data-category-0.10: Category theory

LicenseBSD-style (see the file LICENSE)
Maintainersjoerd@w3future.com
Stabilityexperimental
Portabilitynon-portable
Safe HaskellSafe
LanguageHaskell2010

Data.Category.Product

Description

 

Documentation

data (:**:) :: (* -> * -> *) -> (* -> * -> *) -> * -> * -> * where Source #

Constructors

(:**:) :: c1 a1 b1 -> c2 a2 b2 -> (:**:) c1 c2 (a1, a2) (b1, b2) 
Instances
(Category c1, Category c2) => Category (c1 :**: c2 :: Type -> Type -> Type) Source #

The product category of categories c1 and c2.

Instance details

Defined in Data.Category.Product

Methods

src :: (c1 :**: c2) a b -> Obj (c1 :**: c2) a Source #

tgt :: (c1 :**: c2) a b -> Obj (c1 :**: c2) b Source #

(.) :: (c1 :**: c2) b c -> (c1 :**: c2) a b -> (c1 :**: c2) a c Source #

(HasBinaryCoproducts c1, HasBinaryCoproducts c2) => HasBinaryCoproducts (c1 :**: c2 :: Type -> Type -> Type) Source #

The binary coproduct of the product of 2 categories is the product of their binary coproducts.

Instance details

Defined in Data.Category.Limit

Associated Types

type BinaryCoproduct (c1 :**: c2) x y :: Kind k Source #

Methods

inj1 :: Obj (c1 :**: c2) x -> Obj (c1 :**: c2) y -> (c1 :**: c2) x (BinaryCoproduct (c1 :**: c2) x y) Source #

inj2 :: Obj (c1 :**: c2) x -> Obj (c1 :**: c2) y -> (c1 :**: c2) y (BinaryCoproduct (c1 :**: c2) x y) Source #

(|||) :: (c1 :**: c2) x a -> (c1 :**: c2) y a -> (c1 :**: c2) (BinaryCoproduct (c1 :**: c2) x y) a Source #

(+++) :: (c1 :**: c2) a1 b1 -> (c1 :**: c2) a2 b2 -> (c1 :**: c2) (BinaryCoproduct (c1 :**: c2) a1 a2) (BinaryCoproduct (c1 :**: c2) b1 b2) Source #

(HasBinaryProducts c1, HasBinaryProducts c2) => HasBinaryProducts (c1 :**: c2 :: Type -> Type -> Type) Source #

The binary product of the product of 2 categories is the product of their binary products.

Instance details

Defined in Data.Category.Limit

Associated Types

type BinaryProduct (c1 :**: c2) x y :: Kind k Source #

Methods

proj1 :: Obj (c1 :**: c2) x -> Obj (c1 :**: c2) y -> (c1 :**: c2) (BinaryProduct (c1 :**: c2) x y) x Source #

proj2 :: Obj (c1 :**: c2) x -> Obj (c1 :**: c2) y -> (c1 :**: c2) (BinaryProduct (c1 :**: c2) x y) y Source #

(&&&) :: (c1 :**: c2) a x -> (c1 :**: c2) a y -> (c1 :**: c2) a (BinaryProduct (c1 :**: c2) x y) Source #

(***) :: (c1 :**: c2) a1 b1 -> (c1 :**: c2) a2 b2 -> (c1 :**: c2) (BinaryProduct (c1 :**: c2) a1 a2) (BinaryProduct (c1 :**: c2) b1 b2) Source #

(HasInitialObject c1, HasInitialObject c2) => HasInitialObject (c1 :**: c2 :: Type -> Type -> Type) Source #

The initial object of the product of 2 categories is the product of their initial objects.

Instance details

Defined in Data.Category.Limit

Associated Types

type InitialObject (c1 :**: c2) :: Kind k Source #

Methods

initialObject :: Obj (c1 :**: c2) (InitialObject (c1 :**: c2)) Source #

initialize :: Obj (c1 :**: c2) a -> (c1 :**: c2) (InitialObject (c1 :**: c2)) a Source #

(HasTerminalObject c1, HasTerminalObject c2) => HasTerminalObject (c1 :**: c2 :: Type -> Type -> Type) Source #

The terminal object of the product of 2 categories is the product of their terminal objects.

Instance details

Defined in Data.Category.Limit

Associated Types

type TerminalObject (c1 :**: c2) :: Kind k Source #

Methods

terminalObject :: Obj (c1 :**: c2) (TerminalObject (c1 :**: c2)) Source #

terminate :: Obj (c1 :**: c2) a -> (c1 :**: c2) a (TerminalObject (c1 :**: c2)) Source #

type InitialObject (c1 :**: c2 :: Type -> Type -> Type) Source # 
Instance details

Defined in Data.Category.Limit

type InitialObject (c1 :**: c2 :: Type -> Type -> Type) = (InitialObject c1, InitialObject c2)
type TerminalObject (c1 :**: c2 :: Type -> Type -> Type) Source # 
Instance details

Defined in Data.Category.Limit

type TerminalObject (c1 :**: c2 :: Type -> Type -> Type) = (TerminalObject c1, TerminalObject c2)
type BinaryCoproduct (c1 :**: c2 :: Type -> Type -> Type) ((x1, x2) :: Kind (c1 :**: c2)) ((y1, y2) :: Kind (c1 :**: c2)) Source # 
Instance details

Defined in Data.Category.Limit

type BinaryCoproduct (c1 :**: c2 :: Type -> Type -> Type) ((x1, x2) :: Kind (c1 :**: c2)) ((y1, y2) :: Kind (c1 :**: c2)) = (BinaryCoproduct c1 x1 y1, BinaryCoproduct c2 x2 y2)
type BinaryProduct (c1 :**: c2 :: Type -> Type -> Type) ((x1, x2) :: Kind (c1 :**: c2)) ((y1, y2) :: Kind (c1 :**: c2)) Source # 
Instance details

Defined in Data.Category.Limit

type BinaryProduct (c1 :**: c2 :: Type -> Type -> Type) ((x1, x2) :: Kind (c1 :**: c2)) ((y1, y2) :: Kind (c1 :**: c2)) = (BinaryProduct c1 x1 y1, BinaryProduct c2 x2 y2)