exp-pairs-0.2.1.0: Linear programming over exponent pairs

Copyright(c) Andrew Lelechenko 2014-2020
LicenseGPL-3
Maintainerandrew.lelechenko@gmail.com
Safe HaskellNone
LanguageHaskell2010

Math.ExpPairs.Kratzel

Description

Asymmetric divisor problem

Let τ_{a, b}(n) denote the number of integer (v, w) with v^a w^b = n.

Let τ_{a, b, c}(n) denote the number of integer (v, w, z) with v^a w^b z^c = n.

Krätzel (Krätzel E. `Lattice points'. Dordrecht: Kluwer, 1988) proved asymptotic formulas for Σ_{n ≤ x} τ_{a, b}(n) with an error term of order x^(Θ(a, b) + ε) and for Σ_{n ≤ x} τ_{a, b, c}(n) with an error term of order x^(Θ(a, b, c) + ε). He also provided a set of theorems to estimate Θ(a, b) and Θ(a, b, c).

Synopsis

Documentation

data TauabTheorem Source #

Special type to specify the theorem of Krätzel1988, which provided the best estimate of Θ(a, b)

Constructors

Kr511a

Theorem 5.11, case a)

Kr511b

Theorem 5.11, case b)

Kr512a

Theorem 5.12, case a)

Kr512b

Theorem 5.12, case b)

Instances
Bounded TauabTheorem Source # 
Instance details

Defined in Math.ExpPairs.Kratzel

Enum TauabTheorem Source # 
Instance details

Defined in Math.ExpPairs.Kratzel

Eq TauabTheorem Source # 
Instance details

Defined in Math.ExpPairs.Kratzel

Ord TauabTheorem Source # 
Instance details

Defined in Math.ExpPairs.Kratzel

Show TauabTheorem Source # 
Instance details

Defined in Math.ExpPairs.Kratzel

Pretty TauabTheorem Source # 
Instance details

Defined in Math.ExpPairs.Kratzel

Methods

pretty :: TauabTheorem -> Doc ann #

prettyList :: [TauabTheorem] -> Doc ann #

tauab :: Integer -> Integer -> (TauabTheorem, OptimizeResult) Source #

Compute Θ(a, b) for given a and b.

data TauabcTheorem Source #

Special type to specify the theorem of Krätzel1988, which provided the best estimate of Θ(a, b, c)

Constructors

Kolesnik

Kolesnik (Kolesnik G. `On the estimation of multiple exponential sums' // Recent progress in analytic number theory, London: Academic Press, 1981, Vol. 1, P. 231–246) proved that Θ(1, 1, 1) = 43 /96.

Kr61

Theorem 6.1

Kr62

Theorem 6.2

Kr63

Theorem 6.3

Kr64

Theorem 6.4

Kr65

Theorem 6.5

Kr66

Theorem 6.6

Tauab TauabTheorem

In certain cases Θ(a, b, c) = Θ(a, b).

tauabc :: Integer -> Integer -> Integer -> (TauabcTheorem, OptimizeResult) Source #

Compute Θ(a, b, c) for given a, b and c.

data TauabcdTheorem Source #

Special type to specify the theorem of Krätzel1988, which provided the best estimate of Θ(a, b, c, d)

Constructors

HeathBrown

Heath-Brown, 1978

Tauabc TauabcTheorem 
Kr611

Theorem 6.11

Kr1992_2

Krätzel, Estimates in the general divisor problem, Abh. Math. Sem. Univ. Hamburg 62 (1992), 191-206, Theorem 2 for p = 4

Kr1992_31

Ibidem, Theorem 3 for p = 4 under condition 3.1

Kr1992_32

Ibidem, Theorem 3 for p = 4 under condition 3.2

Kr2010_1a 
Kr2010_1b 
Kr2010_2 
Kr2010_3 
CaoZhai 

tauabcd :: Integer -> Integer -> Integer -> Integer -> (TauabcdTheorem, OptimizeResult) Source #

Compute Θ(a, b, c, d) for given a, b, c and d.

data Theorem Source #

Special type to specify the theorem of Krätzel1988, which provided the best estimate of Θ(a1, a2...)

Instances
Eq Theorem Source # 
Instance details

Defined in Math.ExpPairs.Kratzel

Methods

(==) :: Theorem -> Theorem -> Bool #

(/=) :: Theorem -> Theorem -> Bool #

Ord Theorem Source # 
Instance details

Defined in Math.ExpPairs.Kratzel

Show Theorem Source # 
Instance details

Defined in Math.ExpPairs.Kratzel

Pretty Theorem Source # 
Instance details

Defined in Math.ExpPairs.Kratzel

Methods

pretty :: Theorem -> Doc ann #

prettyList :: [Theorem] -> Doc ann #

data TauAResult Source #

Special type to specify the theorem of Krätzel1988, which provided the best estimate of Θ(a1, a2...)

tauA :: [Integer] -> TauAResult Source #

Compute Θ(a1, a2...) for given list [a1, a2...].