Contents
Index
data-category-0.10: Category theory
Index
!
Data.Category.NaturalTransformation
$
Data.Category.Enriched
%
Data.Category.Functor
%%
Data.Category.Enriched
&&&
Data.Category.Limit
***
Data.Category.Limit
+++
Data.Category.Limit
->>
Data.Category.Enriched
.
Data.Category
:%
Data.Category.Functor
:%%
Data.Category.Enriched
:***:
1 (Type/Class)
Data.Category.Functor
2 (Data Constructor)
Data.Category.Functor
:**:
1 (Type/Class)
Data.Category.Product
2 (Data Constructor)
Data.Category.Product
:*-:
Data.Category.Functor
:*:
1 (Type/Class)
Data.Category.Limit
2 (Data Constructor)
Data.Category.Limit
:+++:
1 (Type/Class)
Data.Category.Coproduct
2 (Data Constructor)
Data.Category.Coproduct
:++:
Data.Category.Coproduct
:+:
1 (Type/Class)
Data.Category.Limit
2 (Data Constructor)
Data.Category.Limit
:-*:
Data.Category.Functor
:->>:
Data.Category.Enriched
:.:
1 (Type/Class)
Data.Category.Functor
2 (Data Constructor)
Data.Category.Functor
3 (Type/Class)
Data.Category.Enriched
4 (Data Constructor)
Data.Category.Enriched
:/\:
Data.Category.Comma
:<*>:
1 (Type/Class)
Data.Category.Enriched
2 (Data Constructor)
Data.Category.Enriched
:<>:
1 (Type/Class)
Data.Category.Enriched
2 (Data Constructor)
Data.Category.Enriched
:>>:
Data.Category.Coproduct
:~>
Data.Category.NaturalTransformation
ACube
Data.Category.Cube
Add
1 (Type/Class)
Data.Category.Simplex
2 (Data Constructor)
Data.Category.Simplex
3 (Type/Class)
Data.Category.Cube
4 (Data Constructor)
Data.Category.Cube
AdjArrow
1 (Type/Class)
Data.Category.Adjunction
2 (Data Constructor)
Data.Category.Adjunction
adjColimit
Data.Category.Limit
adjColimitFactorizer
Data.Category.Limit
adjLimit
Data.Category.Limit
adjLimitFactorizer
Data.Category.Limit
Adjunction
1 (Type/Class)
Data.Category.Adjunction
2 (Data Constructor)
Data.Category.Adjunction
adjunctionComonad
Data.Category.Monoidal
adjunctionComonadT
Data.Category.Monoidal
adjunctionCounit
Data.Category.Adjunction
adjunctionInitialProp
Data.Category.RepresentableFunctor
adjunctionMonad
Data.Category.Monoidal
adjunctionMonadT
Data.Category.Monoidal
adjunctionTerminalProp
Data.Category.RepresentableFunctor
adjunctionUnit
Data.Category.Adjunction
Alg
Data.Category.Dialg
Algebra
Data.Category.Dialg
Ana
Data.Category.Dialg
Any
1 (Type/Class)
Data.Category.Functor
2 (Data Constructor)
Data.Category.Functor
Apply
1 (Type/Class)
Data.Category.NaturalTransformation
2 (Data Constructor)
Data.Category.NaturalTransformation
apply
Data.Category.CartesianClosed
Arr
Data.Category.Enriched
Arrow
1 (Type/Class)
Data.Category.Boolean
2 (Data Constructor)
Data.Category.Boolean
Arrows
Data.Category.Comma
associator
Data.Category.Monoidal
associatorInv
Data.Category.Monoidal
BinaryCoproduct
Data.Category.Limit
BinaryProduct
Data.Category.Limit
Boolean
Data.Category.Boolean
CartesianClosed
Data.Category.CartesianClosed
Cat
Data.Category.Functor
CatA
Data.Category.Functor
Cata
Data.Category.Dialg
Category
Data.Category
Coalg
Data.Category.Dialg
Coalgebra
Data.Category.Dialg
Cocone
Data.Category.Limit
coconeVertex
Data.Category.Limit
Cod
Data.Category.Functor
CodiagCoprod
1 (Type/Class)
Data.Category.Coproduct
2 (Data Constructor)
Data.Category.Coproduct
Cograph
Data.Category.Coproduct
Colim
Data.Category.Enriched
Colimit
Data.Category.Limit
colimit
1 (Function)
Data.Category.Limit
2 (Function)
Data.Category.Enriched
colimitAdj
Data.Category.Limit
colimitFactorizer
Data.Category.Limit
ColimitFam
Data.Category.Limit
ColimitFunctor
1 (Type/Class)
Data.Category.Limit
2 (Data Constructor)
Data.Category.Limit
colimitInv
Data.Category.Enriched
colimitObj
Data.Category.Enriched
CommaA
Data.Category.Comma
commaId
Data.Category.Comma
CommaO
1 (Type/Class)
Data.Category.Comma
2 (Data Constructor)
Data.Category.Comma
Comonad
Data.Category.Monoidal
ComonoidObject
1 (Type/Class)
Data.Category.Monoidal
2 (Data Constructor)
Data.Category.Monoidal
comp
Data.Category.Enriched
compArr
Data.Category.Enriched
compAssoc
Data.Category.NaturalTransformation
compAssocInv
Data.Category.NaturalTransformation
Component
Data.Category.NaturalTransformation
composeAdj
Data.Category.Adjunction
comultiply
Data.Category.Monoidal
Cone
Data.Category.Limit
coneVertex
Data.Category.Limit
Cons
Data.Category.Cube
Const
1 (Type/Class)
Data.Category.Functor
2 (Data Constructor)
Data.Category.Functor
3 (Type/Class)
Data.Category.Enriched
4 (Data Constructor)
Data.Category.Enriched
ConstF
Data.Category.Functor
constPostcompIn
Data.Category.NaturalTransformation
constPostcompOut
Data.Category.NaturalTransformation
constPrecompIn
Data.Category.NaturalTransformation
constPrecompOut
Data.Category.NaturalTransformation
contAdj
Data.Category.Adjunction
Context
Data.Category.CartesianClosed
contextComonadDuplicate
Data.Category.CartesianClosed
contextComonadExtract
Data.Category.CartesianClosed
contravariantHomRepr
Data.Category.RepresentableFunctor
coprodAdj
Data.Category.Limit
CoproductFunctor
1 (Type/Class)
Data.Category.Limit
2 (Data Constructor)
Data.Category.Limit
coproductMonoid
Data.Category.Monoidal
Costar
1 (Type/Class)
Data.Category.Functor
2 (Data Constructor)
Data.Category.Functor
Cotuple1
1 (Type/Class)
Data.Category.Coproduct
2 (Data Constructor)
Data.Category.Coproduct
Cotuple2
1 (Type/Class)
Data.Category.Coproduct
2 (Data Constructor)
Data.Category.Coproduct
counit
Data.Category.Monoidal
covariantHomRepr
Data.Category.RepresentableFunctor
Cube
Data.Category.Cube
curry
Data.Category.CartesianClosed
curryAdj
Data.Category.CartesianClosed
DC
Data.Category.Coproduct
Diag
1 (Type/Class)
Data.Category.Limit
2 (Data Constructor)
Data.Category.Limit
DiagF
Data.Category.Limit
DiagProd
1 (Type/Class)
Data.Category.Functor
2 (Data Constructor)
Data.Category.Functor
3 (Type/Class)
Data.Category.Enriched
4 (Data Constructor)
Data.Category.Enriched
Dialg
Data.Category.Dialg
DialgA
Data.Category.Dialg
Dialgebra
1 (Type/Class)
Data.Category.Dialg
2 (Data Constructor)
Data.Category.Dialg
dialgebra
Data.Category.Dialg
dialgId
Data.Category.Dialg
Dom
Data.Category.Functor
ECategory
Data.Category.Enriched
ECod
Data.Category.Enriched
EDom
Data.Category.Enriched
EFunctor
Data.Category.Enriched
EFunctorOf
Data.Category.Enriched
EHom
1 (Type/Class)
Data.Category.Enriched
2 (Data Constructor)
Data.Category.Enriched
EHomX_
1 (Type/Class)
Data.Category.Enriched
2 (Data Constructor)
Data.Category.Enriched
EHom_X
1 (Type/Class)
Data.Category.Enriched
2 (Data Constructor)
Data.Category.Enriched
eilenbergMooreAdj
Data.Category.Dialg
ENat
1 (Type/Class)
Data.Category.Enriched
2 (Data Constructor)
Data.Category.Enriched
End
Data.Category.Enriched
end
Data.Category.Enriched
endCounit
Data.Category.Enriched
endFactorizer
Data.Category.Enriched
EndFunctor
1 (Type/Class)
Data.Category.Enriched
2 (Data Constructor)
Data.Category.Enriched
Endo
Data.Category.NaturalTransformation
EndoFunctorCompose
Data.Category.NaturalTransformation
EOp
1 (Type/Class)
Data.Category.Enriched
2 (Data Constructor)
Data.Category.Enriched
ExpFunctor
1 (Type/Class)
Data.Category.CartesianClosed
2 (Data Constructor)
Data.Category.CartesianClosed
Exponential
Data.Category.CartesianClosed
F2T
Data.Category.Boolean
falseCoproductComonoid
Data.Category.Boolean
falseCoproductMonoid
Data.Category.Boolean
falseProductComonoid
Data.Category.Boolean
FArr
Data.Category.Enriched
Fin
Data.Category.Simplex
Fix
1 (Type/Class)
Data.Category.Fix
2 (Data Constructor)
Data.Category.Fix
flip
Data.Category.CartesianClosed
Fls
1 (Data Constructor)
Data.Category.Boolean
2 (Type/Class)
Data.Category.Boolean
Forget
1 (Type/Class)
Data.Category.Simplex
2 (Data Constructor)
Data.Category.Simplex
3 (Type/Class)
Data.Category.Cube
4 (Data Constructor)
Data.Category.Cube
ForgetAlg
1 (Type/Class)
Data.Category.Dialg
2 (Data Constructor)
Data.Category.Dialg
FreeAlg
1 (Type/Class)
Data.Category.Dialg
2 (Data Constructor)
Data.Category.Dialg
freeAlg
Data.Category.Dialg
fromSelf
Data.Category.Enriched
fromYoneda
Data.Category.Yoneda
Fs
Data.Category.Simplex
FunCat
Data.Category.Enriched
Functor
Data.Category.Functor
FunctorCompose
1 (Type/Class)
Data.Category.NaturalTransformation
2 (Data Constructor)
Data.Category.NaturalTransformation
FunctorOf
Data.Category.Functor
Fz
Data.Category.Simplex
getHaskEnd
Data.Category.Enriched
getSelf
Data.Category.Enriched
HasBinaryCoproducts
Data.Category.Limit
HasBinaryProducts
Data.Category.Limit
HasColimits
1 (Type/Class)
Data.Category.Limit
2 (Type/Class)
Data.Category.Enriched
HasEnds
Data.Category.Enriched
HasInitialObject
Data.Category.Limit
HaskEnd
1 (Type/Class)
Data.Category.Enriched
2 (Data Constructor)
Data.Category.Enriched
haskIsTotal
Data.Category.Yoneda
haskUnit
Data.Category.Yoneda
HasLeftKan
Data.Category.KanExtension
HasLimits
1 (Type/Class)
Data.Category.Limit
2 (Type/Class)
Data.Category.Enriched
HasNaturalNumberObject
Data.Category.NNO
HasRightKan
Data.Category.KanExtension
HasTerminalObject
Data.Category.Limit
Hom
1 (Type/Class)
Data.Category.Functor
2 (Data Constructor)
Data.Category.Functor
hom
Data.Category.Enriched
HomF
1 (Type/Class)
Data.Category.Functor
2 (Data Constructor)
Data.Category.Functor
HomX_
Data.Category.Functor
Hom_X
Data.Category.Functor
I1
1 (Data Constructor)
Data.Category.Coproduct
2 (Type/Class)
Data.Category.Coproduct
I12
Data.Category.Coproduct
I1A
Data.Category.Coproduct
I2
1 (Data Constructor)
Data.Category.Coproduct
2 (Type/Class)
Data.Category.Coproduct
I2A
Data.Category.Coproduct
Id
1 (Type/Class)
Data.Category.Functor
2 (Data Constructor)
Data.Category.Functor
3 (Type/Class)
Data.Category.Enriched
4 (Data Constructor)
Data.Category.Enriched
id
Data.Category.Enriched
idAdj
Data.Category.Adjunction
idComonad
Data.Category.Monoidal
idMonad
Data.Category.Monoidal
idPostcomp
Data.Category.NaturalTransformation
idPostcompInv
Data.Category.NaturalTransformation
idPrecomp
Data.Category.NaturalTransformation
idPrecompInv
Data.Category.NaturalTransformation
InHask
1 (Type/Class)
Data.Category.Enriched
2 (Data Constructor)
Data.Category.Enriched
InitialFAlgebra
Data.Category.Dialg
initialize
Data.Category.Limit
Initializer
1 (Type/Class)
Data.Category.Boolean
2 (Data Constructor)
Data.Category.Boolean
initializerColimitAdj
Data.Category.Boolean
InitialObject
Data.Category.Limit
initialObject
Data.Category.Limit
initialPropAdjunction
Data.Category.RepresentableFunctor
InitialUniversal
Data.Category.RepresentableFunctor
initialUniversal
Data.Category.RepresentableFunctor
initialUniversalComma
Data.Category.Comma
Inj1
1 (Type/Class)
Data.Category.Coproduct
2 (Data Constructor)
Data.Category.Coproduct
inj1
Data.Category.Limit
Inj2
1 (Type/Class)
Data.Category.Coproduct
2 (Data Constructor)
Data.Category.Coproduct
inj2
Data.Category.Limit
Kind
Data.Category
Kleisli
1 (Type/Class)
Data.Category.Kleisli
2 (Data Constructor)
Data.Category.Kleisli
kleisliAdj
Data.Category.Kleisli
KleisliForget
1 (Type/Class)
Data.Category.Kleisli
2 (Data Constructor)
Data.Category.Kleisli
KleisliFree
1 (Type/Class)
Data.Category.Kleisli
2 (Data Constructor)
Data.Category.Kleisli
kleisliId
Data.Category.Kleisli
Lan
Data.Category.KanExtension
lan
Data.Category.KanExtension
lanAdj
Data.Category.KanExtension
lanF
Data.Category.KanExtension
lanF'
Data.Category.KanExtension
lanFactorizer
Data.Category.KanExtension
LanFam
Data.Category.KanExtension
LanFunctor
1 (Type/Class)
Data.Category.KanExtension
2 (Data Constructor)
Data.Category.KanExtension
LanHask
1 (Type/Class)
Data.Category.KanExtension
2 (Data Constructor)
Data.Category.KanExtension
LanHaskF
1 (Type/Class)
Data.Category.KanExtension
2 (Data Constructor)
Data.Category.KanExtension
leftAdjoint
Data.Category.Adjunction
leftAdjointPreservesColimits
Data.Category.Limit
leftAdjointPreservesColimitsInv
Data.Category.Limit
leftAdjunct
Data.Category.Adjunction
leftAdjunctN
Data.Category.Adjunction
leftUnitor
Data.Category.Monoidal
leftUnitorInv
Data.Category.Monoidal
Lim
Data.Category.Enriched
Limit
Data.Category.Limit
limit
1 (Function)
Data.Category.Limit
2 (Function)
Data.Category.Enriched
limitAdj
Data.Category.Limit
limitFactorizer
Data.Category.Limit
LimitFam
Data.Category.Limit
LimitFunctor
1 (Type/Class)
Data.Category.Limit
2 (Data Constructor)
Data.Category.Limit
limitInv
Data.Category.Enriched
limitObj
Data.Category.Enriched
M
Data.Category.Cube
M1
1 (Type/Class)
Data.Category.Yoneda
2 (Data Constructor)
Data.Category.Yoneda
Magic
1 (Type/Class)
Data.Category.Void
2 (Data Constructor)
Data.Category.Void
magic
Data.Category.Void
map
Data.Category.Enriched
mkAdjunction
Data.Category.Adjunction
mkAdjunctionInit
Data.Category.Adjunction
mkAdjunctionTerm
Data.Category.Adjunction
mkAdjunctionUnits
Data.Category.Adjunction
mkComonad
Data.Category.Monoidal
mkMonad
Data.Category.Monoidal
Monad
Data.Category.Monoidal
monadFunctor
Data.Category.Monoidal
MonoidAsCategory
Data.Category.Monoidal
MonoidObject
1 (Type/Class)
Data.Category.Monoidal
2 (Data Constructor)
Data.Category.Monoidal
MonoidValue
Data.Category.Monoidal
multiply
Data.Category.Monoidal
Nat
1 (Type/Class)
Data.Category.NaturalTransformation
2 (Data Constructor)
Data.Category.NaturalTransformation
NatAsFunctor
1 (Type/Class)
Data.Category.Coproduct
2 (Data Constructor)
Data.Category.Coproduct
natId
Data.Category.NaturalTransformation
NatNum
1 (Type/Class)
Data.Category.Dialg
2 (Type/Class)
Data.Category.NNO
NaturalNumberObject
Data.Category.NNO
Nil
Data.Category.Cube
o
Data.Category.NaturalTransformation
Obj
Data.Category
ObjectsFOver
Data.Category.Comma
ObjectsFUnder
Data.Category.Comma
ObjectsOver
Data.Category.Comma
ObjectsUnder
Data.Category.Comma
Omega
Data.Category.Fix
One
1 (Data Constructor)
Data.Category.Enriched
2 (Type/Class)
Data.Category.Enriched
Op
1 (Type/Class)
Data.Category
2 (Data Constructor)
Data.Category
OpOp
1 (Type/Class)
Data.Category.Functor
2 (Data Constructor)
Data.Category.Functor
OpOpInv
1 (Type/Class)
Data.Category.Functor
2 (Data Constructor)
Data.Category.Functor
Opposite
1 (Type/Class)
Data.Category.Functor
2 (Data Constructor)
Data.Category.Functor
3 (Type/Class)
Data.Category.Enriched
4 (Data Constructor)
Data.Category.Enriched
P
Data.Category.Cube
Poset3
Data.Category.Enriched
PosetTest
Data.Category.Enriched
Postcompose
1 (Type/Class)
Data.Category.NaturalTransformation
2 (Data Constructor)
Data.Category.NaturalTransformation
postcomposeAdj
Data.Category.Adjunction
Precompose
1 (Type/Class)
Data.Category.NaturalTransformation
2 (Data Constructor)
Data.Category.NaturalTransformation
precomposeAdj
Data.Category.Adjunction
Presheaves
Data.Category.NaturalTransformation
primRec
1 (Function)
Data.Category.Dialg
2 (Function)
Data.Category.NNO
prodAdj
Data.Category.Limit
productComonoid
Data.Category.Monoidal
ProductFunctor
1 (Type/Class)
Data.Category.Limit
2 (Data Constructor)
Data.Category.Limit
Profunctors
Data.Category.NaturalTransformation
Proj1
1 (Type/Class)
Data.Category.Functor
2 (Data Constructor)
Data.Category.Functor
proj1
Data.Category.Limit
Proj2
1 (Type/Class)
Data.Category.Functor
2 (Data Constructor)
Data.Category.Functor
proj2
Data.Category.Limit
PShExponential
Data.Category.CartesianClosed
PshExponential
Data.Category.CartesianClosed
Ran
Data.Category.KanExtension
ran
Data.Category.KanExtension
ranAdj
Data.Category.KanExtension
ranF
Data.Category.KanExtension
ranF'
Data.Category.KanExtension
ranFactorizer
Data.Category.KanExtension
RanFam
Data.Category.KanExtension
RanFunctor
1 (Type/Class)
Data.Category.KanExtension
2 (Data Constructor)
Data.Category.KanExtension
RanHask
1 (Type/Class)
Data.Category.KanExtension
2 (Data Constructor)
Data.Category.KanExtension
RanHaskF
1 (Type/Class)
Data.Category.KanExtension
2 (Data Constructor)
Data.Category.KanExtension
Replicate
1 (Type/Class)
Data.Category.Simplex
2 (Data Constructor)
Data.Category.Simplex
represent
Data.Category.RepresentableFunctor
Representable
1 (Type/Class)
Data.Category.RepresentableFunctor
2 (Data Constructor)
Data.Category.RepresentableFunctor
representedFunctor
Data.Category.RepresentableFunctor
representingObject
Data.Category.RepresentableFunctor
rightAdjoint
Data.Category.Adjunction
rightAdjointPreservesLimits
Data.Category.Limit
rightAdjointPreservesLimitsInv
Data.Category.Limit
rightAdjunct
Data.Category.Adjunction
rightAdjunctN
Data.Category.Adjunction
rightUnitor
Data.Category.Monoidal
rightUnitorInv
Data.Category.Monoidal
S
1 (Type/Class)
Data.Category.Simplex
2 (Data Constructor)
Data.Category.Dialg
3 (Data Constructor)
Data.Category.Cube
4 (Type/Class)
Data.Category.Cube
5 (Type/Class)
Data.Category.Fix
6 (Data Constructor)
Data.Category.Fix
7 (Data Constructor)
Data.Category.NNO
S0
Data.Category.Cube
Self
1 (Type/Class)
Data.Category.Enriched
2 (Data Constructor)
Data.Category.Enriched
Sign
Data.Category.Cube
Sign0
Data.Category.Cube
Simplex
Data.Category.Simplex
SM
Data.Category.Cube
SP
Data.Category.Cube
src
Data.Category
srcF
Data.Category.NaturalTransformation
SrcFunctor
Data.Category.Boolean
Star
1 (Type/Class)
Data.Category.Functor
2 (Data Constructor)
Data.Category.Functor
State
Data.Category.CartesianClosed
stateMonadJoin
Data.Category.CartesianClosed
stateMonadReturn
Data.Category.CartesianClosed
suc
Data.Category.Simplex
succ
Data.Category.NNO
Swap
1 (Type/Class)
Data.Category.Functor
2 (Data Constructor)
Data.Category.Functor
swap
Data.Category.Monoidal
SymmetricTensorProduct
Data.Category.Monoidal
TensorProduct
Data.Category.Monoidal
TerminalFAlgebra
Data.Category.Dialg
TerminalObject
Data.Category.Limit
terminalObject
Data.Category.Limit
terminalPropAdjunction
Data.Category.RepresentableFunctor
TerminalUniversal
Data.Category.RepresentableFunctor
terminalUniversal
Data.Category.RepresentableFunctor
terminalUniversalComma
Data.Category.Comma
terminate
Data.Category.Limit
Terminator
1 (Type/Class)
Data.Category.Boolean
2 (Data Constructor)
Data.Category.Boolean
terminatorLimitAdj
Data.Category.Boolean
tgt
Data.Category
tgtF
Data.Category.NaturalTransformation
TgtFunctor
Data.Category.Boolean
Three
1 (Data Constructor)
Data.Category.Enriched
2 (Type/Class)
Data.Category.Enriched
toSelf
Data.Category.Enriched
toYoneda
Data.Category.Yoneda
trivialComonoid
Data.Category.Monoidal
trivialMonoid
Data.Category.Monoidal
Tru
1 (Data Constructor)
Data.Category.Boolean
2 (Type/Class)
Data.Category.Boolean
trueCoproductMonoid
Data.Category.Boolean
trueProductComonoid
Data.Category.Boolean
trueProductMonoid
Data.Category.Boolean
Tuple
1 (Type/Class)
Data.Category.NaturalTransformation
2 (Data Constructor)
Data.Category.NaturalTransformation
tuple
Data.Category.CartesianClosed
Tuple1
1 (Type/Class)
Data.Category.Functor
2 (Data Constructor)
Data.Category.Functor
Tuple2
1 (Type/Class)
Data.Category.Functor
2 (Data Constructor)
Data.Category.Functor
Two
1 (Data Constructor)
Data.Category.Enriched
2 (Type/Class)
Data.Category.Enriched
uncurry
Data.Category.CartesianClosed
Underlying
1 (Type/Class)
Data.Category.Enriched
2 (Data Constructor)
Data.Category.Enriched
UnderlyingF
1 (Type/Class)
Data.Category.Enriched
2 (Data Constructor)
Data.Category.Enriched
Unit
1 (Type/Class)
Data.Category.Unit
2 (Data Constructor)
Data.Category.Unit
3 (Type/Class)
Data.Category.Monoidal
unit
Data.Category.Monoidal
unitObject
Data.Category.Monoidal
universalElement
Data.Category.RepresentableFunctor
universalMonoid
Data.Category.Simplex
unOp
Data.Category
unrepresent
Data.Category.RepresentableFunctor
Unwrap
1 (Type/Class)
Data.Category.Fix
2 (Data Constructor)
Data.Category.Fix
V
Data.Category.Enriched
Void
Data.Category.Void
voidNat
Data.Category.Void
VProfunctor
Data.Category.Enriched
WeigtedColimit
Data.Category.Enriched
WeigtedLimit
Data.Category.Enriched
Wrap
1 (Type/Class)
Data.Category.NaturalTransformation
2 (Data Constructor)
Data.Category.NaturalTransformation
3 (Type/Class)
Data.Category.Fix
4 (Data Constructor)
Data.Category.Fix
WrapTensor
Data.Category.Fix
X
1 (Data Constructor)
Data.Category.Simplex
2 (Data Constructor)
Data.Category.Cube
Y
1 (Data Constructor)
Data.Category.Simplex
2 (Data Constructor)
Data.Category.Cube
3 (Type/Class)
Data.Category.Enriched
4 (Data Constructor)
Data.Category.Enriched
Yoneda
1 (Type/Class)
Data.Category.Yoneda
2 (Data Constructor)
Data.Category.Yoneda
yoneda
Data.Category.Enriched
YonedaEmbedding
1 (Type/Class)
Data.Category.Yoneda
2 (Data Constructor)
Data.Category.Yoneda
yonedaInv
Data.Category.Enriched
Z
1 (Data Constructor)
Data.Category.Simplex
2 (Type/Class)
Data.Category.Simplex
3 (Data Constructor)
Data.Category.Dialg
4 (Data Constructor)
Data.Category.Cube
5 (Type/Class)
Data.Category.Cube
6 (Type/Class)
Data.Category.Fix
7 (Data Constructor)
Data.Category.Fix
8 (Data Constructor)
Data.Category.NNO
z2s
Data.Category.Fix
Zero
Data.Category.Limit
zero
Data.Category.NNO
^^^
Data.Category.CartesianClosed
|||
Data.Category.Limit