{-# OPTIONS_GHC -Wall -fwarn-tabs #-} ---------------------------------------------------------------- -- 2012.09.26 -- | -- Module : Math.Combinatorics.Exact.Binomial -- Copyright : Copyright (c) 2011--2019 wren gayle romano -- License : BSD -- Maintainer : wren@community.haskell.org -- Stability : experimental -- Portability : Haskell98 -- -- Binomial coefficients (<http://oeis.org/A007318>), aka the count -- of possible combinations. For negative inputs, all functions -- return 0 (rather than throwing an exception or using 'Maybe'). ---------------------------------------------------------------- module Math.Combinatorics.Exact.Binomial (choose) where import Data.List (foldl') import Math.Combinatorics.Exact.Primes (primes) {- <http://mathworld.wolfram.com/BinomialCoefficient.html> Some identities, but not really material for RULES: n `choose` 0 = 1 n `choose` 1 = n n `choose` 2 = 2*n*(n-1) n `choose` k = n `choose` (n-k) when 0<=k<=n n `choose` k = (-1)^k * ((k-n-1) `choose` k) n `choose` (k+1) = (n `choose` k) * ((n-k) / (k+1)) (n+1) `choose` k = (n `choose` k) * (n `choose` (k-1)) n `choose` j = ((n-1)`choose` j) + ((n-1)`choose`(j-1)) when 0<j<n Regarding the prime factorization/carries thing, also cf: Kummer (1852); Graham et al. (1989), Exercise 5.36, p. 245; Ribenboim (1989); Vardi (1991), p. 68 To extend to negative arguments and to complex numbers, see (Kronenburg 2011): n `choose` k | k >= 0 = (-1)^k * ((-n+k-1) `choose` k) | k <= n = (-1)^(n-k) * ((-k-1) `choose` (n-k)) | otherwise = 0 According to Grinstead&Snell, p.95, when using the naive implementation if you alternatete the multiplications and divisions then all intermediate values are integers and none of the intermediate values exceeds the final value. This property is retained in the fast implementation. -} -- TODO: give a version that returns the prime-power factorization as [(Int,Int)] -- | Exact binomial coefficients. For a fast approximation see -- @math-functions:Numeric.SpecFunctions.choose@ instead. The naive -- definition of the binomial coefficients is: -- -- > n `choose` k -- > | k < 0 = 0 -- > | k > n = 0 -- > | otherwise = factorial n `div` (factorial k * factorial (n-k)) -- -- However, we use a fast implementation based on the prime-power -- factorization of the result (Goetgheluck, 1987). Each time @n@ -- is larger than the previous calls, there will be some slowdown -- as the prime numbers must be computed (though it is still much -- faster than the naive implementation); however, subsequent calls -- will be extremely fast, since we memoize the list of 'primes'. -- Do note, however, that this will result in a space leak if you -- call @choose@ for an extremely large @n@ and then don't need -- that many primes in the future. Hopefully future versions will -- correct this issue. -- -- * P. Goetgheluck (1987) -- /Computing Binomial Coefficients/, -- American Mathematical Monthly, 94(4). pp.360--365. -- <http://www.jstor.org/stable/2323099>, -- <http://dl.acm.org/citation.cfm?id=26272> -- choose :: (Integral a) => a -> a -> a -- The result type could be any (Num b) if desired. {-# SPECIALIZE choose :: Integer -> Integer -> Integer, Int -> Int -> Int #-} n `choose` k_ | n `seq` k_`seq` False = undefined | 0 < k_ && k_ < n = k `seq` nk `seq` sqrtN `seq` foldl' (\acc prime -> step acc (fromIntegral prime)) 1 (takeWhile (fromIntegral n >=) primes) -- BUG: 'takeWhile' isn't a good producer, so we shouldn't -- just @map fromIntegral@. In newer GHC my patch will make -- it in for it to be a good producer (and a good consumer). | 0 <= k_ && k_ <= n = 1 -- N.B., @binomial_naive 0 0 == 1@ | otherwise = 0 where -- TODO: since we know the second operands to quot/rem are -- positive, we should use quotInt/remInt directly to avoid the -- extra tests (the overflow errors are not optimized away). k = fromIntegral $! if k_ > n `quot` 2 then n - k_ else k_ nk = n - k sqrtN = floor (sqrt (fromIntegral n) :: Double) `asTypeOf` n step acc prime | acc `seq` prime `seq` False = undefined | prime > nk = acc * prime | prime > n `quot` 2 = acc | prime > sqrtN = if n `rem` prime < k `rem` prime then acc * prime else acc | otherwise = acc * go n k 0 1 where go n' k' r p | n' `seq` k' `seq` r `seq` p `seq` False = undefined | n' <= 0 = p | n' `rem` prime < (k' `rem` prime) + r = go (n' `quot` prime) (k' `quot` prime) 1 $! p * prime | otherwise = go (n' `quot` prime) (k' `quot` prime) 0 p {- -- BENCH: apparently this is an unreliable optimization. | otherwise = acc * (prime ^ go n k 0 0) where go n' k' r p | n' <= 0 = p `asTypeOf` acc | n' `rem` prime < (k' `rem` prime) + r = go (n' `quot` prime) (k' `quot` prime) 1 $! p+1 | otherwise = go (n' `quot` prime) (k' `quot` prime) 0 p -} ---------------------------------------------------------------- ----------------------------------------------------------- fin.