{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE Rank2Types #-}
#if __GLASGOW_HASKELL__ >= 707
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
#endif
#include "free-common.h"
module Control.Monad.Free.Ap
( MonadFree(..)
, Free(..)
, retract
, liftF
, iter
, iterA
, iterM
, hoistFree
, foldFree
, toFreeT
, cutoff
, unfold
, unfoldM
, _Pure, _Free
) where
import Control.Applicative
import Control.Arrow ((>>>))
import Control.Monad (liftM, MonadPlus(..), (>=>))
import Control.Monad.Fix
import Control.Monad.Trans.Class
import qualified Control.Monad.Trans.Free.Ap as FreeT
import Control.Monad.Free.Class
import Control.Monad.Reader.Class
import Control.Monad.Writer.Class
import Control.Monad.State.Class
import Control.Monad.Error.Class
import Control.Monad.Cont.Class
import Data.Functor.Bind
import Data.Functor.Classes.Compat
import Data.Foldable
import Data.Profunctor
import Data.Traversable
import Data.Semigroup.Foldable
import Data.Semigroup.Traversable
import Data.Data
import Prelude hiding (foldr)
#if __GLASGOW_HASKELL__ >= 707
import GHC.Generics
#endif
data Free f a = Pure a | Free (f (Free f a))
#if __GLASGOW_HASKELL__ >= 707
deriving (Typeable, Generic, Generic1)
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance Eq1 f => Eq1 (Free f) where
liftEq eq = go
where
go (Pure a) (Pure b) = eq a b
go (Free fa) (Free fb) = liftEq go fa fb
go _ _ = False
#else
instance (Functor f, Eq1 f) => Eq1 (Free f) where
Pure a `eq1` Pure b = a == b
Free fa `eq1` Free fb = fmap Lift1 fa `eq1` fmap Lift1 fb
_ `eq1` _ = False
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Eq1 f, Eq a) => Eq (Free f a) where
#else
instance (Eq1 f, Functor f, Eq a) => Eq (Free f a) where
#endif
(==) = eq1
#ifdef LIFTED_FUNCTOR_CLASSES
instance Ord1 f => Ord1 (Free f) where
liftCompare cmp = go
where
go (Pure a) (Pure b) = cmp a b
go (Pure _) (Free _) = LT
go (Free _) (Pure _) = GT
go (Free fa) (Free fb) = liftCompare go fa fb
#else
instance (Functor f, Ord1 f) => Ord1 (Free f) where
Pure a `compare1` Pure b = a `compare` b
Pure _ `compare1` Free _ = LT
Free _ `compare1` Pure _ = GT
Free fa `compare1` Free fb = fmap Lift1 fa `compare1` fmap Lift1 fb
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Ord1 f, Ord a) => Ord (Free f a) where
#else
instance (Ord1 f, Functor f, Ord a) => Ord (Free f a) where
#endif
compare = compare1
#ifdef LIFTED_FUNCTOR_CLASSES
instance Show1 f => Show1 (Free f) where
liftShowsPrec sp sl = go
where
go d (Pure a) = showsUnaryWith sp "Pure" d a
go d (Free fa) = showsUnaryWith (liftShowsPrec go (liftShowList sp sl)) "Free" d fa
#else
instance (Functor f, Show1 f) => Show1 (Free f) where
showsPrec1 d (Pure a) = showParen (d > 10) $
showString "Pure " . showsPrec 11 a
showsPrec1 d (Free m) = showParen (d > 10) $
showString "Free " . showsPrec1 11 (fmap Lift1 m)
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Show1 f, Show a) => Show (Free f a) where
#else
instance (Show1 f, Functor f, Show a) => Show (Free f a) where
#endif
showsPrec = showsPrec1
#ifdef LIFTED_FUNCTOR_CLASSES
instance Read1 f => Read1 (Free f) where
liftReadsPrec rp rl = go
where
go = readsData $
readsUnaryWith rp "Pure" Pure `mappend`
readsUnaryWith (liftReadsPrec go (liftReadList rp rl)) "Free" Free
#else
instance (Functor f, Read1 f) => Read1 (Free f) where
readsPrec1 d r = readParen (d > 10)
(\r' -> [ (Pure m, t)
| ("Pure", s) <- lex r'
, (m, t) <- readsPrec 11 s]) r
++ readParen (d > 10)
(\r' -> [ (Free (fmap lower1 m), t)
| ("Free", s) <- lex r'
, (m, t) <- readsPrec1 11 s]) r
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Read1 f, Read a) => Read (Free f a) where
#else
instance (Read1 f, Functor f, Read a) => Read (Free f a) where
#endif
readsPrec = readsPrec1
instance Functor f => Functor (Free f) where
fmap f = go where
go (Pure a) = Pure (f a)
go (Free fa) = Free (go <$> fa)
{-# INLINE fmap #-}
instance Apply f => Apply (Free f) where
Pure a <.> Pure b = Pure (a b)
Pure a <.> Free fb = Free $ fmap a <$> fb
Free fa <.> Pure b = Free $ fmap ($ b) <$> fa
Free fa <.> Free fb = Free $ fmap (<.>) fa <.> fb
instance Applicative f => Applicative (Free f) where
pure = Pure
{-# INLINE pure #-}
Pure a <*> Pure b = Pure $ a b
Pure a <*> Free mb = Free $ fmap a <$> mb
Free ma <*> Pure b = Free $ fmap ($ b) <$> ma
Free ma <*> Free mb = Free $ fmap (<*>) ma <*> mb
instance Apply f => Bind (Free f) where
Pure a >>- f = f a
Free m >>- f = Free ((>>- f) <$> m)
instance Applicative f => Monad (Free f) where
return = pure
{-# INLINE return #-}
Pure a >>= f = f a
Free m >>= f = Free ((>>= f) <$> m)
instance Applicative f => MonadFix (Free f) where
mfix f = a where a = f (impure a); impure (Pure x) = x; impure (Free _) = error "mfix (Free f): Free"
instance Alternative v => Alternative (Free v) where
empty = Free empty
{-# INLINE empty #-}
a <|> b = Free (pure a <|> pure b)
{-# INLINE (<|>) #-}
instance (Applicative v, MonadPlus v) => MonadPlus (Free v) where
mzero = Free mzero
{-# INLINE mzero #-}
a `mplus` b = Free (return a `mplus` return b)
{-# INLINE mplus #-}
instance MonadTrans Free where
lift = Free . liftM Pure
{-# INLINE lift #-}
instance Foldable f => Foldable (Free f) where
foldMap f = go where
go (Pure a) = f a
go (Free fa) = foldMap go fa
{-# INLINE foldMap #-}
foldr f = go where
go r free =
case free of
Pure a -> f a r
Free fa -> foldr (flip go) r fa
{-# INLINE foldr #-}
#if MIN_VERSION_base(4,6,0)
foldl' f = go where
go r free =
case free of
Pure a -> f r a
Free fa -> foldl' go r fa
{-# INLINE foldl' #-}
#endif
instance Foldable1 f => Foldable1 (Free f) where
foldMap1 f = go where
go (Pure a) = f a
go (Free fa) = foldMap1 go fa
{-# INLINE foldMap1 #-}
instance Traversable f => Traversable (Free f) where
traverse f = go where
go (Pure a) = Pure <$> f a
go (Free fa) = Free <$> traverse go fa
{-# INLINE traverse #-}
instance Traversable1 f => Traversable1 (Free f) where
traverse1 f = go where
go (Pure a) = Pure <$> f a
go (Free fa) = Free <$> traverse1 go fa
{-# INLINE traverse1 #-}
instance (Applicative m, MonadWriter e m) => MonadWriter e (Free m) where
tell = lift . tell
{-# INLINE tell #-}
listen = lift . listen . retract
{-# INLINE listen #-}
pass = lift . pass . retract
{-# INLINE pass #-}
instance (Applicative m, MonadReader e m) => MonadReader e (Free m) where
ask = lift ask
{-# INLINE ask #-}
local f = lift . local f . retract
{-# INLINE local #-}
instance (Applicative m, MonadState s m) => MonadState s (Free m) where
get = lift get
{-# INLINE get #-}
put s = lift (put s)
{-# INLINE put #-}
instance (Applicative m, MonadError e m) => MonadError e (Free m) where
throwError = lift . throwError
{-# INLINE throwError #-}
catchError as f = lift (catchError (retract as) (retract . f))
{-# INLINE catchError #-}
instance (Applicative m, MonadCont m) => MonadCont (Free m) where
callCC f = lift (callCC (retract . f . liftM lift))
{-# INLINE callCC #-}
instance Applicative f => MonadFree f (Free f) where
wrap = Free
{-# INLINE wrap #-}
retract :: (Applicative f, Monad f) => Free f a -> f a
retract = foldFree id
iter :: Applicative f => (f a -> a) -> Free f a -> a
iter _ (Pure a) = a
iter phi (Free m) = phi (iter phi <$> m)
iterA :: (Applicative p, Applicative f) => (f (p a) -> p a) -> Free f a -> p a
iterA _ (Pure x) = pure x
iterA phi (Free f) = phi (iterA phi <$> f)
iterM :: (Applicative m, Monad m, Applicative f) => (f (m a) -> m a) -> Free f a -> m a
iterM _ (Pure x) = return x
iterM phi (Free f) = phi (iterM phi <$> f)
hoistFree :: (Applicative f, Applicative g) => (forall a. f a -> g a) -> Free f b -> Free g b
hoistFree f = foldFree (liftF . f)
foldFree :: (Applicative f, Applicative m, Monad m) => (forall x . f x -> m x) -> Free f a -> m a
foldFree _ (Pure a) = return a
foldFree f (Free as) = f as >>= foldFree f
toFreeT :: (Applicative f, Applicative m, Monad m) => Free f a -> FreeT.FreeT f m a
toFreeT = foldFree liftF
cutoff :: (Applicative f) => Integer -> Free f a -> Free f (Maybe a)
cutoff n _ | n <= 0 = return Nothing
cutoff n (Free f) = Free $ fmap (cutoff (n - 1)) f
cutoff _ m = Just <$> m
unfold :: Applicative f => (b -> Either a (f b)) -> b -> Free f a
unfold f = f >>> either Pure (Free . fmap (unfold f))
unfoldM :: (Applicative f, Traversable f, Applicative m, Monad m) => (b -> m (Either a (f b))) -> b -> m (Free f a)
unfoldM f = f >=> either (pure . pure) (fmap Free . traverse (unfoldM f))
_Pure :: forall f m a p. (Choice p, Applicative m)
=> p a (m a) -> p (Free f a) (m (Free f a))
_Pure = dimap impure (either pure (fmap Pure)) . right'
where
impure (Pure x) = Right x
impure x = Left x
{-# INLINE impure #-}
{-# INLINE _Pure #-}
_Free :: forall f m a p. (Choice p, Applicative m)
=> p (f (Free f a)) (m (f (Free f a))) -> p (Free f a) (m (Free f a))
_Free = dimap unfree (either pure (fmap Free)) . right'
where
unfree (Free x) = Right x
unfree x = Left x
{-# INLINE unfree #-}
{-# INLINE _Free #-}
#if __GLASGOW_HASKELL__ < 707
instance Typeable1 f => Typeable1 (Free f) where
typeOf1 t = mkTyConApp freeTyCon [typeOf1 (f t)] where
f :: Free f a -> f a
f = undefined
freeTyCon :: TyCon
#if __GLASGOW_HASKELL__ < 704
freeTyCon = mkTyCon "Control.Monad.Free.Free"
#else
freeTyCon = mkTyCon3 "free" "Control.Monad.Free" "Free"
#endif
{-# NOINLINE freeTyCon #-}
instance
( Typeable1 f, Typeable a
, Data a, Data (f (Free f a))
) => Data (Free f a) where
gfoldl f z (Pure a) = z Pure `f` a
gfoldl f z (Free as) = z Free `f` as
toConstr Pure{} = pureConstr
toConstr Free{} = freeConstr
gunfold k z c = case constrIndex c of
1 -> k (z Pure)
2 -> k (z Free)
_ -> error "gunfold"
dataTypeOf _ = freeDataType
dataCast1 f = gcast1 f
pureConstr, freeConstr :: Constr
pureConstr = mkConstr freeDataType "Pure" [] Prefix
freeConstr = mkConstr freeDataType "Free" [] Prefix
{-# NOINLINE pureConstr #-}
{-# NOINLINE freeConstr #-}
freeDataType :: DataType
freeDataType = mkDataType "Control.Monad.Free.FreeF" [pureConstr, freeConstr]
{-# NOINLINE freeDataType #-}
#endif