EnvT e w a -> a #

Traversable w => Traversable (EnvT e w) 
Instance details

Defined in Control.Comonad.Trans.Env

Methods

traverse :: Applicative f => (a -> f b) -> EnvT e w a -> f (EnvT e w b) #

sequenceA :: Applicative f => EnvT e w (f a) -> f (EnvT e w a) #

mapM :: Monad m => (a -> m b) -> EnvT e w a -> m (EnvT e w b) #

sequence :: Monad m => EnvT e w (m a) -> m (EnvT e w a) #

Comonad w => Comonad (EnvT e w) 
Instance details

Defined in Control.Comonad.Trans.Env

Methods

extract :: EnvT e w a -> a #

duplicate :: EnvT e w a -> EnvT e w (EnvT e w a) #

extend :: (EnvT e w a -> b) -> EnvT e w a -> EnvT e w b #

(Semigroup e, ComonadApply w) => ComonadApply (EnvT e w) 
Instance details

Defined in Control.Comonad.Trans.Env

Methods

(<@>) :: EnvT e w (a -> b) -> EnvT e w a -> EnvT e w b #

(@>) :: EnvT e w a -> EnvT e w b -> EnvT e w b #

(<@) :: EnvT e w a -> EnvT e w b -> EnvT e w a #

(Semigroup e, Apply w) => Apply (EnvT e w) 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<.>) :: EnvT e w (a -> b) -> EnvT e w a -> EnvT e w b #

(.>) :: EnvT e w a -> EnvT e w b -> EnvT e w b #

(<.) :: EnvT e w a -> EnvT e w b -> EnvT e w a #

liftF2 :: (a -> b -> c) -> EnvT e w a -> EnvT e w b -> EnvT e w c #

(Data e, Typeable w, Data (w a), Data a) => Data (EnvT e w a) 
Instance details

Defined in Control.Comonad.Trans.Env

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> EnvT e w a -> c (EnvT e w a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (EnvT e w a) #

toConstr :: EnvT e w a -> Constr #

dataTypeOf :: EnvT e w a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (EnvT e w a)) #

dataCast2 :: Typeable t => (forall d e0. (Data d, Data e0) => c (t d e0)) -> Maybe (c (EnvT e w a)) #

gmapT :: (forall b. Data b => b -> b) -> EnvT e w a -> EnvT e w a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> EnvT e w a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> EnvT e w a -> r #

gmapQ :: (forall d. Data d => d -> u) -> EnvT e w a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> EnvT e w a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> EnvT e w a -> m (EnvT e w a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> EnvT e w a -> m (EnvT e w a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> EnvT e w a -> m (EnvT e w a) #

type C (EnvT e) Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C (EnvT e) = (Unconstrained :: (Type -> Type) -> Constraint)

newtype ReaderT r (m :: k -> Type) (a :: k) :: forall k. Type -> (k -> Type) -> k -> Type #

The reader monad transformer, which adds a read-only environment to the given monad.

The return function ignores the environment, while >>= passes the inherited environment to both subcomputations.

Constructors

ReaderT 

Fields

Instances
HFunctor (ReaderT r :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> ReaderT r f ~> ReaderT r g Source #

Inject (ReaderT r :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> ReaderT r f Source #

Monad m => MonadReader r (ReaderT r m) 
Instance details

Defined in Control.Monad.Reader.Class

Methods

ask :: ReaderT r m r #

local :: (r -> r) -> ReaderT r m a -> ReaderT r m a #

reader :: (r -> a) -> ReaderT r m a #

(Functor f, MonadFree f m) => MonadFree f (ReaderT e m) 
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f (ReaderT e m a) -> ReaderT e m a #

MonadTrans (ReaderT r :: (Type -> Type) -> Type -> Type) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

lift :: Monad m => m a -> ReaderT r m a #

Interpret (ReaderT r :: (Type -> Type) -> Type -> Type) Source #

A free MonadReader, but only when applied to a Monad.

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (ReaderT r) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (ReaderT r) f => ReaderT r f ~> f Source #

interpret :: C (ReaderT r) g => (f ~> g) -> ReaderT r f ~> g Source #

Monad m => Monad (ReaderT r m) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

(>>=) :: ReaderT r m a -> (a -> ReaderT r m b) -> ReaderT r m b #

(>>) :: ReaderT r m a -> ReaderT r m b -> ReaderT r m b #

return :: a -> ReaderT r m a #

fail :: String -> ReaderT r m a #

Functor m => Functor (ReaderT r m) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

fmap :: (a -> b) -> ReaderT r m a -> ReaderT r m b #

(<$) :: a -> ReaderT r m b -> ReaderT r m a #

MonadFix m => MonadFix (ReaderT r m) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

mfix :: (a -> ReaderT r m a) -> ReaderT r m a #

MonadFail m => MonadFail (ReaderT r m) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

fail :: String -> ReaderT r m a #

Applicative m => Applicative (ReaderT r m) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

pure :: a -> ReaderT r m a #

(<*>) :: ReaderT r m (a -> b) -> ReaderT r m a -> ReaderT r m b #

liftA2 :: (a -> b -> c) -> ReaderT r m a -> ReaderT r m b -> ReaderT r m c #

(*>) :: ReaderT r m a -> ReaderT r m b -> ReaderT r m b #

(<*) :: ReaderT r m a -> ReaderT r m b -> ReaderT r m a #

Contravariant m => Contravariant (ReaderT r m) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

contramap :: (a -> b) -> ReaderT r m b -> ReaderT r m a #

(>$) :: b -> ReaderT r m b -> ReaderT r m a #

Representable m => Representable (ReaderT e m) 
Instance details

Defined in Data.Functor.Rep

Associated Types

type Rep (ReaderT e m) :: Type #

Methods

tabulate :: (Rep (ReaderT e m) -> a) -> ReaderT e m a #

index :: ReaderT e m a -> Rep (ReaderT e m) -> a #

Alternative m => Alternative (ReaderT r m) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

empty :: ReaderT r m a #

(<|>) :: ReaderT r m a -> ReaderT r m a -> ReaderT r m a #

some :: ReaderT r m a -> ReaderT r m [a] #

many :: ReaderT r m a -> ReaderT r m [a] #

MonadPlus m => MonadPlus (ReaderT r m) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

mzero :: ReaderT r m a #

mplus :: ReaderT r m a -> ReaderT r m a -> ReaderT r m a #

MonadZip m => MonadZip (ReaderT r m) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

mzip :: ReaderT r m a -> ReaderT r m b -> ReaderT r m (a, b) #

mzipWith :: (a -> b -> c) -> ReaderT r m a -> ReaderT r m b -> ReaderT r m c #

munzip :: ReaderT r m (a, b) -> (ReaderT r m a, ReaderT r m b) #

MonadIO m => MonadIO (ReaderT r m) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

liftIO :: IO a -> ReaderT r m a #

Apply m => Apply (ReaderT e m) 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<.>) :: ReaderT e m (a -> b) -> ReaderT e m a -> ReaderT e m b #

(.>) :: ReaderT e m a -> ReaderT e m b -> ReaderT e m b #

(<.) :: ReaderT e m a -> ReaderT e m b -> ReaderT e m a #

liftF2 :: (a -> b -> c) -> ReaderT e m a -> ReaderT e m b -> ReaderT e m c #

Pointed m => Pointed (ReaderT r m) 
Instance details

Defined in Data.Pointed

Methods

point :: a -> ReaderT r m a #

PrimMonad m => PrimMonad (ReaderT r m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (ReaderT r m) :: Type #

Methods

primitive :: (State# (PrimState (ReaderT r m)) -> (#State# (PrimState (ReaderT r m)), a#)) -> ReaderT r m a #

Plus f => Plus (ReaderT e f) 
Instance details

Defined in Data.Functor.Plus

Methods

zero :: ReaderT e f a #

Alt f => Alt (ReaderT e f) 
Instance details

Defined in Data.Functor.Alt

Methods

(<!>) :: ReaderT e f a -> ReaderT e f a -> ReaderT e f a #

some :: Applicative (ReaderT e f) => ReaderT e f a -> ReaderT e f [a] #

many :: Applicative (ReaderT e f) => ReaderT e f a -> ReaderT e f [a] #

Bind m => Bind (ReaderT e m) 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(>>-) :: ReaderT e m a -> (a -> ReaderT e m b) -> ReaderT e m b #

join :: ReaderT e m (ReaderT e m a) -> ReaderT e m a #

type C (ReaderT r :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C (ReaderT r :: (Type -> Type) -> Type -> Type) = MonadReader r
type Rep (ReaderT e m) 
Instance details

Defined in Data.Functor.Rep

type Rep (ReaderT e m) = (e, Rep m)
type PrimState (ReaderT r m) 
Instance details

Defined in Control.Monad.Primitive

type PrimState (ReaderT r m) = PrimState m

data Flagged f a Source #

An f a, along with a Bool flag

Flagged f a ~ (Bool, f a)
Flagged f   ~ ((,) Bool) :.: f       -- functor composition

Creation with inject or pure uses False as the boolean.

You can think of it as an f a that is "flagged" with a boolean value, and that value can indicuate whether or not it is "pure" (made with inject or pure) as False, or "impure" (made from some other source) as True. However, False may be always created directly, of course, using the constructor.

You can think of it like a Step that is either 0 or 1, as well.

interpreting it requires no constraint on the target context.

This type is equivalent (along with its instances) to:

Constructors

Flagged 

Fields

Instances
HFunctor (Flagged :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Flagged f ~> Flagged g Source #

HBind (Flagged :: (k -> Type) -> k -> Type) Source #

Equivalent to instance for EnvT Any and HLift IdentityT.

Instance details

Defined in Data.HFunctor

Inject (Flagged :: (k -> Type) -> k -> Type) Source #

Injects with False.

Equivalent to instance for EnvT Any and HLift IdentityT.

Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> Flagged f Source #

Interpret (Flagged :: (Type -> Type) -> Type -> Type) Source #

Equivalent to instance for EnvT Any and HLift IdentityT.

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C Flagged :: (Type -> Type) -> Constraint Source #

Methods

retract :: C Flagged f => Flagged f ~> f Source #

interpret :: C Flagged g => (f ~> g) -> Flagged f ~> g Source #

Functor f => Functor (Flagged f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

fmap :: (a -> b) -> Flagged f a -> Flagged f b #

(<$) :: a -> Flagged f b -> Flagged f a #

Applicative f => Applicative (Flagged f) Source #

Uses False for pure, and || for <*>.

Instance details

Defined in Control.Applicative.Step

Methods

pure :: a -> Flagged f a #

(<*>) :: Flagged f (a -> b) -> Flagged f a -> Flagged f b #

liftA2 :: (a -> b -> c) -> Flagged f a -> Flagged f b -> Flagged f c #

(*>) :: Flagged f a -> Flagged f b -> Flagged f b #

(<*) :: Flagged f a -> Flagged f b -> Flagged f a #

Foldable f => Foldable (Flagged f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

fold :: Monoid m => Flagged f m -> m #

foldMap :: Monoid m => (a -> m) -> Flagged f a -> m #

foldr :: (a -> b -> b) -> b -> Flagged f a -> b #

foldr' :: (a -> b -> b) -> b -> Flagged f a -> b #

foldl :: (b -> a -> b) -> b -> Flagged f a -> b #

foldl' :: (b -> a -> b) -> b -> Flagged f a -> b #

foldr1 :: (a -> a -> a) -> Flagged f a -> a #

foldl1 :: (a -> a -> a) -> Flagged f a -> a #

toList :: Flagged f a -> [a] #

null :: Flagged f a -> Bool #

length :: Flagged f a -> Int #

elem :: Eq a => a -> Flagged f a -> Bool #

maximum :: Ord a => Flagged f a -> a #

minimum :: Ord a => Flagged f a -> a #

sum :: Num a => Flagged f a -> a #

product :: Num a => Flagged f a -> a #

Traversable f => Traversable (Flagged f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Flagged f a -> f0 (Flagged f b) #

sequenceA :: Applicative f0 => Flagged f (f0 a) -> f0 (Flagged f a) #

mapM :: Monad m => (a -> m b) -> Flagged f a -> m (Flagged f b) #

sequence :: Monad m => Flagged f (m a) -> m (Flagged f a) #

Eq1 f => Eq1 (Flagged f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

liftEq :: (a -> b -> Bool) -> Flagged f a -> Flagged f b -> Bool #

Ord1 f => Ord1 (Flagged f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

liftCompare :: (a -> b -> Ordering) -> Flagged f a -> Flagged f b -> Ordering #

Read1 f => Read1 (Flagged f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Flagged f a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Flagged f a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Flagged f a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Flagged f a] #

Show1 f => Show1 (Flagged f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Flagged f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Flagged f a] -> ShowS #

Foldable1 f => Foldable1 (Flagged f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

fold1 :: Semigroup m => Flagged f m -> m #

foldMap1 :: Semigroup m => (a -> m) -> Flagged f a -> m #

toNonEmpty :: Flagged f a -> NonEmpty a #

Pointed f => Pointed (Flagged f) Source #

Uses False for point.

Instance details

Defined in Control.Applicative.Step

Methods

point :: a -> Flagged f a #

Traversable1 f => Traversable1 (Flagged f) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> Flagged f a -> f0 (Flagged f b) #

sequence1 :: Apply f0 => Flagged f (f0 b) -> f0 (Flagged f b) #

Eq (f a) => Eq (Flagged f a) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

(==) :: Flagged f a -> Flagged f a -> Bool #

(/=) :: Flagged f a -> Flagged f a -> Bool #

(Typeable a, Typeable f, Typeable k, Data (f a)) => Data (Flagged f a) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Flagged f a -> c (Flagged f a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Flagged f a) #

toConstr :: Flagged f a -> Constr #

dataTypeOf :: Flagged f a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Flagged f a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Flagged f a)) #

gmapT :: (forall b. Data b => b -> b) -> Flagged f a -> Flagged f a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Flagged f a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Flagged f a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Flagged f a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Flagged f a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Flagged f a -> m (Flagged f a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Flagged f a -> m (Flagged f a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Flagged f a -> m (Flagged f a) #

Ord (f a) => Ord (Flagged f a) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

compare :: Flagged f a -> Flagged f a -> Ordering #

(<) :: Flagged f a -> Flagged f a -> Bool #

(<=) :: Flagged f a -> Flagged f a -> Bool #

(>) :: Flagged f a -> Flagged f a -> Bool #

(>=) :: Flagged f a -> Flagged f a -> Bool #

max :: Flagged f a -> Flagged f a -> Flagged f a #

min :: Flagged f a -> Flagged f a -> Flagged f a #

Read (f a) => Read (Flagged f a) Source # 
Instance details

Defined in Control.Applicative.Step

Show (f a) => Show (Flagged f a) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

showsPrec :: Int -> Flagged f a -> ShowS #

show :: Flagged f a -> String #

showList :: [Flagged f a] -> ShowS #

Generic (Flagged f a) Source # 
Instance details

Defined in Control.Applicative.Step

Associated Types

type Rep (Flagged f a) :: Type -> Type #

Methods

from :: Flagged f a -> Rep (Flagged f a) x #

to :: Rep (Flagged f a) x -> Flagged f a #

type C (Flagged :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C (Flagged :: (Type -> Type) -> Type -> Type) = (Unconstrained :: (Type -> Type) -> Constraint)
type Rep (Flagged f a) Source # 
Instance details

Defined in Control.Applicative.Step

type Rep (Flagged f a) = D1 (MetaData "Flagged" "Control.Applicative.Step" "functor-combinators-0.1.1.1-B2oyFu2GVTM8ySAuzVPoNk" False) (C1 (MetaCons "Flagged" PrefixI True) (S1 (MetaSel (Just "flaggedFlag") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 Bool) :*: S1 (MetaSel (Just "flaggedVal") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (f a))))

newtype IdentityT (f :: k -> Type) (a :: k) :: forall k. (k -> Type) -> k -> Type #

The trivial monad transformer, which maps a monad to an equivalent monad.

Constructors

IdentityT 

Fields

Instances
HFunctor (IdentityT :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> IdentityT f ~> IdentityT g Source #

HBind (IdentityT :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Inject (IdentityT :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> IdentityT f Source #

MonadReader r m => MonadReader r (IdentityT m) 
Instance details

Defined in Control.Monad.Reader.Class

Methods

ask :: IdentityT m r #

local :: (r -> r) -> IdentityT m a -> IdentityT m a #

reader :: (r -> a) -> IdentityT m a #

(Functor f, MonadFree f m) => MonadFree f (IdentityT m) 
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f (IdentityT m a) -> IdentityT m a #

MonadTrans (IdentityT :: (Type -> Type) -> Type -> Type) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

lift :: Monad m => m a -> IdentityT m a #

Interpret (IdentityT :: (Type -> Type) -> Type -> Type) Source #

A free Unconstrained

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C IdentityT :: (Type -> Type) -> Constraint Source #

Methods

retract :: C IdentityT f => IdentityT f ~> f Source #

interpret :: C IdentityT g => (f ~> g) -> IdentityT f ~> g Source #

FreeOf (Unconstrained :: (Type -> Type) -> Constraint) (IdentityT :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Final

Monad m => Monad (IdentityT m) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

(>>=) :: IdentityT m a -> (a -> IdentityT m b) -> IdentityT m b #

(>>) :: IdentityT m a -> IdentityT m b -> IdentityT m b #

return :: a -> IdentityT m a #

fail :: String -> IdentityT m a #

Functor m => Functor (IdentityT m) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

fmap :: (a -> b) -> IdentityT m a -> IdentityT m b #

(<$) :: a -> IdentityT m b -> IdentityT m a #

MonadFix m => MonadFix (IdentityT m) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

mfix :: (a -> IdentityT m a) -> IdentityT m a #

MonadFail m => MonadFail (IdentityT m) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

fail :: String -> IdentityT m a #

Applicative m => Applicative (IdentityT m) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

pure :: a -> IdentityT m a #

(<*>) :: IdentityT m (a -> b) -> IdentityT m a -> IdentityT m b #

liftA2 :: (a -> b -> c) -> IdentityT m a -> IdentityT m b -> IdentityT m c #

(*>) :: IdentityT m a -> IdentityT m b -> IdentityT m b #

(<*) :: IdentityT m a -> IdentityT m b -> IdentityT m a #

Foldable f => Foldable (IdentityT f) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

fold :: Monoid m => IdentityT f m -> m #

foldMap :: Monoid m => (a -> m) -> IdentityT f a -> m #

foldr :: (a -> b -> b) -> b -> IdentityT f a -> b #

foldr' :: (a -> b -> b) -> b -> IdentityT f a -> b #

foldl :: (b -> a -> b) -> b -> IdentityT f a -> b #

foldl' :: (b -> a -> b) -> b -> IdentityT f a -> b #

foldr1 :: (a -> a -> a) -> IdentityT f a -> a #

foldl1 :: (a -> a -> a) -> IdentityT f a -> a #

toList :: IdentityT f a -> [a] #

null :: IdentityT f a -> Bool #

length :: IdentityT f a -> Int #

elem :: Eq a => a -> IdentityT f a -> Bool #

maximum :: Ord a => IdentityT f a -> a #

minimum :: Ord a => IdentityT f a -> a #

sum :: Num a => IdentityT f a -> a #

product :: Num a => IdentityT f a -> a #

Traversable f => Traversable (IdentityT f) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

traverse :: Applicative f0 => (a -> f0 b) -> IdentityT f a -> f0 (IdentityT f b) #

sequenceA :: Applicative f0 => IdentityT f (f0 a) -> f0 (IdentityT f a) #

mapM :: Monad m => (a -> m b) -> IdentityT f a -> m (IdentityT f b) #

sequence :: Monad m => IdentityT f (m a) -> m (IdentityT f a) #

Contravariant f => Contravariant (IdentityT f) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

contramap :: (a -> b) -> IdentityT f b -> IdentityT f a #

(>$) :: b -> IdentityT f b -> IdentityT f a #

Representable m => Representable (IdentityT m) 
Instance details

Defined in Data.Functor.Rep

Associated Types

type Rep (IdentityT m) :: Type #

Methods

tabulate :: (Rep (IdentityT m) -> a) -> IdentityT m a #

index :: IdentityT m a -> Rep (IdentityT m) -> a #

Alternative m => Alternative (IdentityT m) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

empty :: IdentityT m a #

(<|>) :: IdentityT m a -> IdentityT m a -> IdentityT m a #

some :: IdentityT m a -> IdentityT m [a] #

many :: IdentityT m a -> IdentityT m [a] #

MonadPlus m => MonadPlus (IdentityT m) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

mzero :: IdentityT m a #

mplus :: IdentityT m a -> IdentityT m a -> IdentityT m a #

Eq1 f => Eq1 (IdentityT f) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

liftEq :: (a -> b -> Bool) -> IdentityT f a -> IdentityT f b -> Bool #

Ord1 f => Ord1 (IdentityT f) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

liftCompare :: (a -> b -> Ordering) -> IdentityT f a -> IdentityT f b -> Ordering #

Read1 f => Read1 (IdentityT f) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (IdentityT f a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [IdentityT f a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (IdentityT f a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [IdentityT f a] #

Show1 f => Show1 (IdentityT f) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> IdentityT f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [IdentityT f a] -> ShowS #

MonadZip m => MonadZip (IdentityT m) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

mzip :: IdentityT m a -> IdentityT m b -> IdentityT m (a, b) #

mzipWith :: (a -> b -> c) -> IdentityT m a -> IdentityT m b -> IdentityT m c #

munzip :: IdentityT m (a, b) -> (IdentityT m a, IdentityT m b) #

MonadIO m => MonadIO (IdentityT m) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

liftIO :: IO a -> IdentityT m a #

Comonad w => Comonad (IdentityT w) 
Instance details

Defined in Control.Comonad

Methods

extract :: IdentityT w a -> a #

duplicate :: IdentityT w a -> IdentityT w (IdentityT w a) #

extend :: (IdentityT w a -> b) -> IdentityT w a -> IdentityT w b #

ComonadApply w => ComonadApply (IdentityT w) 
Instance details

Defined in Control.Comonad

Methods

(<@>) :: IdentityT w (a -> b) -> IdentityT w a -> IdentityT w b #

(@>) :: IdentityT w a -> IdentityT w b -> IdentityT w b #

(<@) :: IdentityT w a -> IdentityT w b -> IdentityT w a #

Foldable1 m => Foldable1 (IdentityT m) 
Instance details

Defined in Data.Semigroup.Foldable.Class

Methods

fold1 :: Semigroup m0 => IdentityT m m0 -> m0 #

foldMap1 :: Semigroup m0 => (a -> m0) -> IdentityT m a -> m0 #

toNonEmpty :: IdentityT m a -> NonEmpty a #

Apply w => Apply (IdentityT w) 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<.>) :: IdentityT w (a -> b) -> IdentityT w a -> IdentityT w b #

(.>) :: IdentityT w a -> IdentityT w b -> IdentityT w b #

(<.) :: IdentityT w a -> IdentityT w b -> IdentityT w a #

liftF2 :: (a -> b -> c) -> IdentityT w a -> IdentityT w b -> IdentityT w c #

Pointed m => Pointed (IdentityT m) 
Instance details

Defined in Data.Pointed

Methods

point :: a -> IdentityT m a #

PrimMonad m => PrimMonad (IdentityT m) 
Instance details

Defined in Control.Monad.Primitive

Associated Types

type PrimState (IdentityT m) :: Type #

Methods

primitive :: (State# (PrimState (IdentityT m)) -> (#State# (PrimState (IdentityT m)), a#)) -> IdentityT m a #

PrimBase m => PrimBase (IdentityT m)

Since: primitive-0.6.2.0

Instance details

Defined in Control.Monad.Primitive

Methods

internal :: IdentityT m a -> State# (PrimState (IdentityT m)) -> (#State# (PrimState (IdentityT m)), a#) #

Traversable1 f => Traversable1 (IdentityT f) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> IdentityT f a -> f0 (IdentityT f b) #

sequence1 :: Apply f0 => IdentityT f (f0 b) -> f0 (IdentityT f b) #

Plus f => Plus (IdentityT f) 
Instance details

Defined in Data.Functor.Plus

Methods

zero :: IdentityT f a #

Alt f => Alt (IdentityT f) 
Instance details

Defined in Data.Functor.Alt

Methods

(<!>) :: IdentityT f a -> IdentityT f a -> IdentityT f a #

some :: Applicative (IdentityT f) => IdentityT f a -> IdentityT f [a] #

many :: Applicative (IdentityT f) => IdentityT f a -> IdentityT f [a] #

Bind m => Bind (IdentityT m) 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(>>-) :: IdentityT m a -> (a -> IdentityT m b) -> IdentityT m b #

join :: IdentityT m (IdentityT m a) -> IdentityT m a #

(Eq1 f, Eq a) => Eq (IdentityT f a) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

(==) :: IdentityT f a -> IdentityT f a -> Bool #

(/=) :: IdentityT f a -> IdentityT f a -> Bool #

(Ord1 f, Ord a) => Ord (IdentityT f a) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

compare :: IdentityT f a -> IdentityT f a -> Ordering #

(<) :: IdentityT f a -> IdentityT f a -> Bool #

(<=) :: IdentityT f a -> IdentityT f a -> Bool #

(>) :: IdentityT f a -> IdentityT f a -> Bool #

(>=) :: IdentityT f a -> IdentityT f a -> Bool #

max :: IdentityT f a -> IdentityT f a -> IdentityT f a #

min :: IdentityT f a -> IdentityT f a -> IdentityT f a #

(Read1 f, Read a) => Read (IdentityT f a) 
Instance details

Defined in Control.Monad.Trans.Identity

(Show1 f, Show a) => Show (IdentityT f a) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

showsPrec :: Int -> IdentityT f a -> ShowS #

show :: IdentityT f a -> String #

showList :: [IdentityT f a] -> ShowS #

type C (IdentityT :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C (IdentityT :: (Type -> Type) -> Type -> Type) = (Unconstrained :: (Type -> Type) -> Constraint)
type Rep (IdentityT m) 
Instance details

Defined in Data.Functor.Rep

type Rep (IdentityT m) = Rep m
type PrimState (IdentityT m) 
Instance details

Defined in Control.Monad.Primitive

data Void2 a b Source #

Void2 a b is uninhabited for all a and b.

Instances
HFunctor (Void2 :: (k1 -> Type) -> k2 -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> Void2 f ~> Void2 g Source #

Functor (Void2 a :: Type -> Type) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

fmap :: (a0 -> b) -> Void2 a a0 -> Void2 a b #

(<$) :: a0 -> Void2 a b -> Void2 a a0 #

Foldable (Void2 a :: Type -> Type) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

fold :: Monoid m => Void2 a m -> m #

foldMap :: Monoid m => (a0 -> m) -> Void2 a a0 -> m #

foldr :: (a0 -> b -> b) -> b -> Void2 a a0 -> b #

foldr' :: (a0 -> b -> b) -> b -> Void2 a a0 -> b #

foldl :: (b -> a0 -> b) -> b -> Void2 a a0 -> b #

foldl' :: (b -> a0 -> b) -> b -> Void2 a a0 -> b #

foldr1 :: (a0 -> a0 -> a0) -> Void2 a a0 -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> Void2 a a0 -> a0 #

toList :: Void2 a a0 -> [a0] #

null :: Void2 a a0 -> Bool #

length :: Void2 a a0 -> Int #

elem :: Eq a0 => a0 -> Void2 a a0 -> Bool #

maximum :: Ord a0 => Void2 a a0 -> a0 #

minimum :: Ord a0 => Void2 a a0 -> a0 #

sum :: Num a0 => Void2 a a0 -> a0 #

product :: Num a0 => Void2 a a0 -> a0 #

Traversable (Void2 a :: Type -> Type) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

traverse :: Applicative f => (a0 -> f b) -> Void2 a a0 -> f (Void2 a b) #

sequenceA :: Applicative f => Void2 a (f a0) -> f (Void2 a a0) #

mapM :: Monad m => (a0 -> m b) -> Void2 a a0 -> m (Void2 a b) #

sequence :: Monad m => Void2 a (m a0) -> m (Void2 a a0) #

Eq1 (Void2 a :: Type -> Type) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

liftEq :: (a0 -> b -> Bool) -> Void2 a a0 -> Void2 a b -> Bool #

Ord1 (Void2 a :: Type -> Type) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

liftCompare :: (a0 -> b -> Ordering) -> Void2 a a0 -> Void2 a b -> Ordering #

Read1 (Void2 a :: Type -> Type) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Void2 a a0) #

liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Void2 a a0] #

liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Void2 a a0) #

liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Void2 a a0] #

Show1 (Void2 a :: Type -> Type) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

liftShowsPrec :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> Int -> Void2 a a0 -> ShowS #

liftShowList :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> [Void2 a a0] -> ShowS #

Apply (Void2 a :: Type -> Type) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

(<.>) :: Void2 a (a0 -> b) -> Void2 a a0 -> Void2 a b #

(.>) :: Void2 a a0 -> Void2 a b -> Void2 a b #

(<.) :: Void2 a a0 -> Void2 a b -> Void2 a a0 #

liftF2 :: (a0 -> b -> c) -> Void2 a a0 -> Void2 a b -> Void2 a c #

Alt (Void2 a :: Type -> Type) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

(<!>) :: Void2 a a0 -> Void2 a a0 -> Void2 a a0 #

some :: Applicative (Void2 a) => Void2 a a0 -> Void2 a [a0] #

many :: Applicative (Void2 a) => Void2 a a0 -> Void2 a [a0] #

Bind (Void2 a :: Type -> Type) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

(>>-) :: Void2 a a0 -> (a0 -> Void2 a b) -> Void2 a b #

join :: Void2 a (Void2 a a0) -> Void2 a a0 #

Eq (Void2 a b) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

(==) :: Void2 a b -> Void2 a b -> Bool #

(/=) :: Void2 a b -> Void2 a b -> Bool #

(Typeable a, Typeable b, Typeable k1, Typeable k2) => Data (Void2 a b) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Void2 a b -> c (Void2 a b) #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Void2 a b) #

toConstr :: Void2 a b -> Constr #

dataTypeOf :: Void2 a b -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Void2 a b)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Void2 a b)) #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> Void2 a b -> Void2 a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void2 a b -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void2 a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> Void2 a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Void2 a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void2 a b -> m (Void2 a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void2 a b -> m (Void2 a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void2 a b -> m (Void2 a b) #

Ord (Void2 a b) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

compare :: Void2 a b -> Void2 a b -> Ordering #

(<) :: Void2 a b -> Void2 a b -> Bool #

(<=) :: Void2 a b -> Void2 a b -> Bool #

(>) :: Void2 a b -> Void2 a b -> Bool #

(>=) :: Void2 a b -> Void2 a b -> Bool #

max :: Void2 a b -> Void2 a b -> Void2 a b #

min :: Void2 a b -> Void2 a b -> Void2 a b #

Read (Void2 a b) Source # 
Instance details

Defined in Control.Applicative.Step

Show (Void2 a b) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

showsPrec :: Int -> Void2 a b -> ShowS #

show :: Void2 a b -> String #

showList :: [Void2 a b] -> ShowS #

Generic (Void2 a b) Source # 
Instance details

Defined in Control.Applicative.Step

Associated Types

type Rep (Void2 a b) :: Type -> Type #

Methods

from :: Void2 a b -> Rep (Void2 a b) x #

to :: Rep (Void2 a b) x -> Void2 a b #

Semigroup (Void2 a b) Source # 
Instance details

Defined in Control.Applicative.Step

Methods

(<>) :: Void2 a b -> Void2 a b -> Void2 a b #

sconcat :: NonEmpty (Void2 a b) -> Void2 a b #

stimes :: Integral b0 => b0 -> Void2 a b -> Void2 a b #

type Rep (Void2 a b) Source # 
Instance details

Defined in Control.Applicative.Step

type Rep (Void2 a b) = D1 (MetaData "Void2" "Control.Applicative.Step" "functor-combinators-0.1.1.1-B2oyFu2GVTM8ySAuzVPoNk" False) (V1 :: Type -> Type)

newtype Final c f a Source #

A simple way to inject/reject into any eventual typeclass.

In a way, this is the "ultimate" multi-purpose Interpret instance. You can use this to inject an f into a free structure of any typeclass. If you want f to have a Monad instance, for example, just use

inject :: f a -> Final Monad f a

When you want to eventually interpret out the data, use:

interpret :: (f ~> g) -> Final c f a -> g a

Essentially, Final c is the "free c". Final Monad is the free Monad, etc.

Final can theoretically replace Ap, Ap1, ListF, NonEmptyF, MaybeF, Free, Identity, Coyoneda, and other instances of FreeOf, if you don't care about being able to pattern match on explicit structure.

However, it cannot replace Interpret instances that are not free structures, like Step, Steps, Backwards, etc.

Note that this doesn't have instances for all the typeclasses you could lift things into; you probably have to define your own if you want to use Final c as an instance of c (using liftFinal0, liftFinal1, liftFinal2 for help).

Constructors

Final 

Fields

  • runFinal :: forall g. c g => (forall x. f x -> g x) -> g a
     
Instances
MonadReader r (Final (MonadReader r) f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

ask :: Final (MonadReader r) f r #

local :: (r -> r) -> Final (MonadReader r) f a -> Final (MonadReader r) f a #

reader :: (r -> a) -> Final (MonadReader r) f a #

Interpret (Final c) Source # 
Instance details

Defined in Data.HFunctor.Final

Associated Types

type C (Final c) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (Final c) f => Final c f ~> f Source #

interpret :: C (Final c) g => (f ~> g) -> Final c f ~> g Source #

Inject (Final c :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

inject :: f ~> Final c f Source #

HFunctor (Final c :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

hmap :: (f ~> g) -> Final c f ~> Final c g Source #

Monad (Final Monad f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

(>>=) :: Final Monad f a -> (a -> Final Monad f b) -> Final Monad f b #

(>>) :: Final Monad f a -> Final Monad f b -> Final Monad f b #

return :: a -> Final Monad f a #

fail :: String -> Final Monad f a #

Monad (Final (MonadReader r) f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

(>>=) :: Final (MonadReader r) f a -> (a -> Final (MonadReader r) f b) -> Final (MonadReader r) f b #

(>>) :: Final (MonadReader r) f a -> Final (MonadReader r) f b -> Final (MonadReader r) f b #

return :: a -> Final (MonadReader r) f a #

fail :: String -> Final (MonadReader r) f a #

Monad (Final MonadPlus f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

(>>=) :: Final MonadPlus f a -> (a -> Final MonadPlus f b) -> Final MonadPlus f b #

(>>) :: Final MonadPlus f a -> Final MonadPlus f b -> Final MonadPlus f b #

return :: a -> Final MonadPlus f a #

fail :: String -> Final MonadPlus f a #

Functor (Final Monad f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

fmap :: (a -> b) -> Final Monad f a -> Final Monad f b #

(<$) :: a -> Final Monad f b -> Final Monad f a #

Functor (Final Functor f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

fmap :: (a -> b) -> Final Functor f a -> Final Functor f b #

(<$) :: a -> Final Functor f b -> Final Functor f a #

Functor (Final Applicative f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

fmap :: (a -> b) -> Final Applicative f a -> Final Applicative f b #

(<$) :: a -> Final Applicative f b -> Final Applicative f a #

Functor (Final (MonadReader r) f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

fmap :: (a -> b) -> Final (MonadReader r) f a -> Final (MonadReader r) f b #

(<$) :: a -> Final (MonadReader r) f b -> Final (MonadReader r) f a #

Functor (Final Alternative f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

fmap :: (a -> b) -> Final Alternative f a -> Final Alternative f b #

(<$) :: a -> Final Alternative f b -> Final Alternative f a #

Functor (Final MonadPlus f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

fmap :: (a -> b) -> Final MonadPlus f a -> Final MonadPlus f b #

(<$) :: a -> Final MonadPlus f b -> Final MonadPlus f a #

Functor (Final Apply f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

fmap :: (a -> b) -> Final Apply f a -> Final Apply f b #

(<$) :: a -> Final Apply f b -> Final Apply f a #

Functor (Final Plus f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

fmap :: (a -> b) -> Final Plus f a -> Final Plus f b #

(<$) :: a -> Final Plus f b -> Final Plus f a #

Functor (Final Alt f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

fmap :: (a -> b) -> Final Alt f a -> Final Alt f b #

(<$) :: a -> Final Alt f b -> Final Alt f a #

Functor (Final Bind f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

fmap :: (a -> b) -> Final Bind f a -> Final Bind f b #

(<$) :: a -> Final Bind f b -> Final Bind f a #

Applicative (Final Monad f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

pure :: a -> Final Monad f a #

(<*>) :: Final Monad f (a -> b) -> Final Monad f a -> Final Monad f b #

liftA2 :: (a -> b -> c) -> Final Monad f a -> Final Monad f b -> Final Monad f c #

(*>) :: Final Monad f a -> Final Monad f b -> Final Monad f b #

(<*) :: Final Monad f a -> Final Monad f b -> Final Monad f a #

Applicative (Final Applicative f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

pure :: a -> Final Applicative f a #

(<*>) :: Final Applicative f (a -> b) -> Final Applicative f a -> Final Applicative f b #

liftA2 :: (a -> b -> c) -> Final Applicative f a -> Final Applicative f b -> Final Applicative f c #

(*>) :: Final Applicative f a -> Final Applicative f b -> Final Applicative f b #

(<*) :: Final Applicative f a -> Final Applicative f b -> Final Applicative f a #

Applicative (Final (MonadReader r) f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

pure :: a -> Final (MonadReader r) f a #

(<*>) :: Final (MonadReader r) f (a -> b) -> Final (MonadReader r) f a -> Final (MonadReader r) f b #

liftA2 :: (a -> b -> c) -> Final (MonadReader r) f a -> Final (MonadReader r) f b -> Final (MonadReader r) f c #

(*>) :: Final (MonadReader r) f a -> Final (MonadReader r) f b -> Final (MonadReader r) f b #

(<*) :: Final (MonadReader r) f a -> Final (MonadReader r) f b -> Final (MonadReader r) f a #

Applicative (Final Alternative f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

pure :: a -> Final Alternative f a #

(<*>) :: Final Alternative f (a -> b) -> Final Alternative f a -> Final Alternative f b #

liftA2 :: (a -> b -> c) -> Final Alternative f a -> Final Alternative f b -> Final Alternative f c #

(*>) :: Final Alternative f a -> Final Alternative f b -> Final Alternative f b #

(<*) :: Final Alternative f a -> Final Alternative f b -> Final Alternative f a #

Applicative (Final MonadPlus f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

pure :: a -> Final MonadPlus f a #

(<*>) :: Final MonadPlus f (a -> b) -> Final MonadPlus f a -> Final MonadPlus f b #

liftA2 :: (a -> b -> c) -> Final MonadPlus f a -> Final MonadPlus f b -> Final MonadPlus f c #

(*>) :: Final MonadPlus f a -> Final MonadPlus f b -> Final MonadPlus f b #

(<*) :: Final MonadPlus f a -> Final MonadPlus f b -> Final MonadPlus f a #

Alternative (Final Alternative f) Source # 
Instance details

Defined in Data.HFunctor.Final

Alternative (Final MonadPlus f) Source # 
Instance details

Defined in Data.HFunctor.Final

MonadPlus (Final MonadPlus f) Source # 
Instance details

Defined in Data.HFunctor.Final

Apply (Final Monad f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

(<.>) :: Final Monad f (a -> b) -> Final Monad f a -> Final Monad f b #

(.>) :: Final Monad f a -> Final Monad f b -> Final Monad f b #

(<.) :: Final Monad f a -> Final Monad f b -> Final Monad f a #

liftF2 :: (a -> b -> c) -> Final Monad f a -> Final Monad f b -> Final Monad f c #

Apply (Final Applicative f) Source # 
Instance details

Defined in Data.HFunctor.Final

Apply (Final (MonadReader r) f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

(<.>) :: Final (MonadReader r) f (a -> b) -> Final (MonadReader r) f a -> Final (MonadReader r) f b #

(.>) :: Final (MonadReader r) f a -> Final (MonadReader r) f b -> Final (MonadReader r) f b #

(<.) :: Final (MonadReader r) f a -> Final (MonadReader r) f b -> Final (MonadReader r) f a #

liftF2 :: (a -> b -> c) -> Final (MonadReader r) f a -> Final (MonadReader r) f b -> Final (MonadReader r) f c #

Apply (Final Alternative f) Source # 
Instance details

Defined in Data.HFunctor.Final

Apply (Final Apply f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

(<.>) :: Final Apply f (a -> b) -> Final Apply f a -> Final Apply f b #

(.>) :: Final Apply f a -> Final Apply f b -> Final Apply f b #

(<.) :: Final Apply f a -> Final Apply f b -> Final Apply f a #

liftF2 :: (a -> b -> c) -> Final Apply f a -> Final Apply f b -> Final Apply f c #

Apply (Final Bind f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

(<.>) :: Final Bind f (a -> b) -> Final Bind f a -> Final Bind f b #

(.>) :: Final Bind f a -> Final Bind f b -> Final Bind f b #

(<.) :: Final Bind f a -> Final Bind f b -> Final Bind f a #

liftF2 :: (a -> b -> c) -> Final Bind f a -> Final Bind f b -> Final Bind f c #

Pointed (Final Pointed f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

point :: a -> Final Pointed f a #

Plus (Final Plus f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

zero :: Final Plus f a #

Alt (Final Plus f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

(<!>) :: Final Plus f a -> Final Plus f a -> Final Plus f a #

some :: Applicative (Final Plus f) => Final Plus f a -> Final Plus f [a] #

many :: Applicative (Final Plus f) => Final Plus f a -> Final Plus f [a] #

Alt (Final Alt f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

(<!>) :: Final Alt f a -> Final Alt f a -> Final Alt f a #

some :: Applicative (Final Alt f) => Final Alt f a -> Final Alt f [a] #

many :: Applicative (Final Alt f) => Final Alt f a -> Final Alt f [a] #

Bind (Final Bind f) Source # 
Instance details

Defined in Data.HFunctor.Final

Methods

(>>-) :: Final Bind f a -> (a -> Final Bind f b) -> Final Bind f b #

join :: Final Bind f (Final Bind f a) -> Final Bind f a #

type C (Final c) Source # 
Instance details

Defined in Data.HFunctor.Final

type C (Final c) = c

class Interpret t => FreeOf c t | t -> c where Source #

A typeclass associating a free structure with the typeclass it is free on.

This essentially lists instances of Interpret where a "trip" through Final will leave it unchanged.

fromFree . toFree == id
toFree . fromFree == id

This can be useful because Final doesn't have a concrete structure that you can pattern match on and inspect, but t might. This lets you work on a concrete structure if you desire.

Minimal complete definition

Nothing

Methods

fromFree :: t f ~> Final c f Source #

toFree :: Functor f => Final c f ~> t f Source #

fromFree :: C t (Final c f) => t f ~> Final c f Source #

toFree :: c (t f) => Final c f ~> t f Source #

Instances
FreeOf Monad Free Source # 
Instance details

Defined in Data.HFunctor.Final

FreeOf Functor Coyoneda Source # 
Instance details

Defined in Data.HFunctor.Final

FreeOf Applicative Ap Source # 
Instance details

Defined in Data.HFunctor.Final

FreeOf Applicative Ap Source # 
Instance details

Defined in Data.HFunctor.Final

FreeOf Alternative Alt Source # 
Instance details

Defined in Data.HFunctor.Final

FreeOf Apply Ap1 Source # 
Instance details

Defined in Data.HFunctor.Final

FreeOf Pointed MaybeApply Source # 
Instance details

Defined in Data.HFunctor.Final

FreeOf Pointed Lift Source # 
Instance details

Defined in Data.HFunctor.Final

FreeOf Plus ListF Source # 
Instance details

Defined in Data.HFunctor.Final

FreeOf Alt NonEmptyF Source # 
Instance details

Defined in Data.HFunctor.Final

FreeOf Bind Free1 Source # 
Instance details

Defined in Data.HFunctor.Final

FreeOf (Unconstrained :: (Type -> Type) -> Constraint) (IdentityT :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Final

newtype ComposeT (f :: (Type -> Type) -> Type -> Type) (g :: (Type -> Type) -> Type -> Type) (m :: Type -> Type) a infixr 9 #

Composition of monad transformers.

Constructors

ComposeT infixr 9 

Fields

Instances
MonadRWS r w s (f (g m)) => MonadRWS r w s (ComposeT f g m) 
Instance details

Defined in Control.Monad.Trans.Compose

MonadReader r (f (g m)) => MonadReader r (ComposeT f g m) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

ask :: ComposeT f g m r #

local :: (r -> r) -> ComposeT f g m a -> ComposeT f g m a #

reader :: (r -> a) -> ComposeT f g m a #

MonadState s (f (g m)) => MonadState s (ComposeT f g m) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

get :: ComposeT f g m s #

put :: s -> ComposeT f g m () #

state :: (s -> (a, s)) -> ComposeT f g m a #

MonadWriter w (f (g m)) => MonadWriter w (ComposeT f g m) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

writer :: (a, w) -> ComposeT f g m a #

tell :: w -> ComposeT f g m () #

listen :: ComposeT f g m a -> ComposeT f g m (a, w) #

pass :: ComposeT f g m (a, w -> w) -> ComposeT f g m a #

MonadError e (f (g m)) => MonadError e (ComposeT f g m) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

throwError :: e -> ComposeT f g m a #

catchError :: ComposeT f g m a -> (e -> ComposeT f g m a) -> ComposeT f g m a #

(HFunctor s, HFunctor t) => HFunctor (ComposeT s t :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f ~> g) -> ComposeT s t f ~> ComposeT s t g Source #

(MFunctor f, MFunctor g, forall (m :: Type -> Type). Monad m => Monad (g m)) => MFunctor (ComposeT f g :: (Type -> Type) -> Type -> Type) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

hoist :: Monad m => (forall a. m a -> n a) -> ComposeT f g m b -> ComposeT f g n b #

(Inject s, Inject t) => Inject (ComposeT s t :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> ComposeT s t f Source #

(MFunctor f, MonadTrans f, MonadTrans g) => MonadTrans (ComposeT f g) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

lift :: Monad m => m a -> ComposeT f g m a #

(Interpret s, Interpret t) => Interpret (ComposeT s t) Source # 
Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (ComposeT s t) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (ComposeT s t) f => ComposeT s t f ~> f Source #

interpret :: C (ComposeT s t) g => (f ~> g) -> ComposeT s t f ~> g Source #

Monad (f (g m)) => Monad (ComposeT f g m) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

(>>=) :: ComposeT f g m a -> (a -> ComposeT f g m b) -> ComposeT f g m b #

(>>) :: ComposeT f g m a -> ComposeT f g m b -> ComposeT f g m b #

return :: a -> ComposeT f g m a #

fail :: String -> ComposeT f g m a #

Functor (f (g m)) => Functor (ComposeT f g m) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

fmap :: (a -> b) -> ComposeT f g m a -> ComposeT f g m b #

(<$) :: a -> ComposeT f g m b -> ComposeT f g m a #

MonadFail (f (g m)) => MonadFail (ComposeT f g m) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

fail :: String -> ComposeT f g m a #

Applicative (f (g m)) => Applicative (ComposeT f g m) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

pure :: a -> ComposeT f g m a #

(<*>) :: ComposeT f g m (a -> b) -> ComposeT f g m a -> ComposeT f g m b #

liftA2 :: (a -> b -> c) -> ComposeT f g m a -> ComposeT f g m b -> ComposeT f g m c #

(*>) :: ComposeT f g m a -> ComposeT f g m b -> ComposeT f g m b #

(<*) :: ComposeT f g m a -> ComposeT f g m b -> ComposeT f g m a #

Foldable (f (g m)) => Foldable (ComposeT f g m) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

fold :: Monoid m0 => ComposeT f g m m0 -> m0 #

foldMap :: Monoid m0 => (a -> m0) -> ComposeT f g m a -> m0 #

foldr :: (a -> b -> b) -> b -> ComposeT f g m a -> b #

foldr' :: (a -> b -> b) -> b -> ComposeT f g m a -> b #

foldl :: (b -> a -> b) -> b -> ComposeT f g m a -> b #

foldl' :: (b -> a -> b) -> b -> ComposeT f g m a -> b #

foldr1 :: (a -> a -> a) -> ComposeT f g m a -> a #

foldl1 :: (a -> a -> a) -> ComposeT f g m a -> a #

toList :: ComposeT f g m a -> [a] #

null :: ComposeT f g m a -> Bool #

length :: ComposeT f g m a -> Int #

elem :: Eq a => a -> ComposeT f g m a -> Bool #

maximum :: Ord a => ComposeT f g m a -> a #

minimum :: Ord a => ComposeT f g m a -> a #

sum :: Num a => ComposeT f g m a -> a #

product :: Num a => ComposeT f g m a -> a #

Traversable (f (g m)) => Traversable (ComposeT f g m) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

traverse :: Applicative f0 => (a -> f0 b) -> ComposeT f g m a -> f0 (ComposeT f g m b) #

sequenceA :: Applicative f0 => ComposeT f g m (f0 a) -> f0 (ComposeT f g m a) #

mapM :: Monad m0 => (a -> m0 b) -> ComposeT f g m a -> m0 (ComposeT f g m b) #

sequence :: Monad m0 => ComposeT f g m (m0 a) -> m0 (ComposeT f g m a) #

Alternative (f (g m)) => Alternative (ComposeT f g m) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

empty :: ComposeT f g m a #

(<|>) :: ComposeT f g m a -> ComposeT f g m a -> ComposeT f g m a #

some :: ComposeT f g m a -> ComposeT f g m [a] #

many :: ComposeT f g m a -> ComposeT f g m [a] #

MonadPlus (f (g m)) => MonadPlus (ComposeT f g m) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

mzero :: ComposeT f g m a #

mplus :: ComposeT f g m a -> ComposeT f g m a -> ComposeT f g m a #

MonadIO (f (g m)) => MonadIO (ComposeT f g m) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

liftIO :: IO a -> ComposeT f g m a #

MonadCont (f (g m)) => MonadCont (ComposeT f g m) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

callCC :: ((a -> ComposeT f g m b) -> ComposeT f g m a) -> ComposeT f g m a #

Eq (f (g m) a) => Eq (ComposeT f g m a) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

(==) :: ComposeT f g m a -> ComposeT f g m a -> Bool #

(/=) :: ComposeT f g m a -> ComposeT f g m a -> Bool #

Ord (f (g m) a) => Ord (ComposeT f g m a) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

compare :: ComposeT f g m a -> ComposeT f g m a -> Ordering #

(<) :: ComposeT f g m a -> ComposeT f g m a -> Bool #

(<=) :: ComposeT f g m a -> ComposeT f g m a -> Bool #

(>) :: ComposeT f g m a -> ComposeT f g m a -> Bool #

(>=) :: ComposeT f g m a -> ComposeT f g m a -> Bool #

max :: ComposeT f g m a -> ComposeT f g m a -> ComposeT f g m a #

min :: ComposeT f g m a -> ComposeT f g m a -> ComposeT f g m a #

Read (f (g m) a) => Read (ComposeT f g m a) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

readsPrec :: Int -> ReadS (ComposeT f g m a) #

readList :: ReadS [ComposeT f g m a] #

readPrec :: ReadPrec (ComposeT f g m a) #

readListPrec :: ReadPrec [ComposeT f g m a] #

Show (f (g m) a) => Show (ComposeT f g m a) 
Instance details

Defined in Control.Monad.Trans.Compose

Methods

showsPrec :: Int -> ComposeT f g m a -> ShowS #

show :: ComposeT f g m a -> String #

showList :: [ComposeT f g m a] -> ShowS #

type C (ComposeT s t) Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C (ComposeT s t) = AndC (C s) (C t)

Multi

data Day (f :: Type -> Type) (g :: Type -> Type) a where #

The Day convolution of two covariant functors.

Constructors

Day :: forall (f :: Type -> Type) (g :: Type -> Type) a b c. f b -> g c -> (b -> c -> a) -> Day f g a 
Instances
Semigroupoidal Day Source # 
Instance details

Defined in Data.HBifunctor.Associative

Associated Types

type SF Day :: (Type -> Type) -> Type -> Type Source #

Methods

appendSF :: Day (SF Day f) (SF Day f) ~> SF Day f Source #

matchSF :: Functor f => SF Day f ~> (f :+: Day f (SF Day f)) Source #

consSF :: Day f (SF Day f) ~> SF Day f Source #

toSF :: Day f f ~> SF Day f Source #

biretract :: CS Day f => Day f f ~> f Source #

binterpret :: CS Day h => (f ~> h) -> (g ~> h) -> Day f g ~> h Source #

Associative Day Source # 
Instance details

Defined in Data.HBifunctor.Associative

Methods

associating :: (Functor f, Functor g, Functor h) => Day f (Day g h) <~> Day (Day f g) h Source #

Matchable Day Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Methods

unsplitSF :: Day f (MF Day f) ~> SF Day f Source #

matchMF :: MF Day f ~> (I Day :+: SF Day f) Source #

Monoidal Day Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type MF Day :: (Type -> Type) -> Type -> Type Source #

Methods

appendMF :: Day (MF Day f) (MF Day f) ~> MF Day f Source #

splitSF :: SF Day f ~> Day f (MF Day f) Source #

splittingMF :: MF Day f <~> (I Day :+: Day f (MF Day f)) Source #

toMF :: Day f f ~> MF Day f Source #

fromSF :: SF Day f ~> MF Day f Source #

pureT :: CM Day f => I Day ~> f Source #

upgradeC :: CM Day f => proxy f -> (CS Day f -> r) -> r Source #

Tensor Day Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type I Day :: Type -> Type Source #

Methods

intro1 :: f ~> Day f (I Day) Source #

intro2 :: g ~> Day (I Day) g Source #

elim1 :: Functor f => Day f (I Day) ~> f Source #

elim2 :: Functor g => Day (I Day) g ~> g Source #

Comonad f => ComonadTrans (Day f) 
Instance details

Defined in Data.Functor.Day

Methods

lower :: Comonad w => Day f w a -> w a #

HFunctor (Day f :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f0 ~> g) -> Day f f0 ~> Day f g Source #

HBifunctor Day Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hleft :: (f ~> j) -> Day f g ~> Day j g Source #

hright :: (g ~> k) -> Day f g ~> Day f k Source #

hbimap :: (f ~> j) -> (g ~> k) -> Day f g ~> Day j k Source #

Functor (Day f g) 
Instance details

Defined in Data.Functor.Day

Methods

fmap :: (a -> b) -> Day f g a -> Day f g b #

(<$) :: a -> Day f g b -> Day f g a #

(Applicative f, Applicative g) => Applicative (Day f g) 
Instance details

Defined in Data.Functor.Day

Methods

pure :: a -> Day f g a #

(<*>) :: Day f g (a -> b) -> Day f g a -> Day f g b #

liftA2 :: (a -> b -> c) -> Day f g a -> Day f g b -> Day f g c #

(*>) :: Day f g a -> Day f g b -> Day f g b #

(<*) :: Day f g a -> Day f g b -> Day f g a #

(Representable f, Representable g) => Distributive (Day f g) 
Instance details

Defined in Data.Functor.Day

Methods

distribute :: Functor f0 => f0 (Day f g a) -> Day f g (f0 a) #

collect :: Functor f0 => (a -> Day f g b) -> f0 a -> Day f g (f0 b) #

distributeM :: Monad m => m (Day f g a) -> Day f g (m a) #

collectM :: Monad m => (a -> Day f g b) -> m a -> Day f g (m b) #

(Representable f, Representable g) => Representable (Day f g) 
Instance details

Defined in Data.Functor.Day

Associated Types

type Rep (Day f g) :: Type #

Methods

tabulate :: (Rep (Day f g) -> a) -> Day f g a #

index :: Day f g a -> Rep (Day f g) -> a #

(Comonad f, Comonad g) => Comonad (Day f g) 
Instance details

Defined in Data.Functor.Day

Methods

extract :: Day f g a -> a #

duplicate :: Day f g a -> Day f g (Day f g a) #

extend :: (Day f g a -> b) -> Day f g a -> Day f g b #

(ComonadApply f, ComonadApply g) => ComonadApply (Day f g) 
Instance details

Defined in Data.Functor.Day

Methods

(<@>) :: Day f g (a -> b) -> Day f g a -> Day f g b #

(@>) :: Day f g a -> Day f g b -> Day f g b #

(<@) :: Day f g a -> Day f g b -> Day f g a #

type SF Day Source # 
Instance details

Defined in Data.HBifunctor.Associative

type SF Day = Ap1
type MF Day Source # 
Instance details

Defined in Data.HBifunctor.Tensor

type MF Day = Ap
type I Day Source # 
Instance details

Defined in Data.HBifunctor.Tensor

type I Day = Identity
type Rep (Day f g) 
Instance details

Defined in Data.Functor.Day

type Rep (Day f g) = (Rep f, Rep g)

data ((f :: k -> Type) :*: (g :: k -> Type)) (p :: k) :: forall k. (k -> Type) -> (k -> Type) -> k -> Type infixr 6 #

Products: encode multiple arguments to constructors

Constructors

(f p) :*: (g p) infixr 6 
Instances
HBifunctor ((:*:) :: (k -> Type) -> (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hleft :: (f ~> j) -> (f :*: g) ~> (j :*: g) Source #

hright :: (g ~> k0) -> (f :*: g) ~> (f :*: k0) Source #

hbimap :: (f ~> j) -> (g ~> k0) -> (f :*: g) ~> (j :*: k0) Source #

HFunctor ((:*:) f :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f0 ~> g) -> (f :*: f0) ~> (f :*: g) Source #

Generic1 (f :*: g :: k -> Type) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (f :*: g) :: k -> Type #

Methods

from1 :: (f :*: g) a -> Rep1 (f :*: g) a #

to1 :: Rep1 (f :*: g) a -> (f :*: g) a #

Semigroupoidal ((:*:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Associated Types

type SF (:*:) :: (Type -> Type) -> Type -> Type Source #

Methods

appendSF :: (SF (:*:) f :*: SF (:*:) f) ~> SF (:*:) f Source #

matchSF :: Functor f => SF (:*:) f ~> (f :+: (f :*: SF (:*:) f)) Source #

consSF :: (f :*: SF (:*:) f) ~> SF (:*:) f Source #

toSF :: (f :*: f) ~> SF (:*:) f Source #

biretract :: CS (:*:) f => (f :*: f) ~> f Source #

binterpret :: CS (:*:) h => (f ~> h) -> (g ~> h) -> (f :*: g) ~> h Source #

Associative ((:*:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Methods

associating :: (Functor f, Functor g, Functor h) => (f :*: (g :*: h)) <~> ((f :*: g) :*: h) Source #

Matchable ((:*:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Monoidal ((:*:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type MF (:*:) :: (Type -> Type) -> Type -> Type Source #

Methods

appendMF :: (MF (:*:) f :*: MF (:*:) f) ~> MF (:*:) f Source #

splitSF :: SF (:*:) f ~> (f :*: MF (:*:) f) Source #

splittingMF :: MF (:*:) f <~> (I (:*:) :+: (f :*: MF (:*:) f)) Source #

toMF :: (f :*: f) ~> MF (:*:) f Source #

fromSF :: SF (:*:) f ~> MF (:*:) f Source #

pureT :: CM (:*:) f => I (:*:) ~> f Source #

upgradeC :: CM (:*:) f => proxy f -> (CS (:*:) f -> r) -> r Source #

Tensor ((:*:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type I (:*:) :: Type -> Type Source #

Methods

intro1 :: f ~> (f :*: I (:*:)) Source #

intro2 :: g ~> (I (:*:) :*: g) Source #

elim1 :: Functor f => (f :*: I (:*:)) ~> f Source #

elim2 :: Functor g => (I (:*:) :*: g) ~> g Source #

Plus f => HBind ((:*:) f :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

hbind :: (f0 ~> (f :*: g)) -> (f :*: f0) ~> (f :*: g) Source #

hjoin :: (f :*: (f :*: f0)) ~> (f :*: f0) Source #

Plus f => Inject ((:*:) f :: (Type -> Type) -> Type -> Type) Source #

Only uses zero

Instance details

Defined in Data.HFunctor

Methods

inject :: f0 ~> (f :*: f0) Source #

Plus f => Interpret ((:*:) f) Source # 
Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C ((:*:) f) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C ((:*:) f) f0 => (f :*: f0) ~> f0 Source #

interpret :: C ((:*:) f) g => (f0 ~> g) -> (f :*: f0) ~> g Source #

(Monad f, Monad g) => Monad (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: (f :*: g) a -> (a -> (f :*: g) b) -> (f :*: g) b #

(>>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b #

return :: a -> (f :*: g) a #

fail :: String -> (f :*: g) a #

(Functor f, Functor g) => Functor (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :*: g) a -> (f :*: g) b #

(<$) :: a -> (f :*: g) b -> (f :*: g) a #

(MonadFix f, MonadFix g) => MonadFix (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in Control.Monad.Fix

Methods

mfix :: (a -> (f :*: g) a) -> (f :*: g) a #

(Applicative f, Applicative g) => Applicative (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> (f :*: g) a #

(<*>) :: (f :*: g) (a -> b) -> (f :*: g) a -> (f :*: g) b #

liftA2 :: (a -> b -> c) -> (f :*: g) a -> (f :*: g) b -> (f :*: g) c #

(*>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b #

(<*) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) a #

(Foldable f, Foldable g) => Foldable (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => (f :*: g) m -> m #

foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m #

foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b #

foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b #

foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b #

foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b #

foldr1 :: (a -> a -> a) -> (f :*: g) a -> a #

foldl1 :: (a -> a -> a) -> (f :*: g) a -> a #

toList :: (f :*: g) a -> [a] #

null :: (f :*: g) a -> Bool #

length :: (f :*: g) a -> Int #

elem :: Eq a => a -> (f :*: g) a -> Bool #

maximum :: Ord a => (f :*: g) a -> a #

minimum :: Ord a => (f :*: g) a -> a #

sum :: Num a => (f :*: g) a -> a #

product :: Num a => (f :*: g) a -> a #

(Traversable f, Traversable g) => Traversable (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :*: g) a -> f0 ((f :*: g) b) #

sequenceA :: Applicative f0 => (f :*: g) (f0 a) -> f0 ((f :*: g) a) #

mapM :: Monad m => (a -> m b) -> (f :*: g) a -> m ((f :*: g) b) #

sequence :: Monad m => (f :*: g) (m a) -> m ((f :*: g) a) #

(Contravariant f, Contravariant g) => Contravariant (f :*: g) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> (f :*: g) b -> (f :*: g) a #

(>$) :: b -> (f :*: g) b -> (f :*: g) a #

(Representable f, Representable g) => Representable (f :*: g) 
Instance details

Defined in Data.Functor.Rep

Associated Types

type Rep (f :*: g) :: Type #

Methods

tabulate :: (Rep (f :*: g) -> a) -> (f :*: g) a #

index :: (f :*: g) a -> Rep (f :*: g) -> a #

(Alternative f, Alternative g) => Alternative (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: (f :*: g) a #

(<|>) :: (f :*: g) a -> (f :*: g) a -> (f :*: g) a #

some :: (f :*: g) a -> (f :*: g) [a] #

many :: (f :*: g) a -> (f :*: g) [a] #

(MonadPlus f, MonadPlus g) => MonadPlus (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

mzero :: (f :*: g) a #

mplus :: (f :*: g) a -> (f :*: g) a -> (f :*: g) a #

(Foldable1 f, Foldable1 g) => Foldable1 (f :*: g) 
Instance details

Defined in Data.Semigroup.Foldable.Class

Methods

fold1 :: Semigroup m => (f :*: g) m -> m #

foldMap1 :: Semigroup m => (a -> m) -> (f :*: g) a -> m #

toNonEmpty :: (f :*: g) a -> NonEmpty a #

(Apply f, Apply g) => Apply (f :*: g) 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<.>) :: (f :*: g) (a -> b) -> (f :*: g) a -> (f :*: g) b #

(.>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b #

(<.) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) a #

liftF2 :: (a -> b -> c) -> (f :*: g) a -> (f :*: g) b -> (f :*: g) c #

(Pointed f, Pointed g) => Pointed (f :*: g) 
Instance details

Defined in Data.Pointed

Methods

point :: a -> (f :*: g) a #

(Traversable1 f, Traversable1 g) => Traversable1 (f :*: g) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> (f :*: g) a -> f0 ((f :*: g) b) #

sequence1 :: Apply f0 => (f :*: g) (f0 b) -> f0 ((f :*: g) b) #

(Plus f, Plus g) => Plus (f :*: g) 
Instance details

Defined in Data.Functor.Plus

Methods

zero :: (f :*: g) a #

(Alt f, Alt g) => Alt (f :*: g) 
Instance details

Defined in Data.Functor.Alt

Methods

(<!>) :: (f :*: g) a -> (f :*: g) a -> (f :*: g) a #

some :: Applicative (f :*: g) => (f :*: g) a -> (f :*: g) [a] #

many :: Applicative (f :*: g) => (f :*: g) a -> (f :*: g) [a] #

(GIndex f, GIndex g) => GIndex (f :*: g) 
Instance details

Defined in Data.Functor.Rep

Methods

gindex' :: (f :*: g) a -> GRep' (f :*: g) -> a

(GTabulate f, GTabulate g) => GTabulate (f :*: g) 
Instance details

Defined in Data.Functor.Rep

Methods

gtabulate' :: (GRep' (f :*: g) -> a) -> (f :*: g) a

(GDefault a, GDefault b) => GDefault (a :*: b) 
Instance details

Defined in Data.Default.Class

Methods

gdef :: (a :*: b) a0

(Eq (f p), Eq (g p)) => Eq ((f :*: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: (f :*: g) p -> (f :*: g) p -> Bool #

(/=) :: (f :*: g) p -> (f :*: g) p -> Bool #

(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :*: g) p)

Since: base-4.9.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :*: g) p -> c ((f :*: g) p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :*: g) p) #

toConstr :: (f :*: g) p -> Constr #

dataTypeOf :: (f :*: g) p -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :*: g) p)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :*: g) p)) #

gmapT :: (forall b. Data b => b -> b) -> (f :*: g) p -> (f :*: g) p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r #

gmapQ :: (forall d. Data d => d -> u) -> (f :*: g) p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :*: g) p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) #

(Ord (f p), Ord (g p)) => Ord ((f :*: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: (f :*: g) p -> (f :*: g) p -> Ordering #

(<) :: (f :*: g) p -> (f :*: g) p -> Bool #

(<=) :: (f :*: g) p -> (f :*: g) p -> Bool #

(>) :: (f :*: g) p -> (f :*: g) p -> Bool #

(>=) :: (f :*: g) p -> (f :*: g) p -> Bool #

max :: (f :*: g) p -> (f :*: g) p -> (f :*: g) p #

min :: (f :*: g) p -> (f :*: g) p -> (f :*: g) p #

(Read (f p), Read (g p)) => Read ((f :*: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

readsPrec :: Int -> ReadS ((f :*: g) p) #

readList :: ReadS [(f :*: g) p] #

readPrec :: ReadPrec ((f :*: g) p) #

readListPrec :: ReadPrec [(f :*: g) p] #

(Show (f p), Show (g p)) => Show ((f :*: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> (f :*: g) p -> ShowS #

show :: (f :*: g) p -> String #

showList :: [(f :*: g) p] -> ShowS #

Generic ((f :*: g) p) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep ((f :*: g) p) :: Type -> Type #

Methods

from :: (f :*: g) p -> Rep ((f :*: g) p) x #

to :: Rep ((f :*: g) p) x -> (f :*: g) p #

(Semigroup (f p), Semigroup (g p)) => Semigroup ((f :*: g) p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: (f :*: g) p -> (f :*: g) p -> (f :*: g) p #

sconcat :: NonEmpty ((f :*: g) p) -> (f :*: g) p #

stimes :: Integral b => b -> (f :*: g) p -> (f :*: g) p #

(Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

mempty :: (f :*: g) p #

mappend :: (f :*: g) p -> (f :*: g) p -> (f :*: g) p #

mconcat :: [(f :*: g) p] -> (f :*: g) p #

type Rep1 (f :*: g :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

type SF ((:*:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

type SF ((:*:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) = NonEmptyF
type MF ((:*:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Tensor

type MF ((:*:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) = ListF
type I ((:*:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Tensor

type I ((:*:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) = (Proxy :: Type -> Type)
type C ((:*:) f) Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C ((:*:) f) = (Unconstrained :: (Type -> Type) -> Constraint)
type Rep (f :*: g) 
Instance details

Defined in Data.Functor.Rep

type Rep (f :*: g) = Either (Rep f) (Rep g)
type GRep' (f :*: g) 
Instance details

Defined in Data.Functor.Rep

type GRep' (f :*: g) = Either (GRep' f) (GRep' g)
type Rep ((f :*: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

prodOutL :: (f :*: g) ~> f Source #

outL for :*: actually does not require Functor. This is the more general version.

prodOutR :: (f :*: g) ~> g Source #

outR for :*: actually does not require Functor. This is the more general version.

data ((f :: k -> Type) :+: (g :: k -> Type)) (p :: k) :: forall k. (k -> Type) -> (k -> Type) -> k -> Type infixr 5 #

Sums: encode choice between constructors

Constructors

L1 (f p) 
R1 (g p) 
Instances
HBifunctor ((:+:) :: (k -> Type) -> (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hleft :: (f ~> j) -> (f :+: g) ~> (j :+: g) Source #

hright :: (g ~> k0) -> (f :+: g) ~> (f :+: k0) Source #

hbimap :: (f ~> j) -> (g ~> k0) -> (f :+: g) ~> (j :+: k0) Source #

HFunctor ((:+:) f :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f0 ~> g) -> (f :+: f0) ~> (f :+: g) Source #

HBind ((:+:) f :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

hbind :: (f0 ~> (f :+: g)) -> (f :+: f0) ~> (f :+: g) Source #

hjoin :: (f :+: (f :+: f0)) ~> (f :+: f0) Source #

Inject ((:+:) f :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f0 ~> (f :+: f0) Source #

Generic1 (f :+: g :: k -> Type) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (f :+: g) :: k -> Type #

Methods

from1 :: (f :+: g) a -> Rep1 (f :+: g) a #

to1 :: Rep1 (f :+: g) a -> (f :+: g) a #

(GSum arity a, GSum arity b) => GSum arity (a :+: b) 
Instance details

Defined in Data.Hashable.Generic.Instances

Methods

hashSum :: HashArgs arity a0 -> Int -> Int -> (a :+: b) a0 -> Int

Semigroupoidal ((:+:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Associated Types

type SF (:+:) :: (Type -> Type) -> Type -> Type Source #

Methods

appendSF :: (SF (:+:) f :+: SF (:+:) f) ~> SF (:+:) f Source #

matchSF :: Functor f => SF (:+:) f ~> (f :+: (f :+: SF (:+:) f)) Source #

consSF :: (f :+: SF (:+:) f) ~> SF (:+:) f Source #

toSF :: (f :+: f) ~> SF (:+:) f Source #

biretract :: CS (:+:) f => (f :+: f) ~> f Source #

binterpret :: CS (:+:) h => (f ~> h) -> (g ~> h) -> (f :+: g) ~> h Source #

Associative ((:+:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Methods

associating :: (Functor f, Functor g, Functor h) => (f :+: (g :+: h)) <~> ((f :+: g) :+: h) Source #

Matchable ((:+:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Monoidal ((:+:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type MF (:+:) :: (Type -> Type) -> Type -> Type Source #

Methods

appendMF :: (MF (:+:) f :+: MF (:+:) f) ~> MF (:+:) f Source #

splitSF :: SF (:+:) f ~> (f :+: MF (:+:) f) Source #

splittingMF :: MF (:+:) f <~> (I (:+:) :+: (f :+: MF (:+:) f)) Source #

toMF :: (f :+: f) ~> MF (:+:) f Source #

fromSF :: SF (:+:) f ~> MF (:+:) f Source #

pureT :: CM (:+:) f => I (:+:) ~> f Source #

upgradeC :: CM (:+:) f => proxy f -> (CS (:+:) f -> r) -> r Source #

Tensor ((:+:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type I (:+:) :: Type -> Type Source #

Methods

intro1 :: f ~> (f :+: I (:+:)) Source #

intro2 :: g ~> (I (:+:) :+: g) Source #

elim1 :: Functor f => (f :+: I (:+:)) ~> f Source #

elim2 :: Functor g => (I (:+:) :+: g) ~> g Source #

Interpret ((:+:) f) Source #

Technically, C is over-constrained: we only need zero :: f a, but we don't really have that typeclass in any standard hierarchies. We use Plus here instead, but we never use <!>. This would only go wrong in situations where your type supports zero but not <!>, like instances of MonadFail without MonadPlus.

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C ((:+:) f) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C ((:+:) f) f0 => (f :+: f0) ~> f0 Source #

interpret :: C ((:+:) f) g => (f0 ~> g) -> (f :+: f0) ~> g Source #

(Functor f, Functor g) => Functor (f :+: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :+: g) a -> (f :+: g) b #

(<$) :: a -> (f :+: g) b -> (f :+: g) a #

(Foldable f, Foldable g) => Foldable (f :+: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => (f :+: g) m -> m #

foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m #

foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b #

foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b #

foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b #

foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b #

foldr1 :: (a -> a -> a) -> (f :+: g) a -> a #

foldl1 :: (a -> a -> a) -> (f :+: g) a -> a #

toList :: (f :+: g) a -> [a] #

null :: (f :+: g) a -> Bool #

length :: (f :+: g) a -> Int #

elem :: Eq a => a -> (f :+: g) a -> Bool #

maximum :: Ord a => (f :+: g) a -> a #

minimum :: Ord a => (f :+: g) a -> a #

sum :: Num a => (f :+: g) a -> a #

product :: Num a => (f :+: g) a -> a #

(Traversable f, Traversable g) => Traversable (f :+: g)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :+: g) a -> f0 ((f :+: g) b) #

sequenceA :: Applicative f0 => (f :+: g) (f0 a) -> f0 ((f :+: g) a) #

mapM :: Monad m => (a -> m b) -> (f :+: g) a -> m ((f :+: g) b) #

sequence :: Monad m => (f :+: g) (m a) -> m ((f :+: g) a) #

(Contravariant f, Contravariant g) => Contravariant (f :+: g) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> (f :+: g) b -> (f :+: g) a #

(>$) :: b -> (f :+: g) b -> (f :+: g) a #

(Foldable1 f, Foldable1 g) => Foldable1 (f :+: g) 
Instance details

Defined in Data.Semigroup.Foldable.Class

Methods

fold1 :: Semigroup m => (f :+: g) m -> m #

foldMap1 :: Semigroup m => (a -> m) -> (f :+: g) a -> m #

toNonEmpty :: (f :+: g) a -> NonEmpty a #

(Traversable1 f, Traversable1 g) => Traversable1 (f :+: g) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f0 => (a -> f0 b) -> (f :+: g) a -> f0 ((f :+: g) b) #

sequence1 :: Apply f0 => (f :+: g) (f0 b) -> f0 ((f :+: g) b) #

(SumSize a, SumSize b) => SumSize (a :+: b) 
Instance details

Defined in Data.Hashable.Generic.Instances

Methods

sumSize :: Tagged (a :+: b)

(GSumGet a, GSumGet b) => GSumGet (a :+: b) 
Instance details

Defined in Data.Binary.Generic

Methods

getSum :: (Ord word, Num word, Bits word) => word -> word -> Get ((a :+: b) a0)

(SumSize a, SumSize b) => SumSize (a :+: b) 
Instance details

Defined in Data.Binary.Generic

Methods

sumSize :: Tagged (a :+: b) Word64

(GSumPut a, GSumPut b) => GSumPut (a :+: b) 
Instance details

Defined in Data.Binary.Generic

Methods

putSum :: (Num w, Bits w, Binary w) => w -> w -> (a :+: b) a0 -> Put

(Eq (f p), Eq (g p)) => Eq ((f :+: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: (f :+: g) p -> (f :+: g) p -> Bool #

(/=) :: (f :+: g) p -> (f :+: g) p -> Bool #

(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :+: g) p)

Since: base-4.9.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :+: g) p -> c ((f :+: g) p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :+: g) p) #

toConstr :: (f :+: g) p -> Constr #

dataTypeOf :: (f :+: g) p -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :+: g) p)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :+: g) p)) #

gmapT :: (forall b. Data b => b -> b) -> (f :+: g) p -> (f :+: g) p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r #

gmapQ :: (forall d. Data d => d -> u) -> (f :+: g) p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :+: g) p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) #

(Ord (f p), Ord (g p)) => Ord ((f :+: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: (f :+: g) p -> (f :+: g) p -> Ordering #

(<) :: (f :+: g) p -> (f :+: g) p -> Bool #

(<=) :: (f :+: g) p -> (f :+: g) p -> Bool #

(>) :: (f :+: g) p -> (f :+: g) p -> Bool #

(>=) :: (f :+: g) p -> (f :+: g) p -> Bool #

max :: (f :+: g) p -> (f :+: g) p -> (f :+: g) p #

min :: (f :+: g) p -> (f :+: g) p -> (f :+: g) p #

(Read (f p), Read (g p)) => Read ((f :+: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

readsPrec :: Int -> ReadS ((f :+: g) p) #

readList :: ReadS [(f :+: g) p] #

readPrec :: ReadPrec ((f :+: g) p) #

readListPrec :: ReadPrec [(f :+: g) p] #

(Show (f p), Show (g p)) => Show ((f :+: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> (f :+: g) p -> ShowS #

show :: (f :+: g) p -> String #

showList :: [(f :+: g) p] -> ShowS #

Generic ((f :+: g) p) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep ((f :+: g) p) :: Type -> Type #

Methods

from :: (f :+: g) p -> Rep ((f :+: g) p) x #

to :: Rep ((f :+: g) p) x -> (f :+: g) p #

type Rep1 (f :+: g :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

type SF ((:+:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

type SF ((:+:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) = (Step :: (Type -> Type) -> Type -> Type)
type MF ((:+:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Tensor

type MF ((:+:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) = (Step :: (Type -> Type) -> Type -> Type)
type I ((:+:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Tensor

type I ((:+:) :: (Type -> Type) -> (Type -> Type) -> Type -> Type) = (V1 :: Type -> Type)
type C ((:+:) f) Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C ((:+:) f) = Plus
type Rep ((f :+: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

data V1 (p :: k) :: forall k. k -> Type #

Void: used for datatypes without constructors

Instances
Generic1 (V1 :: k -> Type) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 V1 :: k -> Type #

Methods

from1 :: V1 a -> Rep1 V1 a #

to1 :: Rep1 V1 a -> V1 a #

Functor (V1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> V1 a -> V1 b #

(<$) :: a -> V1 b -> V1 a #

Foldable (V1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => V1 m -> m #

foldMap :: Monoid m => (a -> m) -> V1 a -> m #

foldr :: (a -> b -> b) -> b -> V1 a -> b #

foldr' :: (a -> b -> b) -> b -> V1 a -> b #

foldl :: (b -> a -> b) -> b -> V1 a -> b #

foldl' :: (b -> a -> b) -> b -> V1 a -> b #

foldr1 :: (a -> a -> a) -> V1 a -> a #

foldl1 :: (a -> a -> a) -> V1 a -> a #

toList :: V1 a -> [a] #

null :: V1 a -> Bool #

length :: V1 a -> Int #

elem :: Eq a => a -> V1 a -> Bool #

maximum :: Ord a => V1 a -> a #

minimum :: Ord a => V1 a -> a #

sum :: Num a => V1 a -> a #

product :: Num a => V1 a -> a #

Traversable (V1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> V1 a -> f (V1 b) #

sequenceA :: Applicative f => V1 (f a) -> f (V1 a) #

mapM :: Monad m => (a -> m b) -> V1 a -> m (V1 b) #

sequence :: Monad m => V1 (m a) -> m (V1 a) #

Contravariant (V1 :: Type -> Type) 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a -> b) -> V1 b -> V1 a #

(>$) :: b -> V1 b -> V1 a #

Foldable1 (V1 :: Type -> Type) 
Instance details

Defined in Data.Semigroup.Foldable.Class

Methods

fold1 :: Semigroup m => V1 m -> m #

foldMap1 :: Semigroup m => (a -> m) -> V1 a -> m #

toNonEmpty :: V1 a -> NonEmpty a #

Apply (V1 :: Type -> Type) 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(<.>) :: V1 (a -> b) -> V1 a -> V1 b #

(.>) :: V1 a -> V1 b -> V1 b #

(<.) :: V1 a -> V1 b -> V1 a #

liftF2 :: (a -> b -> c) -> V1 a -> V1 b -> V1 c #

Traversable1 (V1 :: Type -> Type) 
Instance details

Defined in Data.Semigroup.Traversable.Class

Methods

traverse1 :: Apply f => (a -> f b) -> V1 a -> f (V1 b) #

sequence1 :: Apply f => V1 (f b) -> f (V1 b) #

Alt (V1 :: Type -> Type) 
Instance details

Defined in Data.Functor.Alt

Methods

(<!>) :: V1 a -> V1 a -> V1 a #

some :: Applicative V1 => V1 a -> V1 [a] #

many :: Applicative V1 => V1 a -> V1 [a] #

Bind (V1 :: Type -> Type) 
Instance details

Defined in Data.Functor.Bind.Class

Methods

(>>-) :: V1 a -> (a -> V1 b) -> V1 b #

join :: V1 (V1 a) -> V1 a #

Eq (V1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(==) :: V1 p -> V1 p -> Bool #

(/=) :: V1 p -> V1 p -> Bool #

Data p => Data (V1 p)

Since: base-4.9.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V1 p -> c (V1 p) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V1 p) #

toConstr :: V1 p -> Constr #

dataTypeOf :: V1 p -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (V1 p)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V1 p)) #

gmapT :: (forall b. Data b => b -> b) -> V1 p -> V1 p #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r #

gmapQ :: (forall d. Data d => d -> u) -> V1 p -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> V1 p -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) #

Ord (V1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

compare :: V1 p -> V1 p -> Ordering #

(<) :: V1 p -> V1 p -> Bool #

(<=) :: V1 p -> V1 p -> Bool #

(>) :: V1 p -> V1 p -> Bool #

(>=) :: V1 p -> V1 p -> Bool #

max :: V1 p -> V1 p -> V1 p #

min :: V1 p -> V1 p -> V1 p #

Read (V1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Show (V1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

showsPrec :: Int -> V1 p -> ShowS #

show :: V1 p -> String #

showList :: [V1 p] -> ShowS #

Generic (V1 p) 
Instance details

Defined in GHC.Generics

Associated Types

type Rep (V1 p) :: Type -> Type #

Methods

from :: V1 p -> Rep (V1 p) x #

to :: Rep (V1 p) x -> V1 p #

Semigroup (V1 p)

Since: base-4.12.0.0

Instance details

Defined in GHC.Generics

Methods

(<>) :: V1 p -> V1 p -> V1 p #

sconcat :: NonEmpty (V1 p) -> V1 p #

stimes :: Integral b => b -> V1 p -> V1 p #

type Rep1 (V1 :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

type Rep1 (V1 :: k -> Type) = D1 (MetaData "V1" "GHC.Generics" "base" False) (V1 :: k -> Type)
type Rep (V1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

type Rep (V1 p) = D1 (MetaData "V1" "GHC.Generics" "base" False) (V1 :: Type -> Type)

data These1 (f :: Type -> Type) (g :: Type -> Type) a #

Constructors

This1 (f a) 
That1 (g a) 
These1 (f a) (g a) 
Instances
Semigroupoidal These1 Source #

Ideally here SF would be equivalent to MF, just like for :+:. This should be possible if we can write a bijection. This bijection should be possible in theory --- but it has not yet been implemented.

Instance details

Defined in Data.HBifunctor.Associative

Associated Types

type SF These1 :: (Type -> Type) -> Type -> Type Source #

Methods

appendSF :: These1 (SF These1 f) (SF These1 f) ~> SF These1 f Source #

matchSF :: Functor f => SF These1 f ~> (f :+: These1 f (SF These1 f)) Source #

consSF :: These1 f (SF These1 f) ~> SF These1 f Source #

toSF :: These1 f f ~> SF These1 f Source #

biretract :: CS These1 f => These1 f f ~> f Source #

binterpret :: CS These1 h => (f ~> h) -> (g ~> h) -> These1 f g ~> h Source #

Associative These1 Source # 
Instance details

Defined in Data.HBifunctor.Associative

Methods

associating :: (Functor f, Functor g, Functor h) => These1 f (These1 g h) <~> These1 (These1 f g) h Source #

Monoidal These1 Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type MF These1 :: (Type -> Type) -> Type -> Type Source #

Tensor These1 Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type I These1 :: Type -> Type Source #

Interpret (These1 f) Source #

Technically, C is over-constrained: we only need zero :: f a, but we don't really have that typeclass in any standard hierarchies. We use Plus here instead, but we never use <!>. This would only go wrong in situations where your type supports zero but not <!>, like instances of MonadFail without MonadPlus.

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (These1 f) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (These1 f) f0 => These1 f f0 ~> f0 Source #

interpret :: C (These1 f) g => (f0 ~> g) -> These1 f f0 ~> g Source #

Alt f => HBind (These1 f :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

hbind :: (f0 ~> These1 f g) -> These1 f f0 ~> These1 f g Source #

hjoin :: These1 f (These1 f f0) ~> These1 f f0 Source #

Inject (These1 f :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f0 ~> These1 f f0 Source #

HFunctor (These1 f :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f0 ~> g) -> These1 f f0 ~> These1 f g Source #

HBifunctor These1 Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hleft :: (f ~> j) -> These1 f g ~> These1 j g Source #

hright :: (g ~> k) -> These1 f g ~> These1 f k Source #

hbimap :: (f ~> j) -> (g ~> k) -> These1 f g ~> These1 j k Source #

Generic1 (These1 f g :: Type -> Type) 
Instance details

Defined in Data.Functor.These

Associated Types

type Rep1 (These1 f g) :: k -> Type #

Methods

from1 :: These1 f g a -> Rep1 (These1 f g) a #

to1 :: Rep1 (These1 f g) a -> These1 f g a #

(Functor f, Functor g) => Functor (These1 f g) 
Instance details

Defined in Data.Functor.These

Methods

fmap :: (a -> b) -> These1 f g a -> These1 f g b #

(<$) :: a -> These1 f g b -> These1 f g a #

(Foldable f, Foldable g) => Foldable (These1 f g) 
Instance details

Defined in Data.Functor.These

Methods

fold :: Monoid m => These1 f g m -> m #

foldMap :: Monoid m => (a -> m) -> These1 f g a -> m #

foldr :: (a -> b -> b) -> b -> These1 f g a -> b #

foldr' :: (a -> b -> b) -> b -> These1 f g a -> b #

foldl :: (b -> a -> b) -> b -> These1 f g a -> b #

foldl' :: (b -> a -> b) -> b -> These1 f g a -> b #

foldr1 :: (a -> a -> a) -> These1 f g a -> a #

foldl1 :: (a -> a -> a) -> These1 f g a -> a #

toList :: These1 f g a -> [a] #

null :: These1 f g a -> Bool #

length :: These1 f g a -> Int #

elem :: Eq a => a -> These1 f g a -> Bool #

maximum :: Ord a => These1 f g a -> a #

minimum :: Ord a => These1 f g a -> a #

sum :: Num a => These1 f g a -> a #

product :: Num a => These1 f g a -> a #

(Traversable f, Traversable g) => Traversable (These1 f g) 
Instance details

Defined in Data.Functor.These

Methods

traverse :: Applicative f0 => (a -> f0 b) -> These1 f g a -> f0 (These1 f g b) #

sequenceA :: Applicative f0 => These1 f g (f0 a) -> f0 (These1 f g a) #

mapM :: Monad m => (a -> m b) -> These1 f g a -> m (These1 f g b) #

sequence :: Monad m => These1 f g (m a) -> m (These1 f g a) #

(Arbitrary1 f, Arbitrary1 g) => Arbitrary1 (These1 f g) 
Instance details

Defined in Data.Functor.These

Methods

liftArbitrary :: Gen a -> Gen (These1 f g a) #

liftShrink :: (a -> [a]) -> These1 f g a -> [These1 f g a] #

(ToJSON1 f, ToJSON1 g) => ToJSON1 (These1 f g) 
Instance details

Defined in Data.Functor.These

Methods

liftToJSON :: (a -> Value) -> ([a] -> Value) -> These1 f g a -> Value #

liftToJSONList :: (a -> Value) -> ([a] -> Value) -> [These1 f g a] -> Value #

liftToEncoding :: (a -> Encoding) -> ([a] -> Encoding) -> These1 f g a -> Encoding #

liftToEncodingList :: (a -> Encoding) -> ([a] -> Encoding) -> [These1 f g a] -> Encoding #

(FromJSON1 f, FromJSON1 g) => FromJSON1 (These1 f g) 
Instance details

Defined in Data.Functor.These

Methods

liftParseJSON :: (Value -> Parser a) -> (Value -> Parser [a]) -> Value -> Parser (These1 f g a) #

liftParseJSONList :: (Value -> Parser a) -> (Value -> Parser [a]) -> Value -> Parser [These1 f g a] #

(Eq1 f, Eq1 g) => Eq1 (These1 f g) 
Instance details

Defined in Data.Functor.These

Methods

liftEq :: (a -> b -> Bool) -> These1 f g a -> These1 f g b -> Bool #

(Ord1 f, Ord1 g) => Ord1 (These1 f g) 
Instance details

Defined in Data.Functor.These

Methods

liftCompare :: (a -> b -> Ordering) -> These1 f g a -> These1 f g b -> Ordering #

(Read1 f, Read1 g) => Read1 (These1 f g) 
Instance details

Defined in Data.Functor.These

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (These1 f g a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [These1 f g a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (These1 f g a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [These1 f g a] #

(Show1 f, Show1 g) => Show1 (These1 f g) 
Instance details

Defined in Data.Functor.These

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> These1 f g a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [These1 f g a] -> ShowS #

(NFData1 f, NFData1 g) => NFData1 (These1 f g)

This instance is available only with deepseq >= 1.4.3.0

Instance details

Defined in Data.Functor.These

Methods

liftRnf :: (a -> ()) -> These1 f g a -> () #

(Eq1 f, Eq1 g, Eq a) => Eq (These1 f g a) 
Instance details

Defined in Data.Functor.These

Methods

(==) :: These1 f g a -> These1 f g a -> Bool #

(/=) :: These1 f g a -> These1 f g a -> Bool #

(Typeable f, Typeable g, Typeable a, Data (f a), Data (g a)) => Data (These1 f g a) 
Instance details

Defined in Data.Functor.These

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> These1 f g a -> c (These1 f g a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (These1 f g a) #

toConstr :: These1 f g a -> Constr #

dataTypeOf :: These1 f g a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (These1 f g a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (These1 f g a)) #

gmapT :: (forall b. Data b => b -> b) -> These1 f g a -> These1 f g a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> These1 f g a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> These1 f g a -> r #

gmapQ :: (forall d. Data d => d -> u) -> These1 f g a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> These1 f g a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> These1 f g a -> m (These1 f g a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> These1 f g a -> m (These1 f g a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> These1 f g a -> m (These1 f g a) #

(Ord1 f, Ord1 g, Ord a) => Ord (These1 f g a) 
Instance details

Defined in Data.Functor.These

Methods

compare :: These1 f g a -> These1 f g a -> Ordering #

(<) :: These1 f g a -> These1 f g a -> Bool #

(<=) :: These1 f g a -> These1 f g a -> Bool #

(>) :: These1 f g a -> These1 f g a -> Bool #

(>=) :: These1 f g a -> These1 f g a -> Bool #

max :: These1 f g a -> These1 f g a -> These1 f g a #

min :: These1 f g a -> These1 f g a -> These1 f g a #

(Read1 f, Read1 g, Read a) => Read (These1 f g a) 
Instance details

Defined in Data.Functor.These

Methods

readsPrec :: Int -> ReadS (These1 f g a) #

readList :: ReadS [These1 f g a] #

readPrec :: ReadPrec (These1 f g a) #

readListPrec :: ReadPrec [These1 f g a] #

(Show1 f, Show1 g, Show a) => Show (These1 f g a) 
Instance details

Defined in Data.Functor.These

Methods

showsPrec :: Int -> These1 f g a -> ShowS #

show :: These1 f g a -> String #

showList :: [These1 f g a] -> ShowS #

Generic (These1 f g a) 
Instance details

Defined in Data.Functor.These

Associated Types

type Rep (These1 f g a) :: Type -> Type #

Methods

from :: These1 f g a -> Rep (These1 f g a) x #

to :: Rep (These1 f g a) x -> These1 f g a #

(Arbitrary1 f, Arbitrary1 g, Arbitrary a) => Arbitrary (These1 f g a) 
Instance details

Defined in Data.Functor.These

Methods

arbitrary :: Gen (These1 f g a) #

shrink :: These1 f g a -> [These1 f g a] #

(ToJSON1 f, ToJSON1 g, ToJSON a) => ToJSON (These1 f g a) 
Instance details

Defined in Data.Functor.These

Methods

toJSON :: These1 f g a -> Value #

toEncoding :: These1 f g a -> Encoding #

toJSONList :: [These1 f g a] -> Value #

toEncodingList :: [These1 f g a] -> Encoding #

(FromJSON1 f, FromJSON1 g, FromJSON a) => FromJSON (These1 f g a) 
Instance details

Defined in Data.Functor.These

Methods

parseJSON :: Value -> Parser (These1 f g a) #

parseJSONList :: Value -> Parser [These1 f g a] #

(NFData1 f, NFData1 g, NFData a) => NFData (These1 f g a)

This instance is available only with deepseq >= 1.4.3.0

Instance details

Defined in Data.Functor.These

Methods

rnf :: These1 f g a -> () #

type SF These1 Source # 
Instance details

Defined in Data.HBifunctor.Associative

type SF These1 = ComposeT (Flagged :: (Type -> Type) -> Type -> Type) (Steps :: (Type -> Type) -> Type -> Type)
type MF These1 Source # 
Instance details

Defined in Data.HBifunctor.Tensor

type MF These1 = (Steps :: (Type -> Type) -> Type -> Type)
type I These1 Source # 
Instance details

Defined in Data.HBifunctor.Tensor

type I These1 = (V1 :: Type -> Type)
type C (These1 f) Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C (These1 f) = Plus
type Rep1 (These1 f g :: Type -> Type) 
Instance details

Defined in Data.Functor.These

type Rep (These1 f g a) 
Instance details

Defined in Data.Functor.These

data Comp f g a where Source #

Functor composition. Comp f g a is equivalent to f (g a), and the Comp pattern synonym is a way of getting the f (g a) in a Comp f g a.

For example, Maybe (IO Bool) is Comp Maybe IO Bool.

This is mostly useful for its typeclass instances: in particular, Functor, Applicative, HBifunctor, and Monoidal.

This is essentially a version of :.: and Compose that allows for an HBifunctor instance.

It is slightly less performant. Using comp . unComp every once in a while will concretize a Comp value (if you have Functor f) and remove some indirection if you have a lot of chained operations.

The "free monoid" over Comp is Free, and the "free semigroup" over Comp is Free1.

Bundled Patterns

pattern Comp :: Functor f => f (g a) -> Comp f g a

Pattern match on and construct a Comp f g a as if it were f (g a).

Instances
Semigroupoidal Comp Source # 
Instance details

Defined in Data.HBifunctor.Associative

Associated Types

type SF Comp :: (Type -> Type) -> Type -> Type Source #

Methods

appendSF :: Comp (SF Comp f) (SF Comp f) ~> SF Comp f Source #

matchSF :: Functor f => SF Comp f ~> (f :+: Comp f (SF Comp f)) Source #

consSF :: Comp f (SF Comp f) ~> SF Comp f Source #

toSF :: Comp f f ~> SF Comp f Source #

biretract :: CS Comp f => Comp f f ~> f Source #

binterpret :: CS Comp h => (f ~> h) -> (g ~> h) -> Comp f g ~> h Source #

Associative Comp Source # 
Instance details

Defined in Data.HBifunctor.Associative

Methods

associating :: (Functor f, Functor g, Functor h) => Comp f (Comp g h) <~> Comp (Comp f g) h Source #

Monoidal Comp Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type MF Comp :: (Type -> Type) -> Type -> Type Source #

Methods

appendMF :: Comp (MF Comp f) (MF Comp f) ~> MF Comp f Source #

splitSF :: SF Comp f ~> Comp f (MF Comp f) Source #

splittingMF :: MF Comp f <~> (I Comp :+: Comp f (MF Comp f)) Source #

toMF :: Comp f f ~> MF Comp f Source #

fromSF :: SF Comp f ~> MF Comp f Source #

pureT :: CM Comp f => I Comp ~> f Source #

upgradeC :: CM Comp f => proxy f -> (CS Comp f -> r) -> r Source #

Tensor Comp Source # 
Instance details

Defined in Data.HBifunctor.Tensor

Associated Types

type I Comp :: Type -> Type Source #

Methods

intro1 :: f ~> Comp f (I Comp) Source #

intro2 :: g ~> Comp (I Comp) g Source #

elim1 :: Functor f => Comp f (I Comp) ~> f Source #

elim2 :: Functor g => Comp (I Comp) g ~> g Source #

Applicative f => Inject (Comp f :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f0 ~> Comp f f0 Source #

HFunctor (Comp f :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hmap :: (f0 ~> g) -> Comp f f0 ~> Comp f g Source #

HBifunctor Comp Source # 
Instance details

Defined in Data.HFunctor.Internal

Methods

hleft :: (f ~> j) -> Comp f g ~> Comp j g Source #

hright :: (g ~> k) -> Comp f g ~> Comp f k Source #

hbimap :: (f ~> j) -> (g ~> k) -> Comp f g ~> Comp j k Source #

Functor g => Functor (Comp f g) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

fmap :: (a -> b) -> Comp f g a -> Comp f g b #

(<$) :: a -> Comp f g b -> Comp f g a #

(Applicative f, Applicative g) => Applicative (Comp f g) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

pure :: a -> Comp f g a #

(<*>) :: Comp f g (a -> b) -> Comp f g a -> Comp f g b #

liftA2 :: (a -> b -> c) -> Comp f g a -> Comp f g b -> Comp f g c #

(*>) :: Comp f g a -> Comp f g b -> Comp f g b #

(<*) :: Comp f g a -> Comp f g b -> Comp f g a #

(Foldable f, Foldable g) => Foldable (Comp f g) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

fold :: Monoid m => Comp f g m -> m #

foldMap :: Monoid m => (a -> m) -> Comp f g a -> m #

foldr :: (a -> b -> b) -> b -> Comp f g a -> b #

foldr' :: (a -> b -> b) -> b -> Comp f g a -> b #

foldl :: (b -> a -> b) -> b -> Comp f g a -> b #

foldl' :: (b -> a -> b) -> b -> Comp f g a -> b #

foldr1 :: (a -> a -> a) -> Comp f g a -> a #

foldl1 :: (a -> a -> a) -> Comp f g a -> a #

toList :: Comp f g a -> [a] #

null :: Comp f g a -> Bool #

length :: Comp f g a -> Int #

elem :: Eq a => a -> Comp f g a -> Bool #

maximum :: Ord a => Comp f g a -> a #

minimum :: Ord a => Comp f g a -> a #

sum :: Num a => Comp f g a -> a #

product :: Num a => Comp f g a -> a #

(Traversable f, Traversable g) => Traversable (Comp f g) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Comp f g a -> f0 (Comp f g b) #

sequenceA :: Applicative f0 => Comp f g (f0 a) -> f0 (Comp f g a) #

mapM :: Monad m => (a -> m b) -> Comp f g a -> m (Comp f g b) #

sequence :: Monad m => Comp f g (m a) -> m (Comp f g a) #

(Alternative f, Alternative g) => Alternative (Comp f g) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

empty :: Comp f g a #

(<|>) :: Comp f g a -> Comp f g a -> Comp f g a #

some :: Comp f g a -> Comp f g [a] #

many :: Comp f g a -> Comp f g [a] #

(Functor f, Eq1 f, Eq1 g) => Eq1 (Comp f g) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

liftEq :: (a -> b -> Bool) -> Comp f g a -> Comp f g b -> Bool #

(Functor f, Ord1 f, Ord1 g) => Ord1 (Comp f g) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

liftCompare :: (a -> b -> Ordering) -> Comp f g a -> Comp f g b -> Ordering #

(Functor f, Read1 f, Read1 g) => Read1 (Comp f g) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Comp f g a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Comp f g a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Comp f g a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Comp f g a] #

(Functor f, Show1 f, Show1 g) => Show1 (Comp f g) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Comp f g a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Comp f g a] -> ShowS #

(Functor f, Eq1 f, Eq1 g, Eq a) => Eq (Comp f g a) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

(==) :: Comp f g a -> Comp f g a -> Bool #

(/=) :: Comp f g a -> Comp f g a -> Bool #

(Functor f, Ord1 f, Ord1 g, Ord a) => Ord (Comp f g a) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

compare :: Comp f g a -> Comp f g a -> Ordering #

(<) :: Comp f g a -> Comp f g a -> Bool #

(<=) :: Comp f g a -> Comp f g a -> Bool #

(>) :: Comp f g a -> Comp f g a -> Bool #

(>=) :: Comp f g a -> Comp f g a -> Bool #

max :: Comp f g a -> Comp f g a -> Comp f g a #

min :: Comp f g a -> Comp f g a -> Comp f g a #

(Functor f, Read1 f, Read1 g, Read a) => Read (Comp f g a) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

readsPrec :: Int -> ReadS (Comp f g a) #

readList :: ReadS [Comp f g a] #

readPrec :: ReadPrec (Comp f g a) #

readListPrec :: ReadPrec [Comp f g a] #

(Functor f, Show1 f, Show1 g, Show a) => Show (Comp f g a) Source # 
Instance details

Defined in Control.Monad.Freer.Church

Methods

showsPrec :: Int -> Comp f g a -> ShowS #

show :: Comp f g a -> String #

showList :: [Comp f g a] -> ShowS #

type SF Comp Source # 
Instance details

Defined in Data.HBifunctor.Associative

type SF Comp = Free1
type MF Comp Source # 
Instance details

Defined in Data.HBifunctor.Tensor

type MF Comp = Free
type I Comp Source # 
Instance details

Defined in Data.HBifunctor.Tensor

type I Comp = Identity

newtype LeftF f g a Source #

An HBifunctor that ignores its second input. Like a :+: with no R1/right branch.

This is Joker from Data.Bifunctors.Joker, but given a more sensible name for its purpose.

Constructors

LeftF 

Fields

Instances
HBifunctor (LeftF :: (k2 -> Type) -> (k1 -> Type) -> k2 -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Methods

hleft :: (f ~> j) -> LeftF f g ~> LeftF j g Source #

hright :: (g ~> k) -> LeftF f g ~> LeftF f k Source #

hbimap :: (f ~> j) -> (g ~> k) -> LeftF f g ~> LeftF j k Source #

HFunctor (LeftF f :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Methods

hmap :: (f0 ~> g) -> LeftF f f0 ~> LeftF f g Source #

Semigroupoidal (LeftF :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Associated Types

type SF LeftF :: (Type -> Type) -> Type -> Type Source #

Methods

appendSF :: LeftF (SF LeftF f) (SF LeftF f) ~> SF LeftF f Source #

matchSF :: Functor f => SF LeftF f ~> (f :+: LeftF f (SF LeftF f)) Source #

consSF :: LeftF f (SF LeftF f) ~> SF LeftF f Source #

toSF :: LeftF f f ~> SF LeftF f Source #

biretract :: CS LeftF f => LeftF f f ~> f Source #

binterpret :: CS LeftF h => (f ~> h) -> (g ~> h) -> LeftF f g ~> h Source #

Associative (LeftF :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Methods

associating :: (Functor f, Functor g, Functor h) => LeftF f (LeftF g h) <~> LeftF (LeftF f g) h Source #

Functor f => Bifunctor (LeftF f :: Type -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Methods

bimap :: (a -> b) -> (c -> d) -> LeftF f a c -> LeftF f b d #

first :: (a -> b) -> LeftF f a c -> LeftF f b c #

second :: (b -> c) -> LeftF f a b -> LeftF f a c #

Traversable f => Bitraversable (LeftF f :: Type -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Methods

bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> LeftF f a b -> f0 (LeftF f c d) #

Foldable f => Bifoldable (LeftF f :: Type -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Methods

bifold :: Monoid m => LeftF f m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> LeftF f a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> LeftF f a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> LeftF f a b -> c #

Applicative f => Biapplicative (LeftF f :: Type -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Methods

bipure :: a -> b -> LeftF f a b #

(<<*>>) :: LeftF f (a -> b) (c -> d) -> LeftF f a c -> LeftF f b d #

biliftA2 :: (a -> b -> c) -> (d -> e -> f0) -> LeftF f a d -> LeftF f b e -> LeftF f c f0 #

(*>>) :: LeftF f a b -> LeftF f c d -> LeftF f c d #

(<<*) :: LeftF f a b -> LeftF f c d -> LeftF f a b #

Functor f => Functor (LeftF f g) Source # 
Instance details

Defined in Data.HBifunctor

Methods

fmap :: (a -> b) -> LeftF f g a -> LeftF f g b #

(<$) :: a -> LeftF f g b -> LeftF f g a #

Foldable f => Foldable (LeftF f g) Source # 
Instance details

Defined in Data.HBifunctor

Methods

fold :: Monoid m => LeftF f g m -> m #

foldMap :: Monoid m => (a -> m) -> LeftF f g a -> m #

foldr :: (a -> b -> b) -> b -> LeftF f g a -> b #

foldr' :: (a -> b -> b) -> b -> LeftF f g a -> b #

foldl :: (b -> a -> b) -> b -> LeftF f g a -> b #

foldl' :: (b -> a -> b) -> b -> LeftF f g a -> b #

foldr1 :: (a -> a -> a) -> LeftF f g a -> a #

foldl1 :: (a -> a -> a) -> LeftF f g a -> a #

toList :: LeftF f g a -> [a] #

null :: LeftF f g a -> Bool #

length :: LeftF f g a -> Int #

elem :: Eq a => a -> LeftF f g a -> Bool #

maximum :: Ord a => LeftF f g a -> a #

minimum :: Ord a => LeftF f g a -> a #

sum :: Num a => LeftF f g a -> a #

product :: Num a => LeftF f g a -> a #

Traversable f => Traversable (LeftF f g) Source # 
Instance details

Defined in Data.HBifunctor

Methods

traverse :: Applicative f0 => (a -> f0 b) -> LeftF f g a -> f0 (LeftF f g b) #

sequenceA :: Applicative f0 => LeftF f g (f0 a) -> f0 (LeftF f g a) #

mapM :: Monad m => (a -> m b) -> LeftF f g a -> m (LeftF f g b) #

sequence :: Monad m => LeftF f g (m a) -> m (LeftF f g a) #

Eq1 f => Eq1 (LeftF f g) Source # 
Instance details

Defined in Data.HBifunctor

Methods

liftEq :: (a -> b -> Bool) -> LeftF f g a -> LeftF f g b -> Bool #

Ord1 f => Ord1 (LeftF f g) Source # 
Instance details

Defined in Data.HBifunctor

Methods

liftCompare :: (a -> b -> Ordering) -> LeftF f g a -> LeftF f g b -> Ordering #

Read1 f => Read1 (LeftF f g) Source # 
Instance details

Defined in Data.HBifunctor

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (LeftF f g a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [LeftF f g a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (LeftF f g a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [LeftF f g a] #

Show1 f => Show1 (LeftF f g) Source # 
Instance details

Defined in Data.HBifunctor

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> LeftF f g a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [LeftF f g a] -> ShowS #

Eq (f a) => Eq (LeftF f g a) Source # 
Instance details

Defined in Data.HBifunctor

Methods

(==) :: LeftF f g a -> LeftF f g a -> Bool #

(/=) :: LeftF f g a -> LeftF f g a -> Bool #

(Typeable g, Typeable a, Typeable f, Typeable k2, Typeable k1, Data (f a)) => Data (LeftF f g a) Source # 
Instance details

Defined in Data.HBifunctor

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> LeftF f g a -> c (LeftF f g a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (LeftF f g a) #

toConstr :: LeftF f g a -> Constr #

dataTypeOf :: LeftF f g a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (LeftF f g a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (LeftF f g a)) #

gmapT :: (forall b. Data b => b -> b) -> LeftF f g a -> LeftF f g a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LeftF f g a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LeftF f g a -> r #

gmapQ :: (forall d. Data d => d -> u) -> LeftF f g a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> LeftF f g a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> LeftF f g a -> m (LeftF f g a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LeftF f g a -> m (LeftF f g a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LeftF f g a -> m (LeftF f g a) #

Ord (f a) => Ord (LeftF f g a) Source # 
Instance details

Defined in Data.HBifunctor

Methods

compare :: LeftF f g a -> LeftF f g a -> Ordering #

(<) :: LeftF f g a -> LeftF f g a -> Bool #

(<=) :: LeftF f g a -> LeftF f g a -> Bool #

(>) :: LeftF f g a -> LeftF f g a -> Bool #

(>=) :: LeftF f g a -> LeftF f g a -> Bool #

max :: LeftF f g a -> LeftF f g a -> LeftF f g a #

min :: LeftF f g a -> LeftF f g a -> LeftF f g a #

Read (f a) => Read (LeftF f g a) Source # 
Instance details

Defined in Data.HBifunctor

Methods

readsPrec :: Int -> ReadS (LeftF f g a) #

readList :: ReadS [LeftF f g a] #

readPrec :: ReadPrec (LeftF f g a) #

readListPrec :: ReadPrec [LeftF f g a] #

Show (f a) => Show (LeftF f g a) Source # 
Instance details

Defined in Data.HBifunctor

Methods

showsPrec :: Int -> LeftF f g a -> ShowS #

show :: LeftF f g a -> String #

showList :: [LeftF f g a] -> ShowS #

Generic (LeftF f g a) Source # 
Instance details

Defined in Data.HBifunctor

Associated Types

type Rep (LeftF f g a) :: Type -> Type #

Methods

from :: LeftF f g a -> Rep (LeftF f g a) x #

to :: Rep (LeftF f g a) x -> LeftF f g a #

type SF (LeftF :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

type SF (LeftF :: (Type -> Type) -> (Type -> Type) -> Type -> Type) = (Flagged :: (Type -> Type) -> Type -> Type)
type Rep (LeftF f g a) Source # 
Instance details

Defined in Data.HBifunctor

type Rep (LeftF f g a) = D1 (MetaData "LeftF" "Data.HBifunctor" "functor-combinators-0.1.1.1-B2oyFu2GVTM8ySAuzVPoNk" True) (C1 (MetaCons "LeftF" PrefixI True) (S1 (MetaSel (Just "runLeftF") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (f a))))

newtype RightF f g a Source #

An HBifunctor that ignores its first input. Like a :+: with no L1/left branch.

In its polykinded form (on f), it is essentially a higher-order version of Tagged.

Constructors

RightF 

Fields

Instances
HBifunctor (RightF :: (k1 -> Type) -> (k2 -> Type) -> k2 -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Methods

hleft :: (f ~> j) -> RightF f g ~> RightF j g Source #

hright :: (g ~> k) -> RightF f g ~> RightF f k Source #

hbimap :: (f ~> j) -> (g ~> k) -> RightF f g ~> RightF j k Source #

HFunctor (RightF f :: (k1 -> Type) -> k1 -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Methods

hmap :: (f0 ~> g) -> RightF f f0 ~> RightF f g Source #

HFunctor (RightF f :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Methods

hmap :: (f0 ~> g) -> RightF f f0 ~> RightF f g Source #

HBind (RightF f :: (k1 -> Type) -> k1 -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Methods

hbind :: (f0 ~> RightF f g) -> RightF f f0 ~> RightF f g Source #

hjoin :: RightF f (RightF f f0) ~> RightF f f0 Source #

Inject (RightF f :: (k1 -> Type) -> k1 -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Methods

inject :: f0 ~> RightF f f0 Source #

Semigroupoidal (RightF :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Associated Types

type SF RightF :: (Type -> Type) -> Type -> Type Source #

Methods

appendSF :: RightF (SF RightF f) (SF RightF f) ~> SF RightF f Source #

matchSF :: Functor f => SF RightF f ~> (f :+: RightF f (SF RightF f)) Source #

consSF :: RightF f (SF RightF f) ~> SF RightF f Source #

toSF :: RightF f f ~> SF RightF f Source #

biretract :: CS RightF f => RightF f f ~> f Source #

binterpret :: CS RightF h => (f ~> h) -> (g ~> h) -> RightF f g ~> h Source #

Associative (RightF :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

Methods

associating :: (Functor f, Functor g, Functor h) => RightF f (RightF g h) <~> RightF (RightF f g) h Source #

Interpret (RightF f :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor

Associated Types

type C (RightF f) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (RightF f) f0 => RightF f f0 ~> f0 Source #

interpret :: C (RightF f) g => (f0 ~> g) -> RightF f f0 ~> g Source #

Functor g => Functor (RightF f g) Source # 
Instance details

Defined in Data.HBifunctor

Methods

fmap :: (a -> b) -> RightF f g a -> RightF f g b #

(<$) :: a -> RightF f g b -> RightF f g a #

Foldable g => Foldable (RightF f g) Source # 
Instance details

Defined in Data.HBifunctor

Methods

fold :: Monoid m => RightF f g m -> m #

foldMap :: Monoid m => (a -> m) -> RightF f g a -> m #

foldr :: (a -> b -> b) -> b -> RightF f g a -> b #

foldr' :: (a -> b -> b) -> b -> RightF f g a -> b #

foldl :: (b -> a -> b) -> b -> RightF f g a -> b #

foldl' :: (b -> a -> b) -> b -> RightF f g a -> b #

foldr1 :: (a -> a -> a) -> RightF f g a -> a #

foldl1 :: (a -> a -> a) -> RightF f g a -> a #

toList :: RightF f g a -> [a] #

null :: RightF f g a -> Bool #

length :: RightF f g a -> Int #

elem :: Eq a => a -> RightF f g a -> Bool #

maximum :: Ord a => RightF f g a -> a #

minimum :: Ord a => RightF f g a -> a #

sum :: Num a => RightF f g a -> a #

product :: Num a => RightF f g a -> a #

Traversable g => Traversable (RightF f g) Source # 
Instance details

Defined in Data.HBifunctor

Methods

traverse :: Applicative f0 => (a -> f0 b) -> RightF f g a -> f0 (RightF f g b) #

sequenceA :: Applicative f0 => RightF f g (f0 a) -> f0 (RightF f g a) #

mapM :: Monad m => (a -> m b) -> RightF f g a -> m (RightF f g b) #

sequence :: Monad m => RightF f g (m a) -> m (RightF f g a) #

Eq1 g => Eq1 (RightF f g) Source # 
Instance details

Defined in Data.HBifunctor

Methods

liftEq :: (a -> b -> Bool) -> RightF f g a -> RightF f g b -> Bool #

Ord1 g => Ord1 (RightF f g) Source # 
Instance details

Defined in Data.HBifunctor

Methods

liftCompare :: (a -> b -> Ordering) -> RightF f g a -> RightF f g b -> Ordering #

Read1 g => Read1 (RightF f g) Source # 
Instance details

Defined in Data.HBifunctor

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (RightF f g a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [RightF f g a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (RightF f g a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [RightF f g a] #

Show1 g => Show1 (RightF f g) Source # 
Instance details

Defined in Data.HBifunctor

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> RightF f g a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [RightF f g a] -> ShowS #

Eq (g a) => Eq (RightF f g a) Source # 
Instance details

Defined in Data.HBifunctor

Methods

(==) :: RightF f g a -> RightF f g a -> Bool #

(/=) :: RightF f g a -> RightF f g a -> Bool #

(Typeable f, Typeable a, Typeable g, Typeable k1, Typeable k2, Data (g a)) => Data (RightF f g a) Source # 
Instance details

Defined in Data.HBifunctor

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> RightF f g a -> c (RightF f g a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (RightF f g a) #

toConstr :: RightF f g a -> Constr #

dataTypeOf :: RightF f g a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (RightF f g a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (RightF f g a)) #

gmapT :: (forall b. Data b => b -> b) -> RightF f g a -> RightF f g a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RightF f g a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RightF f g a -> r #

gmapQ :: (forall d. Data d => d -> u) -> RightF f g a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> RightF f g a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> RightF f g a -> m (RightF f g a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RightF f g a -> m (RightF f g a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RightF f g a -> m (RightF f g a) #

Ord (g a) => Ord (RightF f g a) Source # 
Instance details

Defined in Data.HBifunctor

Methods

compare :: RightF f g a -> RightF f g a -> Ordering #

(<) :: RightF f g a -> RightF f g a -> Bool #

(<=) :: RightF f g a -> RightF f g a -> Bool #

(>) :: RightF f g a -> RightF f g a -> Bool #

(>=) :: RightF f g a -> RightF f g a -> Bool #

max :: RightF f g a -> RightF f g a -> RightF f g a #

min :: RightF f g a -> RightF f g a -> RightF f g a #

Read (g a) => Read (RightF f g a) Source # 
Instance details

Defined in Data.HBifunctor

Methods

readsPrec :: Int -> ReadS (RightF f g a) #

readList :: ReadS [RightF f g a] #

readPrec :: ReadPrec (RightF f g a) #

readListPrec :: ReadPrec [RightF f g a] #

Show (g a) => Show (RightF f g a) Source # 
Instance details

Defined in Data.HBifunctor

Methods

showsPrec :: Int -> RightF f g a -> ShowS #

show :: RightF f g a -> String #

showList :: [RightF f g a] -> ShowS #

Generic (RightF f g a) Source # 
Instance details

Defined in Data.HBifunctor

Associated Types

type Rep (RightF f g a) :: Type -> Type #

Methods

from :: RightF f g a -> Rep (RightF f g a) x #

to :: Rep (RightF f g a) x -> RightF f g a #

type SF (RightF :: (Type -> Type) -> (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor.Associative

type SF (RightF :: (Type -> Type) -> (Type -> Type) -> Type -> Type) = (Step :: (Type -> Type) -> Type -> Type)
type C (RightF f :: (Type -> Type) -> Type -> Type) Source # 
Instance details

Defined in Data.HBifunctor

type C (RightF f :: (Type -> Type) -> Type -> Type) = (Unconstrained :: (Type -> Type) -> Constraint)
type Rep (RightF f g a) Source # 
Instance details

Defined in Data.HBifunctor

type Rep (RightF f g a) = D1 (MetaData "RightF" "Data.HBifunctor" "functor-combinators-0.1.1.1-B2oyFu2GVTM8ySAuzVPoNk" True) (C1 (MetaCons "RightF" PrefixI True) (S1 (MetaSel (Just "runRightF") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (g a))))

Combinator Combinators

data HLift t f a Source #

An "HFunctor combinator" that enhances an HFunctor with the ability to hold a single f a. This is the higher-order analogue of Lift.

You can think of it as a free Inject for any f.

Note that HLift IdentityT is equivalent to EnvT Any.

Constructors

HPure (f a) 
HOther (t f a) 
Instances
HFunctor t => HFunctor (HLift t :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

hmap :: (f ~> g) -> HLift t f ~> HLift t g Source #

(HBind t, Inject t) => HBind (HLift t :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

hbind :: (f ~> HLift t g) -> HLift t f ~> HLift t g Source #

hjoin :: HLift t (HLift t f) ~> HLift t f Source #

HFunctor t => Inject (HLift t :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> HLift t f Source #

Interpret t => Interpret (HLift t) Source #

Never uses inject

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (HLift t) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (HLift t) f => HLift t f ~> f Source #

interpret :: C (HLift t) g => (f ~> g) -> HLift t f ~> g Source #

(Functor f, Functor (t f)) => Functor (HLift t f) Source # 
Instance details

Defined in Data.HFunctor

Methods

fmap :: (a -> b) -> HLift t f a -> HLift t f b #

(<$) :: a -> HLift t f b -> HLift t f a #

(Eq1 (t f), Eq1 f) => Eq1 (HLift t f) Source # 
Instance details

Defined in Data.HFunctor

Methods

liftEq :: (a -> b -> Bool) -> HLift t f a -> HLift t f b -> Bool #

(Ord1 (t f), Ord1 f) => Ord1 (HLift t f) Source # 
Instance details

Defined in Data.HFunctor

Methods

liftCompare :: (a -> b -> Ordering) -> HLift t f a -> HLift t f b -> Ordering #

(Show1 (t f), Show1 f) => Show1 (HLift t f) Source # 
Instance details

Defined in Data.HFunctor

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> HLift t f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [HLift t f a] -> ShowS #

(Eq (f a), Eq (t f a)) => Eq (HLift t f a) Source # 
Instance details

Defined in Data.HFunctor

Methods

(==) :: HLift t f a -> HLift t f a -> Bool #

(/=) :: HLift t f a -> HLift t f a -> Bool #

(Ord (f a), Ord (t f a)) => Ord (HLift t f a) Source # 
Instance details

Defined in Data.HFunctor

Methods

compare :: HLift t f a -> HLift t f a -> Ordering #

(<) :: HLift t f a -> HLift t f a -> Bool #

(<=) :: HLift t f a -> HLift t f a -> Bool #

(>) :: HLift t f a -> HLift t f a -> Bool #

(>=) :: HLift t f a -> HLift t f a -> Bool #

max :: HLift t f a -> HLift t f a -> HLift t f a #

min :: HLift t f a -> HLift t f a -> HLift t f a #

(Read (f a), Read (t f a)) => Read (HLift t f a) Source # 
Instance details

Defined in Data.HFunctor

Methods

readsPrec :: Int -> ReadS (HLift t f a) #

readList :: ReadS [HLift t f a] #

readPrec :: ReadPrec (HLift t f a) #

readListPrec :: ReadPrec [HLift t f a] #

(Show (f a), Show (t f a)) => Show (HLift t f a) Source # 
Instance details

Defined in Data.HFunctor

Methods

showsPrec :: Int -> HLift t f a -> ShowS #

show :: HLift t f a -> String #

showList :: [HLift t f a] -> ShowS #

type C (HLift t) Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C (HLift t) = C t

data HFree t f a Source #

An "HFunctor combinator" that turns an HFunctor into potentially infinite nestings of that HFunctor.

An HFree t f a is either f a, t f a, t (t f) a, t (t (t f)) a, etc.

This effectively turns t into a tree with t branches.

One particularly useful usage is with MapF. For example if you had a data type representing a command line command parser:

data Command a

You could represent "many possible named commands" using

type Commands = MapF String Command

And you can represent multiple nested named commands using:

type NestedCommands = HFree (MapF String)

This has an Interpret instance, but it can be more useful to use via direct pattern matching, or through

foldHFree
    :: HBifunctor t
    => f ~> g
    -> t g ~> g
    -> HFree t f ~> g

which requires no extra constriant on g, and lets you consider each branch separately.

This can be considered the higher-oder analogue of Free; it is the free HBind for any HFunctor t.

Note that HFree IdentityT is equivalent to Step.

Constructors

HReturn (f a) 
HJoin (t (HFree t f) a) 
Instances
HFunctor t => HFunctor (HFree t :: (k -> Type) -> k -> Type) Source # 
Instance details

Defined in Data.HFunctor

Methods

hmap :: (f ~> g) -> HFree t f ~> HFree t g Source #

HFunctor t => HBind (HFree t :: (k -> Type) -> k -> Type) Source #

HFree is the "free HBind" for any HFunctor

Instance details

Defined in Data.HFunctor

Methods

hbind :: (f ~> HFree t g) -> HFree t f ~> HFree t g Source #

hjoin :: HFree t (HFree t f) ~> HFree t f Source #

HFunctor t => Inject (HFree t :: (k -> Type) -> k -> Type) Source #

HFree is the "free HBind and Inject" for any HFunctor

Instance details

Defined in Data.HFunctor

Methods

inject :: f ~> HFree t f Source #

Interpret t => Interpret (HFree t) Source #

Never uses inject

Instance details

Defined in Data.HFunctor.Interpret

Associated Types

type C (HFree t) :: (Type -> Type) -> Constraint Source #

Methods

retract :: C (HFree t) f => HFree t f ~> f Source #

interpret :: C (HFree t) g => (f ~> g) -> HFree t f ~> g Source #

(Functor f, Functor (t (HFree t f))) => Functor (HFree t f) Source # 
Instance details

Defined in Data.HFunctor

Methods

fmap :: (a -> b) -> HFree t f a -> HFree t f b #

(<$) :: a -> HFree t f b -> HFree t f a #

(Show1 (t (HFree t f)), Show1 f) => Show1 (HFree t f) Source # 
Instance details

Defined in Data.HFunctor

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> HFree t f a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [HFree t f a] -> ShowS #

(Show1 (t (HFree t f)), Show1 f, Show a) => Show (HFree t f a) Source # 
Instance details

Defined in Data.HFunctor

Methods

showsPrec :: Int -> HFree t f a -> ShowS #

show :: HFree t f a -> String #

showList :: [HFree t f a] -> ShowS #

type C (HFree t) Source # 
Instance details

Defined in Data.HFunctor.Interpret

type C (HFree t) = C t

Util

Natural Transformations

generalize :: Applicative f => Identity ~> f Source #

Turn Identity into any Applicative f. Can be useful as an argument to hmap, hbimap, or interpret.

It is a more general form of generalize from mmorph.

absorb :: f ~> Proxy Source #

Natural transformation from any functor f into Proxy. Can be useful for "zeroing out" a functor with hmap or hbimap or interpret.