{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE Unsafe #-}
{-# OPTIONS_HADDOCK show-extensions not-home #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
module Clash.Sized.Internal.Signed
(
Signed (..)
, size#
, pack#
, unpack#
, eq#
, neq#
, lt#
, ge#
, gt#
, le#
, toEnum#
, fromEnum#
, enumFrom#
, enumFromThen#
, enumFromTo#
, enumFromThenTo#
, minBound#
, maxBound#
, (+#)
, (-#)
, (*#)
, negate#
, abs#
, fromInteger#
, plus#
, minus#
, times#
, quot#
, rem#
, div#
, mod#
, toInteger#
, and#
, or#
, xor#
, complement#
, shiftL#
, shiftR#
, rotateL#
, rotateR#
, resize#
, truncateB#
, minBoundSym#
)
where
import Prelude hiding (odd, even)
import Control.DeepSeq (NFData (..))
import Control.Lens (Index, Ixed (..), IxValue)
import Data.Bits (Bits (..), FiniteBits (..))
import Data.Data (Data)
import Data.Default.Class (Default (..))
import Data.Proxy (Proxy (..))
import Text.Read (Read (..), ReadPrec)
import Text.Printf (PrintfArg (..), printf)
import GHC.Generics (Generic)
import GHC.Natural (naturalFromInteger, naturalToInteger)
import GHC.TypeLits (KnownNat, Nat, type (+), natVal)
import GHC.TypeLits.Extra (Max)
import Data.Ix (Ix(..))
import Language.Haskell.TH (appT, conT, litT, numTyLit, sigE)
import Language.Haskell.TH.Syntax (Lift(..))
#if MIN_VERSION_template_haskell(2,16,0)
import Language.Haskell.TH.Compat
#endif
#if MIN_VERSION_template_haskell(2,17,0)
import Language.Haskell.TH (Quote, Type)
#else
import Language.Haskell.TH (TypeQ)
#endif
import Test.QuickCheck.Arbitrary (Arbitrary (..), CoArbitrary (..),
arbitraryBoundedIntegral,
coarbitraryIntegral, shrinkIntegral)
import Clash.Annotations.Primitive (hasBlackBox)
import Clash.Class.BitPack (BitPack (..), packXWith)
import Clash.Class.Num (ExtendingNum (..), SaturatingNum (..),
SaturationMode (..))
import Clash.Class.Parity (Parity (..))
import Clash.Class.Resize (Resize (..))
import Clash.Class.BitPack.BitIndex ((!), msb, replaceBit, split)
import Clash.Class.BitPack.BitReduction (reduceAnd, reduceOr)
import Clash.Promoted.Nat (natToNatural)
import Clash.Sized.Internal.BitVector (BitVector (BV), Bit, (++#), high, low, undefError)
import qualified Clash.Sized.Internal.BitVector as BV
import Clash.XException
(ShowX (..), NFDataX (..), errorX, showsPrecXWith, rwhnfX)
type role Signed nominal
#if MIN_VERSION_base(4,15,0) && !MIN_VERSION_base(4,17,0)
data Signed (n :: Nat) =
S { unsafeToInteger :: !Integer}
#else
newtype Signed (n :: Nat) =
S { Signed n -> Integer
unsafeToInteger :: Integer}
#endif
deriving (Typeable (Signed n)
DataType
Constr
Typeable (Signed n)
-> (forall (c :: Type -> Type).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Signed n -> c (Signed n))
-> (forall (c :: Type -> Type).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Signed n))
-> (Signed n -> Constr)
-> (Signed n -> DataType)
-> (forall (t :: Type -> Type) (c :: Type -> Type).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Signed n)))
-> (forall (t :: Type -> Type -> Type) (c :: Type -> Type).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Signed n)))
-> ((forall b. Data b => b -> b) -> Signed n -> Signed n)
-> (forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Signed n -> r)
-> (forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Signed n -> r)
-> (forall u. (forall d. Data d => d -> u) -> Signed n -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> Signed n -> u)
-> (forall (m :: Type -> Type).
Monad m =>
(forall d. Data d => d -> m d) -> Signed n -> m (Signed n))
-> (forall (m :: Type -> Type).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Signed n -> m (Signed n))
-> (forall (m :: Type -> Type).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Signed n -> m (Signed n))
-> Data (Signed n)
Signed n -> DataType
Signed n -> Constr
(forall b. Data b => b -> b) -> Signed n -> Signed n
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Signed n -> c (Signed n)
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Signed n)
forall a.
Typeable a
-> (forall (c :: Type -> Type).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: Type -> Type).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: Type -> Type) (c :: Type -> Type).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: Type -> Type -> Type) (c :: Type -> Type).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: Type -> Type).
Monad m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: Type -> Type).
MonadPlus m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: Type -> Type).
MonadPlus m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> Signed n -> u
forall u. (forall d. Data d => d -> u) -> Signed n -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Signed n -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Signed n -> r
forall (n :: Nat). KnownNat n => Typeable (Signed n)
forall (n :: Nat). KnownNat n => Signed n -> DataType
forall (n :: Nat). KnownNat n => Signed n -> Constr
forall (n :: Nat).
KnownNat n =>
(forall b. Data b => b -> b) -> Signed n -> Signed n
forall (n :: Nat) u.
KnownNat n =>
Int -> (forall d. Data d => d -> u) -> Signed n -> u
forall (n :: Nat) u.
KnownNat n =>
(forall d. Data d => d -> u) -> Signed n -> [u]
forall (n :: Nat) r r'.
KnownNat n =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Signed n -> r
forall (n :: Nat) r r'.
KnownNat n =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Signed n -> r
forall (n :: Nat) (m :: Type -> Type).
(KnownNat n, Monad m) =>
(forall d. Data d => d -> m d) -> Signed n -> m (Signed n)
forall (n :: Nat) (m :: Type -> Type).
(KnownNat n, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Signed n -> m (Signed n)
forall (n :: Nat) (c :: Type -> Type).
KnownNat n =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Signed n)
forall (n :: Nat) (c :: Type -> Type).
KnownNat n =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Signed n -> c (Signed n)
forall (n :: Nat) (t :: Type -> Type) (c :: Type -> Type).
(KnownNat n, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Signed n))
forall (n :: Nat) (t :: Type -> Type -> Type) (c :: Type -> Type).
(KnownNat n, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Signed n))
forall (m :: Type -> Type).
Monad m =>
(forall d. Data d => d -> m d) -> Signed n -> m (Signed n)
forall (m :: Type -> Type).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Signed n -> m (Signed n)
forall (c :: Type -> Type).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Signed n)
forall (c :: Type -> Type).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Signed n -> c (Signed n)
forall (t :: Type -> Type) (c :: Type -> Type).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (Signed n))
forall (t :: Type -> Type -> Type) (c :: Type -> Type).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Signed n))
$cS :: Constr
$tSigned :: DataType
gmapMo :: (forall d. Data d => d -> m d) -> Signed n -> m (Signed n)
$cgmapMo :: forall (n :: Nat) (m :: Type -> Type).
(KnownNat n, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Signed n -> m (Signed n)
gmapMp :: (forall d. Data d => d -> m d) -> Signed n -> m (Signed n)
$cgmapMp :: forall (n :: Nat) (m :: Type -> Type).
(KnownNat n, MonadPlus m) =>
(forall d. Data d => d -> m d) -> Signed n -> m (Signed n)
gmapM :: (forall d. Data d => d -> m d) -> Signed n -> m (Signed n)
$cgmapM :: forall (n :: Nat) (m :: Type -> Type).
(KnownNat n, Monad m) =>
(forall d. Data d => d -> m d) -> Signed n -> m (Signed n)
gmapQi :: Int -> (forall d. Data d => d -> u) -> Signed n -> u
$cgmapQi :: forall (n :: Nat) u.
KnownNat n =>
Int -> (forall d. Data d => d -> u) -> Signed n -> u
gmapQ :: (forall d. Data d => d -> u) -> Signed n -> [u]
$cgmapQ :: forall (n :: Nat) u.
KnownNat n =>
(forall d. Data d => d -> u) -> Signed n -> [u]
gmapQr :: (r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Signed n -> r
$cgmapQr :: forall (n :: Nat) r r'.
KnownNat n =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Signed n -> r
gmapQl :: (r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Signed n -> r
$cgmapQl :: forall (n :: Nat) r r'.
KnownNat n =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Signed n -> r
gmapT :: (forall b. Data b => b -> b) -> Signed n -> Signed n
$cgmapT :: forall (n :: Nat).
KnownNat n =>
(forall b. Data b => b -> b) -> Signed n -> Signed n
dataCast2 :: (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Signed n))
$cdataCast2 :: forall (n :: Nat) (t :: Type -> Type -> Type) (c :: Type -> Type).
(KnownNat n, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Signed n))
dataCast1 :: (forall d. Data d => c (t d)) -> Maybe (c (Signed n))
$cdataCast1 :: forall (n :: Nat) (t :: Type -> Type) (c :: Type -> Type).
(KnownNat n, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (Signed n))
dataTypeOf :: Signed n -> DataType
$cdataTypeOf :: forall (n :: Nat). KnownNat n => Signed n -> DataType
toConstr :: Signed n -> Constr
$ctoConstr :: forall (n :: Nat). KnownNat n => Signed n -> Constr
gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Signed n)
$cgunfold :: forall (n :: Nat) (c :: Type -> Type).
KnownNat n =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Signed n)
gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Signed n -> c (Signed n)
$cgfoldl :: forall (n :: Nat) (c :: Type -> Type).
KnownNat n =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Signed n -> c (Signed n)
$cp1Data :: forall (n :: Nat). KnownNat n => Typeable (Signed n)
Data, (forall x. Signed n -> Rep (Signed n) x)
-> (forall x. Rep (Signed n) x -> Signed n) -> Generic (Signed n)
forall x. Rep (Signed n) x -> Signed n
forall x. Signed n -> Rep (Signed n) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall (n :: Nat) x. Rep (Signed n) x -> Signed n
forall (n :: Nat) x. Signed n -> Rep (Signed n) x
$cto :: forall (n :: Nat) x. Rep (Signed n) x -> Signed n
$cfrom :: forall (n :: Nat) x. Signed n -> Rep (Signed n) x
Generic)
{-# ANN S hasBlackBox #-}
instance NFDataX (Signed n) where
deepErrorX :: String -> Signed n
deepErrorX = String -> Signed n
forall a. HasCallStack => String -> a
errorX
rnfX :: Signed n -> ()
rnfX = Signed n -> ()
forall a. a -> ()
rwhnfX
{-# CLASH_OPAQUE size# #-}
{-# ANN size# hasBlackBox #-}
size# :: KnownNat n => Signed n -> Int
size# :: Signed n -> Int
size# Signed n
bv = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Signed n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal Signed n
bv)
instance NFData (Signed n) where
rnf :: Signed n -> ()
rnf (S Integer
i) = Integer -> ()
forall a. NFData a => a -> ()
rnf Integer
i () -> () -> ()
`seq` ()
{-# NOINLINE rnf #-}
instance Show (Signed n) where
show :: Signed n -> String
show (S Integer
i) = Integer -> String
forall a. Show a => a -> String
show Integer
i
{-# NOINLINE show #-}
instance ShowX (Signed n) where
showsPrecX :: Int -> Signed n -> ShowS
showsPrecX = (Int -> Signed n -> ShowS) -> Int -> Signed n -> ShowS
forall a. (Int -> a -> ShowS) -> Int -> a -> ShowS
showsPrecXWith Int -> Signed n -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec
instance KnownNat n => Read (Signed n) where
readPrec :: ReadPrec (Signed n)
readPrec = Integer -> Signed n
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Integer -> Signed n) -> ReadPrec Integer -> ReadPrec (Signed n)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> (ReadPrec Integer
forall a. Read a => ReadPrec a
readPrec :: ReadPrec Integer)
instance KnownNat n => BitPack (Signed n) where
type BitSize (Signed n) = n
pack :: Signed n -> BitVector (BitSize (Signed n))
pack = (Signed n -> BitVector n) -> Signed n -> BitVector n
forall (n :: Nat) a.
KnownNat n =>
(a -> BitVector n) -> a -> BitVector n
packXWith Signed n -> BitVector n
forall (n :: Nat). KnownNat n => Signed n -> BitVector n
pack#
unpack :: BitVector (BitSize (Signed n)) -> Signed n
unpack = BitVector (BitSize (Signed n)) -> Signed n
forall (n :: Nat). KnownNat n => BitVector n -> Signed n
unpack#
{-# CLASH_OPAQUE pack# #-}
{-# ANN pack# hasBlackBox #-}
pack# :: forall n . KnownNat n => Signed n -> BitVector n
pack# :: Signed n -> BitVector n
pack# (S Integer
i) = let m :: Integer
m = Integer
1 Integer -> Int -> Integer
`shiftL0` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n))
in if Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
0 then Natural -> Natural -> BitVector n
forall (n :: Nat). Natural -> Natural -> BitVector n
BV Natural
0 (Integer -> Natural
naturalFromInteger (Integer
m Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
i)) else Natural -> Natural -> BitVector n
forall (n :: Nat). Natural -> Natural -> BitVector n
BV Natural
0 (Integer -> Natural
naturalFromInteger Integer
i)
{-# CLASH_OPAQUE unpack# #-}
{-# ANN unpack# hasBlackBox #-}
unpack# :: forall n . KnownNat n => BitVector n -> Signed n
unpack# :: BitVector n -> Signed n
unpack# (BV Natural
0 Natural
i) =
let m :: Integer
m = Integer
1 Integer -> Int -> Integer
`shiftL0` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)
n :: Integer
n = Natural -> Integer
naturalToInteger Natural
i
in if Integer
n Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
m then Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
2Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
m) else Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S Integer
n
unpack# BitVector n
bv = String -> [BitVector n] -> Signed n
forall (n :: Nat) a. KnownNat n => String -> [BitVector n] -> a
undefError String
"Signed.unpack" [BitVector n
bv]
instance Eq (Signed n) where
== :: Signed n -> Signed n -> Bool
(==) = Signed n -> Signed n -> Bool
forall (n :: Nat). Signed n -> Signed n -> Bool
eq#
/= :: Signed n -> Signed n -> Bool
(/=) = Signed n -> Signed n -> Bool
forall (n :: Nat). Signed n -> Signed n -> Bool
neq#
{-# CLASH_OPAQUE eq# #-}
{-# ANN eq# hasBlackBox #-}
eq# :: Signed n -> Signed n -> Bool
eq# :: Signed n -> Signed n -> Bool
eq# (S Integer
v1) (S Integer
v2) = Integer
v1 Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
v2
{-# CLASH_OPAQUE neq# #-}
{-# ANN neq# hasBlackBox #-}
neq# :: Signed n -> Signed n -> Bool
neq# :: Signed n -> Signed n -> Bool
neq# (S Integer
v1) (S Integer
v2) = Integer
v1 Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
/= Integer
v2
instance Ord (Signed n) where
< :: Signed n -> Signed n -> Bool
(<) = Signed n -> Signed n -> Bool
forall (n :: Nat). Signed n -> Signed n -> Bool
lt#
>= :: Signed n -> Signed n -> Bool
(>=) = Signed n -> Signed n -> Bool
forall (n :: Nat). Signed n -> Signed n -> Bool
ge#
> :: Signed n -> Signed n -> Bool
(>) = Signed n -> Signed n -> Bool
forall (n :: Nat). Signed n -> Signed n -> Bool
gt#
<= :: Signed n -> Signed n -> Bool
(<=) = Signed n -> Signed n -> Bool
forall (n :: Nat). Signed n -> Signed n -> Bool
le#
lt#,ge#,gt#,le# :: Signed n -> Signed n -> Bool
{-# CLASH_OPAQUE lt# #-}
{-# ANN lt# hasBlackBox #-}
lt# :: Signed n -> Signed n -> Bool
lt# (S Integer
n) (S Integer
m) = Integer
n Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
m
{-# CLASH_OPAQUE ge# #-}
{-# ANN ge# hasBlackBox #-}
ge# :: Signed n -> Signed n -> Bool
ge# (S Integer
n) (S Integer
m) = Integer
n Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
m
{-# CLASH_OPAQUE gt# #-}
{-# ANN gt# hasBlackBox #-}
gt# :: Signed n -> Signed n -> Bool
gt# (S Integer
n) (S Integer
m) = Integer
n Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
m
{-# CLASH_OPAQUE le# #-}
{-# ANN le# hasBlackBox #-}
le# :: Signed n -> Signed n -> Bool
le# (S Integer
n) (S Integer
m) = Integer
n Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
m
instance KnownNat n => Enum (Signed n) where
succ :: Signed n -> Signed n
succ Signed n
n
| Signed n
n Signed n -> Signed n -> Bool
forall a. Eq a => a -> a -> Bool
== Signed n
forall a. Bounded a => a
maxBound =
String -> Signed n
forall a. HasCallStack => String -> a
error (String -> Signed n) -> String -> Signed n
forall a b. (a -> b) -> a -> b
$ String
"'succ' was called on (" String -> ShowS
forall a. Semigroup a => a -> a -> a
<> Signed n -> String
forall a. Show a => a -> String
show @(Signed n) Signed n
forall a. Bounded a => a
maxBound String -> ShowS
forall a. Semigroup a => a -> a -> a
<> String
" :: "
String -> ShowS
forall a. Semigroup a => a -> a -> a
<> String
"Signed " String -> ShowS
forall a. Semigroup a => a -> a -> a
<> Natural -> String
forall a. Show a => a -> String
show (KnownNat n => Natural
forall (n :: Nat). KnownNat n => Natural
natToNatural @n) String -> ShowS
forall a. Semigroup a => a -> a -> a
<> String
") and caused an "
String -> ShowS
forall a. Semigroup a => a -> a -> a
<> String
"overflow. Use 'satSucc' and specify a SaturationMode if you "
String -> ShowS
forall a. Semigroup a => a -> a -> a
<> String
"need other behavior."
| Bool
otherwise = Signed n
n Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
+# Integer -> Signed n
forall (n :: Nat). KnownNat n => Integer -> Signed n
fromInteger# Integer
1
pred :: Signed n -> Signed n
pred Signed n
n
| Signed n
n Signed n -> Signed n -> Bool
forall a. Eq a => a -> a -> Bool
== Signed n
forall a. Bounded a => a
minBound =
String -> Signed n
forall a. HasCallStack => String -> a
error (String -> Signed n) -> String -> Signed n
forall a b. (a -> b) -> a -> b
$ String
"'pred' was called on (" String -> ShowS
forall a. Semigroup a => a -> a -> a
<> Signed n -> String
forall a. Show a => a -> String
show @(Signed n) Signed n
forall a. Bounded a => a
maxBound String -> ShowS
forall a. Semigroup a => a -> a -> a
<> String
" :: "
String -> ShowS
forall a. Semigroup a => a -> a -> a
<> String
"Signed " String -> ShowS
forall a. Semigroup a => a -> a -> a
<> Natural -> String
forall a. Show a => a -> String
show (KnownNat n => Natural
forall (n :: Nat). KnownNat n => Natural
natToNatural @n) String -> ShowS
forall a. Semigroup a => a -> a -> a
<> String
") and caused an "
String -> ShowS
forall a. Semigroup a => a -> a -> a
<> String
"underflow. Use 'satPred' and specify a SaturationMode if you "
String -> ShowS
forall a. Semigroup a => a -> a -> a
<> String
"need other behavior."
| Bool
otherwise = Signed n
n Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
-# Integer -> Signed n
forall (n :: Nat). KnownNat n => Integer -> Signed n
fromInteger# Integer
1
toEnum :: Int -> Signed n
toEnum = Int -> Signed n
forall (n :: Nat). KnownNat n => Int -> Signed n
toEnum#
fromEnum :: Signed n -> Int
fromEnum = Signed n -> Int
forall (n :: Nat). KnownNat n => Signed n -> Int
fromEnum#
enumFrom :: Signed n -> [Signed n]
enumFrom = Signed n -> [Signed n]
forall (n :: Nat). KnownNat n => Signed n -> [Signed n]
enumFrom#
enumFromThen :: Signed n -> Signed n -> [Signed n]
enumFromThen = Signed n -> Signed n -> [Signed n]
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> [Signed n]
enumFromThen#
enumFromTo :: Signed n -> Signed n -> [Signed n]
enumFromTo = Signed n -> Signed n -> [Signed n]
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> [Signed n]
enumFromTo#
enumFromThenTo :: Signed n -> Signed n -> Signed n -> [Signed n]
enumFromThenTo = Signed n -> Signed n -> Signed n -> [Signed n]
forall (n :: Nat).
KnownNat n =>
Signed n -> Signed n -> Signed n -> [Signed n]
enumFromThenTo#
toEnum# :: forall n. KnownNat n => Int -> Signed n
toEnum# :: Int -> Signed n
toEnum# = Integer -> Signed n
forall (n :: Nat). KnownNat n => Integer -> Signed n
fromInteger# (Integer -> Signed n) -> (Int -> Integer) -> Int -> Signed n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger
{-# CLASH_OPAQUE toEnum# #-}
{-# ANN toEnum# hasBlackBox #-}
fromEnum# :: forall n. KnownNat n => Signed n -> Int
= Integer -> Int
forall a. Enum a => a -> Int
fromEnum (Integer -> Int) -> (Signed n -> Integer) -> Signed n -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Signed n -> Integer
forall (n :: Nat). Signed n -> Integer
toInteger#
{-# CLASH_OPAQUE fromEnum# #-}
{-# ANN fromEnum# hasBlackBox #-}
enumFrom# :: forall n. KnownNat n => Signed n -> [Signed n]
enumFrom# :: Signed n -> [Signed n]
enumFrom# Signed n
x = (Integer -> Signed n) -> [Integer] -> [Signed n]
forall a b. (a -> b) -> [a] -> [b]
map (Int -> Integer -> Integer -> Integer -> Signed n
forall (n :: Nat). Int -> Integer -> Integer -> Integer -> Signed n
fromInteger_INLINE Int
sz Integer
mB Integer
mask) [Signed n -> Integer
forall (n :: Nat). Signed n -> Integer
unsafeToInteger Signed n
x .. Signed n -> Integer
forall (n :: Nat). Signed n -> Integer
unsafeToInteger (Signed n
forall a. Bounded a => a
maxBound :: Signed n)]
where sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n)) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
mB :: Integer
mB = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz
mask :: Integer
mask = Integer
mB Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
{-# CLASH_OPAQUE enumFrom# #-}
enumFromThen# :: forall n. KnownNat n => Signed n -> Signed n -> [Signed n]
enumFromThen# :: Signed n -> Signed n -> [Signed n]
enumFromThen# Signed n
x Signed n
y =
[Integer] -> [Signed n]
toSigneds [Signed n -> Integer
forall (n :: Nat). Signed n -> Integer
unsafeToInteger Signed n
x, Signed n -> Integer
forall (n :: Nat). Signed n -> Integer
unsafeToInteger Signed n
y .. Signed n -> Integer
forall (n :: Nat). Signed n -> Integer
unsafeToInteger Signed n
bound]
where
bound :: Signed n
bound = if Signed n
x Signed n -> Signed n -> Bool
forall a. Ord a => a -> a -> Bool
<= Signed n
y then Signed n
forall a. Bounded a => a
maxBound else Signed n
forall a. Bounded a => a
minBound :: Signed n
toSigneds :: [Integer] -> [Signed n]
toSigneds = (Integer -> Signed n) -> [Integer] -> [Signed n]
forall a b. (a -> b) -> [a] -> [b]
map (Int -> Integer -> Integer -> Integer -> Signed n
forall (n :: Nat). Int -> Integer -> Integer -> Integer -> Signed n
fromInteger_INLINE Int
sz Integer
mB Integer
mask)
sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n)) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
mB :: Integer
mB = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz
mask :: Integer
mask = Integer
mB Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
{-# CLASH_OPAQUE enumFromThen# #-}
enumFromTo# :: forall n. KnownNat n => Signed n -> Signed n -> [Signed n]
enumFromTo# :: Signed n -> Signed n -> [Signed n]
enumFromTo# Signed n
x Signed n
y = (Integer -> Signed n) -> [Integer] -> [Signed n]
forall a b. (a -> b) -> [a] -> [b]
map (Int -> Integer -> Integer -> Integer -> Signed n
forall (n :: Nat). Int -> Integer -> Integer -> Integer -> Signed n
fromInteger_INLINE Int
sz Integer
mB Integer
mask) [Signed n -> Integer
forall (n :: Nat). Signed n -> Integer
unsafeToInteger Signed n
x .. Signed n -> Integer
forall (n :: Nat). Signed n -> Integer
unsafeToInteger Signed n
y]
where sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n)) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
mB :: Integer
mB = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz
mask :: Integer
mask = Integer
mB Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
{-# CLASH_OPAQUE enumFromTo# #-}
enumFromThenTo# :: forall n. KnownNat n => Signed n -> Signed n -> Signed n -> [Signed n]
enumFromThenTo# :: Signed n -> Signed n -> Signed n -> [Signed n]
enumFromThenTo# Signed n
x1 Signed n
x2 Signed n
y = (Integer -> Signed n) -> [Integer] -> [Signed n]
forall a b. (a -> b) -> [a] -> [b]
map (Int -> Integer -> Integer -> Integer -> Signed n
forall (n :: Nat). Int -> Integer -> Integer -> Integer -> Signed n
fromInteger_INLINE Int
sz Integer
mB Integer
mask) [Signed n -> Integer
forall (n :: Nat). Signed n -> Integer
unsafeToInteger Signed n
x1, Signed n -> Integer
forall (n :: Nat). Signed n -> Integer
unsafeToInteger Signed n
x2 .. Signed n -> Integer
forall (n :: Nat). Signed n -> Integer
unsafeToInteger Signed n
y]
where sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n)) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
mB :: Integer
mB = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz
mask :: Integer
mask = Integer
mB Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
{-# CLASH_OPAQUE enumFromThenTo# #-}
instance KnownNat n => Bounded (Signed n) where
minBound :: Signed n
minBound = Signed n
forall (n :: Nat). KnownNat n => Signed n
minBound#
maxBound :: Signed n
maxBound = Signed n
forall (n :: Nat). KnownNat n => Signed n
maxBound#
minBound# :: forall n. KnownNat n => Signed n
minBound# :: Signed n
minBound# =
case KnownNat n => Natural
forall (n :: Nat). KnownNat n => Natural
natToNatural @n of
Natural
0 -> Signed n
0
Natural
n -> Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S (Integer -> Integer
forall a. Num a => a -> a
negate (Integer -> Integer) -> Integer -> Integer
forall a b. (a -> b) -> a -> b
$ Integer
2 Integer -> Natural -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^ (Natural
n Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
- Natural
1))
{-# CLASH_OPAQUE minBound# #-}
{-# ANN minBound# hasBlackBox #-}
maxBound# :: forall n. KnownNat n => Signed n
maxBound# :: Signed n
maxBound# =
case KnownNat n => Natural
forall (n :: Nat). KnownNat n => Natural
natToNatural @n of
Natural
0 -> Signed n
0
Natural
n -> Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S (Integer
2 Integer -> Natural -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^ (Natural
n Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
- Natural
1) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)
{-# CLASH_OPAQUE maxBound# #-}
{-# ANN maxBound# hasBlackBox #-}
instance KnownNat n => Num (Signed n) where
+ :: Signed n -> Signed n -> Signed n
(+) = Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
(+#)
(-) = Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
(-#)
* :: Signed n -> Signed n -> Signed n
(*) = Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
(*#)
negate :: Signed n -> Signed n
negate = Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n
negate#
abs :: Signed n -> Signed n
abs = Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n
abs#
signum :: Signed n -> Signed n
signum Signed n
s = if Signed n
s Signed n -> Signed n -> Bool
forall a. Ord a => a -> a -> Bool
< Signed n
0 then (-Signed n
1) else
if Signed n
s Signed n -> Signed n -> Bool
forall a. Ord a => a -> a -> Bool
> Signed n
0 then Signed n
1 else Signed n
0
fromInteger :: Integer -> Signed n
fromInteger = Integer -> Signed n
forall (n :: Nat). KnownNat n => Integer -> Signed n
fromInteger#
(+#), (-#), (*#) :: forall n . KnownNat n => Signed n -> Signed n -> Signed n
{-# CLASH_OPAQUE (+#) #-}
{-# ANN (+#) hasBlackBox #-}
+# :: Signed n -> Signed n -> Signed n
(+#) =
\(S Integer
a) (S Integer
b) ->
let z :: Integer
z = Integer
a Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
b
in if Integer
z Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
m then
Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S (Integer
z Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
2Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
m)
else if Integer
z Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer -> Integer
forall a. Num a => a -> a
negate Integer
m then
Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S (Integer
z Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
2Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
m)
else
Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S Integer
z
where
m :: Integer
m = Integer
1 Integer -> Int -> Integer
`shiftL0` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)
{-# CLASH_OPAQUE (-#) #-}
{-# ANN (-#) hasBlackBox #-}
-# :: Signed n -> Signed n -> Signed n
(-#) =
\(S Integer
a) (S Integer
b) ->
let z :: Integer
z = Integer
a Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
b
in if Integer
z Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer -> Integer
forall a. Num a => a -> a
negate Integer
m then
Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S (Integer
z Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
2Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
m)
else if Integer
z Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
m then
Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S (Integer
z Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
2Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
m)
else
Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S Integer
z
where
m :: Integer
m = Integer
1 Integer -> Int -> Integer
`shiftL0` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)
{-# CLASH_OPAQUE (*#) #-}
{-# ANN (*#) hasBlackBox #-}
*# :: Signed n -> Signed n -> Signed n
(*#) = \(S Integer
a) (S Integer
b) -> Int -> Integer -> Integer -> Integer -> Signed n
forall (n :: Nat). Int -> Integer -> Integer -> Integer -> Signed n
fromInteger_INLINE Int
sz Integer
mB Integer
mask (Integer
a Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* Integer
b)
where sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n)) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
mB :: Integer
mB = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz
mask :: Integer
mask = Integer
mB Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
negate#,abs# :: forall n . KnownNat n => Signed n -> Signed n
{-# CLASH_OPAQUE negate# #-}
{-# ANN negate# hasBlackBox #-}
negate# :: Signed n -> Signed n
negate# =
\(S Integer
n) ->
let z :: Integer
z = Integer -> Integer
forall a. Num a => a -> a
negate Integer
n
in if Integer
z Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
m then Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S Integer
n else Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S Integer
z
where
m :: Integer
m = Integer
1 Integer -> Int -> Integer
`shiftL0` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)
{-# CLASH_OPAQUE abs# #-}
{-# ANN abs# hasBlackBox #-}
abs# :: Signed n -> Signed n
abs# =
\(S Integer
n) ->
let z :: Integer
z = Integer -> Integer
forall a. Num a => a -> a
abs Integer
n
in if Integer
z Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
m then Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S Integer
n else Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S Integer
z
where
m :: Integer
m = Integer
1 Integer -> Int -> Integer
`shiftL0` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)
{-# CLASH_OPAQUE fromInteger# #-}
{-# ANN fromInteger# hasBlackBox #-}
fromInteger# :: forall n . KnownNat n => Integer -> Signed (n :: Nat)
fromInteger# :: Integer -> Signed n
fromInteger# = Int -> Integer -> Integer -> Integer -> Signed n
forall (n :: Nat). Int -> Integer -> Integer -> Integer -> Signed n
fromInteger_INLINE Int
sz Integer
mB Integer
mask
where sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n)) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
mB :: Integer
mB = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz
mask :: Integer
mask = Integer
mB Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
{-# INLINE fromInteger_INLINE #-}
fromInteger_INLINE :: Int -> Integer -> Integer -> Integer -> Signed n
fromInteger_INLINE :: Int -> Integer -> Integer -> Integer -> Signed n
fromInteger_INLINE Int
sz Integer
mb Integer
mask =
\Integer
i -> let i1 :: Integer
i1 = Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. Integer
mask
i2 :: Integer
i2 = case Integer
i Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftR` Int
sz of
Integer
q | Integer
q Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. Integer
1 Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
0 -> Integer
i1
| Bool
otherwise -> Integer
i1 Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
mb
in if Int
sz Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 then Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S Integer
0 else Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S Integer
i2
instance ExtendingNum (Signed m) (Signed n) where
type AResult (Signed m) (Signed n) = Signed (Max m n + 1)
add :: Signed m -> Signed n -> AResult (Signed m) (Signed n)
add = Signed m -> Signed n -> AResult (Signed m) (Signed n)
forall (m :: Nat) (n :: Nat).
Signed m -> Signed n -> Signed (Max m n + 1)
plus#
sub :: Signed m -> Signed n -> AResult (Signed m) (Signed n)
sub = Signed m -> Signed n -> AResult (Signed m) (Signed n)
forall (m :: Nat) (n :: Nat).
Signed m -> Signed n -> Signed (Max m n + 1)
minus#
type MResult (Signed m) (Signed n) = Signed (m + n)
mul :: Signed m -> Signed n -> MResult (Signed m) (Signed n)
mul = Signed m -> Signed n -> MResult (Signed m) (Signed n)
forall (m :: Nat) (n :: Nat).
Signed m -> Signed n -> Signed (m + n)
times#
plus#, minus# :: Signed m -> Signed n -> Signed (Max m n + 1)
{-# CLASH_OPAQUE plus# #-}
{-# ANN plus# hasBlackBox #-}
plus# :: Signed m -> Signed n -> Signed (Max m n + 1)
plus# (S Integer
a) (S Integer
b) = Integer -> Signed (Max m n + 1)
forall (n :: Nat). Integer -> Signed n
S (Integer
a Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
b)
{-# CLASH_OPAQUE minus# #-}
{-# ANN minus# hasBlackBox #-}
minus# :: Signed m -> Signed n -> Signed (Max m n + 1)
minus# (S Integer
a) (S Integer
b) = Integer -> Signed (Max m n + 1)
forall (n :: Nat). Integer -> Signed n
S (Integer
a Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
b)
{-# CLASH_OPAQUE times# #-}
{-# ANN times# hasBlackBox #-}
times# :: Signed m -> Signed n -> Signed (m + n)
times# :: Signed m -> Signed n -> Signed (m + n)
times# (S Integer
a) (S Integer
b) = Integer -> Signed (m + n)
forall (n :: Nat). Integer -> Signed n
S (Integer
a Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* Integer
b)
instance KnownNat n => Real (Signed n) where
toRational :: Signed n -> Rational
toRational = Integer -> Rational
forall a. Real a => a -> Rational
toRational (Integer -> Rational)
-> (Signed n -> Integer) -> Signed n -> Rational
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Signed n -> Integer
forall (n :: Nat). Signed n -> Integer
toInteger#
instance KnownNat n => Integral (Signed n) where
quot :: Signed n -> Signed n -> Signed n
quot = Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
quot#
rem :: Signed n -> Signed n -> Signed n
rem = Signed n -> Signed n -> Signed n
forall (n :: Nat). Signed n -> Signed n -> Signed n
rem#
div :: Signed n -> Signed n -> Signed n
div = Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
div#
mod :: Signed n -> Signed n -> Signed n
mod = Signed n -> Signed n -> Signed n
forall (n :: Nat). Signed n -> Signed n -> Signed n
mod#
quotRem :: Signed n -> Signed n -> (Signed n, Signed n)
quotRem Signed n
n Signed n
d = (Signed n
n Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
`quot#` Signed n
d,Signed n
n Signed n -> Signed n -> Signed n
forall (n :: Nat). Signed n -> Signed n -> Signed n
`rem#` Signed n
d)
divMod :: Signed n -> Signed n -> (Signed n, Signed n)
divMod Signed n
n Signed n
d = (Signed n
n Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
`div#` Signed n
d,Signed n
n Signed n -> Signed n -> Signed n
forall (n :: Nat). Signed n -> Signed n -> Signed n
`mod#` Signed n
d)
toInteger :: Signed n -> Integer
toInteger = Signed n -> Integer
forall (n :: Nat). Signed n -> Integer
toInteger#
{-# CLASH_OPAQUE quot# #-}
{-# ANN quot# hasBlackBox #-}
quot# :: forall n. KnownNat n => Signed n -> Signed n -> Signed n
quot# :: Signed n -> Signed n -> Signed n
quot# (S Integer
a) (S Integer
b)
| Integer
a Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
minB Bool -> Bool -> Bool
&& Integer
b Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== (-Integer
1) = Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S Integer
minB
| Bool
otherwise = Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S (Integer
a Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`quot` Integer
b)
where
S Integer
minB = Bounded (Signed n) => Signed n
forall a. Bounded a => a
minBound @(Signed n)
{-# CLASH_OPAQUE rem# #-}
{-# ANN rem# hasBlackBox #-}
rem# :: Signed n -> Signed n -> Signed n
rem# :: Signed n -> Signed n -> Signed n
rem# (S Integer
a) (S Integer
b) = Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S (Integer
a Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`rem` Integer
b)
{-# CLASH_OPAQUE div# #-}
{-# ANN div# hasBlackBox #-}
div# :: forall n. KnownNat n => Signed n -> Signed n -> Signed n
div# :: Signed n -> Signed n -> Signed n
div# (S Integer
a) (S Integer
b)
| Integer
a Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
minB Bool -> Bool -> Bool
&& Integer
b Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== (-Integer
1) = Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S Integer
minB
| Bool
otherwise = Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S (Integer
a Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`div` Integer
b)
where
S Integer
minB = Bounded (Signed n) => Signed n
forall a. Bounded a => a
minBound @(Signed n)
{-# CLASH_OPAQUE mod# #-}
{-# ANN mod# hasBlackBox #-}
mod# :: Signed n -> Signed n -> Signed n
mod# :: Signed n -> Signed n -> Signed n
mod# (S Integer
a) (S Integer
b) = Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S (Integer
a Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`mod` Integer
b)
{-# CLASH_OPAQUE toInteger# #-}
{-# ANN toInteger# hasBlackBox #-}
toInteger# :: Signed n -> Integer
toInteger# :: Signed n -> Integer
toInteger# (S Integer
n) = Integer
n
instance KnownNat n => PrintfArg (Signed n) where
formatArg :: Signed n -> FieldFormatter
formatArg = Integer -> FieldFormatter
forall a. PrintfArg a => a -> FieldFormatter
formatArg (Integer -> FieldFormatter)
-> (Signed n -> Integer) -> Signed n -> FieldFormatter
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Signed n -> Integer
forall a. Integral a => a -> Integer
toInteger
instance KnownNat n => Parity (Signed n) where
even :: Signed n -> Bool
even = BitVector n -> Bool
forall a. Parity a => a -> Bool
even (BitVector n -> Bool)
-> (Signed n -> BitVector n) -> Signed n -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Signed n -> BitVector n
forall a. BitPack a => a -> BitVector (BitSize a)
pack
odd :: Signed n -> Bool
odd = BitVector n -> Bool
forall a. Parity a => a -> Bool
odd (BitVector n -> Bool)
-> (Signed n -> BitVector n) -> Signed n -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Signed n -> BitVector n
forall a. BitPack a => a -> BitVector (BitSize a)
pack
instance KnownNat n => Bits (Signed n) where
.&. :: Signed n -> Signed n -> Signed n
(.&.) = Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
and#
.|. :: Signed n -> Signed n -> Signed n
(.|.) = Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
or#
xor :: Signed n -> Signed n -> Signed n
xor = Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
xor#
complement :: Signed n -> Signed n
complement = Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n
complement#
zeroBits :: Signed n
zeroBits = Signed n
0
bit :: Int -> Signed n
bit Int
i = Int -> Bit -> Signed n -> Signed n
forall a i. (BitPack a, Enum i) => i -> Bit -> a -> a
replaceBit Int
i Bit
high Signed n
0
setBit :: Signed n -> Int -> Signed n
setBit Signed n
v Int
i = Int -> Bit -> Signed n -> Signed n
forall a i. (BitPack a, Enum i) => i -> Bit -> a -> a
replaceBit Int
i Bit
high Signed n
v
clearBit :: Signed n -> Int -> Signed n
clearBit Signed n
v Int
i = Int -> Bit -> Signed n -> Signed n
forall a i. (BitPack a, Enum i) => i -> Bit -> a -> a
replaceBit Int
i Bit
low Signed n
v
complementBit :: Signed n -> Int -> Signed n
complementBit Signed n
v Int
i = Int -> Bit -> Signed n -> Signed n
forall a i. (BitPack a, Enum i) => i -> Bit -> a -> a
replaceBit Int
i (Bit -> Bit
BV.complement## (Signed n
v Signed n -> Int -> Bit
forall a i. (BitPack a, Enum i) => a -> i -> Bit
! Int
i)) Signed n
v
testBit :: Signed n -> Int -> Bool
testBit Signed n
v Int
i = Signed n
v Signed n -> Int -> Bit
forall a i. (BitPack a, Enum i) => a -> i -> Bit
! Int
i Bit -> Bit -> Bool
forall a. Eq a => a -> a -> Bool
== Bit
1
bitSizeMaybe :: Signed n -> Maybe Int
bitSizeMaybe Signed n
v = Int -> Maybe Int
forall a. a -> Maybe a
Just (Signed n -> Int
forall (n :: Nat). KnownNat n => Signed n -> Int
size# Signed n
v)
bitSize :: Signed n -> Int
bitSize = Signed n -> Int
forall (n :: Nat). KnownNat n => Signed n -> Int
size#
isSigned :: Signed n -> Bool
isSigned Signed n
_ = Bool
True
shiftL :: Signed n -> Int -> Signed n
shiftL Signed n
v Int
i = Signed n -> Int -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Int -> Signed n
shiftL# Signed n
v Int
i
shiftR :: Signed n -> Int -> Signed n
shiftR Signed n
v Int
i = Signed n -> Int -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Int -> Signed n
shiftR# Signed n
v Int
i
rotateL :: Signed n -> Int -> Signed n
rotateL Signed n
v Int
i = Signed n -> Int -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Int -> Signed n
rotateL# Signed n
v Int
i
rotateR :: Signed n -> Int -> Signed n
rotateR Signed n
v Int
i = Signed n -> Int -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Int -> Signed n
rotateR# Signed n
v Int
i
popCount :: Signed n -> Int
popCount Signed n
s = BitVector n -> Int
forall a. Bits a => a -> Int
popCount (Signed n -> BitVector n
forall (n :: Nat). KnownNat n => Signed n -> BitVector n
pack# Signed n
s)
and#,or#,xor# :: forall n . KnownNat n => Signed n -> Signed n -> Signed n
{-# CLASH_OPAQUE and# #-}
{-# ANN and# hasBlackBox #-}
and# :: Signed n -> Signed n -> Signed n
and# = \(S Integer
a) (S Integer
b) -> Int -> Integer -> Integer -> Integer -> Signed n
forall (n :: Nat). Int -> Integer -> Integer -> Integer -> Signed n
fromInteger_INLINE Int
sz Integer
mB Integer
mask (Integer
a Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. Integer
b)
where sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n)) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
mB :: Integer
mB = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz
mask :: Integer
mask = Integer
mB Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
{-# CLASH_OPAQUE or# #-}
{-# ANN or# hasBlackBox #-}
or# :: Signed n -> Signed n -> Signed n
or# = \(S Integer
a) (S Integer
b) -> Int -> Integer -> Integer -> Integer -> Signed n
forall (n :: Nat). Int -> Integer -> Integer -> Integer -> Signed n
fromInteger_INLINE Int
sz Integer
mB Integer
mask (Integer
a Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.|. Integer
b)
where sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n)) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
mB :: Integer
mB = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz
mask :: Integer
mask = Integer
mB Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
{-# CLASH_OPAQUE xor# #-}
{-# ANN xor# hasBlackBox #-}
xor# :: Signed n -> Signed n -> Signed n
xor# = \(S Integer
a) (S Integer
b) -> Int -> Integer -> Integer -> Integer -> Signed n
forall (n :: Nat). Int -> Integer -> Integer -> Integer -> Signed n
fromInteger_INLINE Int
sz Integer
mB Integer
mask (Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
xor Integer
a Integer
b)
where sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n)) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
mB :: Integer
mB = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz
mask :: Integer
mask = Integer
mB Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
{-# CLASH_OPAQUE complement# #-}
{-# ANN complement# hasBlackBox #-}
complement# :: forall n . KnownNat n => Signed n -> Signed n
complement# :: Signed n -> Signed n
complement# = \(S Integer
a) -> Int -> Integer -> Integer -> Integer -> Signed n
forall (n :: Nat). Int -> Integer -> Integer -> Integer -> Signed n
fromInteger_INLINE Int
sz Integer
mB Integer
mask (Integer -> Integer
forall a. Bits a => a -> a
complement Integer
a)
where sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n)) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
mB :: Integer
mB = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz
mask :: Integer
mask = Integer
mB Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
shiftL#,shiftR#,rotateL#,rotateR# :: forall n . KnownNat n => Signed n -> Int -> Signed n
{-# CLASH_OPAQUE shiftL# #-}
{-# ANN shiftL# hasBlackBox #-}
shiftL# :: Signed n -> Int -> Signed n
shiftL# = \(S Integer
n) Int
b ->
if | Int
b Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> String -> Signed n
forall a. HasCallStack => String -> a
error (String -> Signed n) -> String -> Signed n
forall a b. (a -> b) -> a -> b
$ String
"'shiftL' undefined for negative number: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show Int
b
| Int
b Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
sz -> Integer -> Signed n
forall (n :: Nat). Integer -> Signed n
S Integer
0
| Bool
otherwise -> Int -> Integer -> Integer -> Integer -> Signed n
forall (n :: Nat). Int -> Integer -> Integer -> Integer -> Signed n
fromInteger_INLINE Int
sz Integer
mB Integer
mask (Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
shiftL Integer
n Int
b)
where
sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n)) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
mB :: Integer
mB = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz
mask :: Integer
mask = Integer
mB Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
{-# CLASH_OPAQUE shiftR# #-}
{-# ANN shiftR# hasBlackBox #-}
shiftR# :: Signed n -> Int -> Signed n
shiftR# =
\(S Integer
n) Int
b ->
if Int
b Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 then
Int -> Integer -> Integer -> Integer -> Signed n
forall (n :: Nat). Int -> Integer -> Integer -> Integer -> Signed n
fromInteger_INLINE Int
sz Integer
mB Integer
mask (Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
shiftR Integer
n Int
b)
else
String -> Signed n
forall a. HasCallStack => String -> a
error (String -> Signed n) -> String -> Signed n
forall a b. (a -> b) -> a -> b
$ String
"'shiftR' undefined for negative number: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show Int
b
where
sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n)) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
mB :: Integer
mB = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz
mask :: Integer
mask = Integer
mB Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
{-# CLASH_OPAQUE rotateL# #-}
{-# ANN rotateL# hasBlackBox #-}
rotateL# :: Signed n -> Int -> Signed n
rotateL# =
\(S Integer
n) Int
b ->
if Int
b Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 then
let l :: Integer
l = Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
shiftL Integer
n Int
b'
r :: Integer
r = Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
shiftR Integer
n Int
b'' Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. Integer
mask
mask :: Integer
mask = Integer
2 Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^ Int
b' Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
b' :: Int
b' = Int
b Int -> Int -> Int
forall a. Integral a => a -> a -> a
`mod` Int
sz
b'' :: Int
b'' = Int
sz Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
b'
in Int -> Integer -> Integer -> Integer -> Signed n
forall (n :: Nat). Int -> Integer -> Integer -> Integer -> Signed n
fromInteger_INLINE Int
sz1 Integer
mB Integer
maskM (Integer
l Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.|. Integer
r)
else
String -> Signed n
forall a. HasCallStack => String -> a
error (String -> Signed n) -> String -> Signed n
forall a b. (a -> b) -> a -> b
$ String
"'rotateL undefined for negative number: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show Int
b
where
sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n))
sz1 :: Int
sz1 = Int
szInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1
mB :: Integer
mB = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz1
maskM :: Integer
maskM = Integer
mB Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
{-# CLASH_OPAQUE rotateR# #-}
{-# ANN rotateR# hasBlackBox #-}
rotateR# :: Signed n -> Int -> Signed n
rotateR# =
\(S Integer
n) Int
b ->
if Int
b Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 then
let l :: Integer
l = Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
shiftR Integer
n Int
b' Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. Integer
mask
r :: Integer
r = Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
shiftL Integer
n Int
b''
mask :: Integer
mask = Integer
2 Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^ Int
b'' Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
b' :: Int
b' = Int
b Int -> Int -> Int
forall a. Integral a => a -> a -> a
`mod` Int
sz
b'' :: Int
b'' = Int
sz Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
b'
in Int -> Integer -> Integer -> Integer -> Signed n
forall (n :: Nat). Int -> Integer -> Integer -> Integer -> Signed n
fromInteger_INLINE Int
sz1 Integer
mB Integer
maskM (Integer
l Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.|. Integer
r)
else
String -> Signed n
forall a. HasCallStack => String -> a
error (String -> Signed n) -> String -> Signed n
forall a b. (a -> b) -> a -> b
$ String
"'rotateR' undefined for negative number: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show Int
b
where
sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy n
forall k (t :: k). Proxy t
Proxy @n))
sz1 :: Int
sz1 = Int
sz Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
mB :: Integer
mB = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz1
maskM :: Integer
maskM = Integer
mB Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
instance KnownNat n => FiniteBits (Signed n) where
finiteBitSize :: Signed n -> Int
finiteBitSize = Signed n -> Int
forall (n :: Nat). KnownNat n => Signed n -> Int
size#
countLeadingZeros :: Signed n -> Int
countLeadingZeros Signed n
s = BitVector n -> Int
forall b. FiniteBits b => b -> Int
countLeadingZeros (Signed n -> BitVector n
forall (n :: Nat). KnownNat n => Signed n -> BitVector n
pack# Signed n
s)
countTrailingZeros :: Signed n -> Int
countTrailingZeros Signed n
s = BitVector n -> Int
forall b. FiniteBits b => b -> Int
countTrailingZeros (Signed n -> BitVector n
forall (n :: Nat). KnownNat n => Signed n -> BitVector n
pack# Signed n
s)
instance Resize Signed where
resize :: Signed a -> Signed b
resize = Signed a -> Signed b
forall (m :: Nat) (n :: Nat).
(KnownNat n, KnownNat m) =>
Signed n -> Signed m
resize#
zeroExtend :: Signed a -> Signed (b + a)
zeroExtend Signed a
s = BitVector (b + a) -> Signed (b + a)
forall (n :: Nat). KnownNat n => BitVector n -> Signed n
unpack# (BitVector b
0 BitVector b -> BitVector a -> BitVector (b + a)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# Signed a -> BitVector (BitSize (Signed a))
forall a. BitPack a => a -> BitVector (BitSize a)
pack Signed a
s)
truncateB :: Signed (a + b) -> Signed a
truncateB = Signed (a + b) -> Signed a
forall (a :: Nat) (b :: Nat).
KnownNat a =>
Signed (a + b) -> Signed a
truncateB#
{-# CLASH_OPAQUE resize# #-}
{-# ANN resize# hasBlackBox #-}
resize# :: forall m n . (KnownNat n, KnownNat m) => Signed n -> Signed m
resize# :: Signed n -> Signed m
resize# s :: Signed n
s@(S Integer
i)
| KnownNat m => Natural
forall (n :: Nat). KnownNat n => Natural
natToNatural @m Natural -> Natural -> Bool
forall a. Eq a => a -> a -> Bool
== Natural
0 = Integer -> Signed m
forall (n :: Nat). Integer -> Signed n
S Integer
0
| Integer
n' Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
m' = Signed m
extended
| Bool
otherwise = Signed m
truncated
where
n :: Int
n = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Signed n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal Signed n
s)
n' :: Integer
n' = Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
shiftL Integer
1 Int
n
m' :: Integer
m' = Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
shiftL Integer
mask Int
1
extended :: Signed m
extended = Integer -> Signed m
forall (n :: Nat). Integer -> Signed n
S Integer
i
mask :: Integer
mask = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy m -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy m
forall k (t :: k). Proxy t
Proxy @m) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)
i' :: Integer
i' = Integer
i Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`mod` Integer
mask
truncated :: Signed m
truncated = if Integer -> Int -> Bool
forall a. Bits a => a -> Int -> Bool
testBit Integer
i (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1)
then Integer -> Signed m
forall (n :: Nat). Integer -> Signed n
S (Integer
i' Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
mask)
else Integer -> Signed m
forall (n :: Nat). Integer -> Signed n
S Integer
i'
{-# CLASH_OPAQUE truncateB# #-}
{-# ANN truncateB# hasBlackBox #-}
truncateB# :: forall m n . KnownNat m => Signed (m + n) -> Signed m
truncateB# :: Signed (m + n) -> Signed m
truncateB# = \(S Integer
n) -> Int -> Integer -> Integer -> Integer -> Signed m
forall (n :: Nat). Int -> Integer -> Integer -> Integer -> Signed n
fromInteger_INLINE Int
sz Integer
mB Integer
mask Integer
n
where sz :: Int
sz = Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Proxy m -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal (Proxy m
forall k (t :: k). Proxy t
Proxy @m)) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
mB :: Integer
mB = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Int
sz
mask :: Integer
mask = Integer
mB Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
instance KnownNat n => Default (Signed n) where
def :: Signed n
def = Integer -> Signed n
forall (n :: Nat). KnownNat n => Integer -> Signed n
fromInteger# Integer
0
instance KnownNat n => Lift (Signed n) where
lift :: Signed n -> Q Exp
lift s :: Signed n
s@(S Integer
i) = Q Exp -> TypeQ -> Q Exp
sigE [| fromInteger# i |] (Integer -> TypeQ
decSigned (Signed n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal Signed n
s))
{-# NOINLINE lift #-}
#if MIN_VERSION_template_haskell(2,16,0)
liftTyped :: Signed n -> Q (TExp (Signed n))
liftTyped = Signed n -> Q (TExp (Signed n))
forall a. Lift a => a -> Q (TExp a)
liftTypedFromUntyped
#endif
#if MIN_VERSION_template_haskell(2,17,0)
decSigned :: Quote m => Integer -> m Type
#else
decSigned :: Integer -> TypeQ
#endif
decSigned :: Integer -> TypeQ
decSigned Integer
n = TypeQ -> TypeQ -> TypeQ
appT (Name -> TypeQ
conT ''Signed) (TyLitQ -> TypeQ
litT (TyLitQ -> TypeQ) -> TyLitQ -> TypeQ
forall a b. (a -> b) -> a -> b
$ Integer -> TyLitQ
numTyLit Integer
n)
instance KnownNat n => SaturatingNum (Signed n) where
satAdd :: SaturationMode -> Signed n -> Signed n -> Signed n
satAdd SaturationMode
SatWrap Signed n
a Signed n
b = Signed n
a Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
+# Signed n
b
satAdd SaturationMode
SatBound Signed n
a Signed n
b =
let r :: Signed (Max n n + 1)
r = Signed n -> Signed n -> Signed (Max n n + 1)
forall (m :: Nat) (n :: Nat).
Signed m -> Signed n -> Signed (Max m n + 1)
plus# Signed n
a Signed n
b
(BitVector 1
_,BitVector n
r') = Signed (n + 1) -> (BitVector 1, BitVector n)
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split Signed (n + 1)
Signed (Max n n + 1)
r
in case Signed (n + 1) -> Bit
forall a. BitPack a => a -> Bit
msb Signed (n + 1)
Signed (Max n n + 1)
r Bit -> Bit -> Bit
forall a. Bits a => a -> a -> a
`xor` BitVector n -> Bit
forall a. BitPack a => a -> Bit
msb BitVector n
r' of
Bit
0 -> BitVector n -> Signed n
forall (n :: Nat). KnownNat n => BitVector n -> Signed n
unpack# BitVector n
r'
Bit
_ -> case Signed n -> Bit
forall a. BitPack a => a -> Bit
msb Signed n
a Bit -> Bit -> Bit
forall a. Bits a => a -> a -> a
.&. Signed n -> Bit
forall a. BitPack a => a -> Bit
msb Signed n
b of
Bit
0 -> Signed n
forall (n :: Nat). KnownNat n => Signed n
maxBound#
Bit
_ -> Signed n
forall (n :: Nat). KnownNat n => Signed n
minBound#
satAdd SaturationMode
SatZero Signed n
a Signed n
b =
let r :: Signed (Max n n + 1)
r = Signed n -> Signed n -> Signed (Max n n + 1)
forall (m :: Nat) (n :: Nat).
Signed m -> Signed n -> Signed (Max m n + 1)
plus# Signed n
a Signed n
b
(BitVector 1
_,BitVector n
r') = Signed (n + 1) -> (BitVector 1, BitVector n)
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split Signed (n + 1)
Signed (Max n n + 1)
r
in case Signed (n + 1) -> Bit
forall a. BitPack a => a -> Bit
msb Signed (n + 1)
Signed (Max n n + 1)
r Bit -> Bit -> Bit
forall a. Bits a => a -> a -> a
`xor` BitVector n -> Bit
forall a. BitPack a => a -> Bit
msb BitVector n
r' of
Bit
0 -> BitVector n -> Signed n
forall (n :: Nat). KnownNat n => BitVector n -> Signed n
unpack# BitVector n
r'
Bit
_ -> Integer -> Signed n
forall (n :: Nat). KnownNat n => Integer -> Signed n
fromInteger# Integer
0
satAdd SaturationMode
SatError Signed n
a Signed n
b =
let r :: Signed (Max n n + 1)
r = Signed n -> Signed n -> Signed (Max n n + 1)
forall (m :: Nat) (n :: Nat).
Signed m -> Signed n -> Signed (Max m n + 1)
plus# Signed n
a Signed n
b
(BitVector 1
_,BitVector n
r') = Signed (n + 1) -> (BitVector 1, BitVector n)
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split Signed (n + 1)
Signed (Max n n + 1)
r
in case Signed (n + 1) -> Bit
forall a. BitPack a => a -> Bit
msb Signed (n + 1)
Signed (Max n n + 1)
r Bit -> Bit -> Bit
forall a. Bits a => a -> a -> a
`xor` BitVector n -> Bit
forall a. BitPack a => a -> Bit
msb BitVector n
r' of
Bit
0 -> BitVector n -> Signed n
forall (n :: Nat). KnownNat n => BitVector n -> Signed n
unpack# BitVector n
r'
Bit
_ -> String -> Signed n
forall a. HasCallStack => String -> a
errorX String
"Signed.satAdd: overflow/underflow"
satAdd SaturationMode
SatSymmetric Signed n
a Signed n
b =
let r :: Signed (Max n n + 1)
r = Signed n -> Signed n -> Signed (Max n n + 1)
forall (m :: Nat) (n :: Nat).
Signed m -> Signed n -> Signed (Max m n + 1)
plus# Signed n
a Signed n
b
(BitVector 1
_,BitVector n
r') = Signed (n + 1) -> (BitVector 1, BitVector n)
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split Signed (n + 1)
Signed (Max n n + 1)
r
in case Signed (n + 1) -> Bit
forall a. BitPack a => a -> Bit
msb Signed (n + 1)
Signed (Max n n + 1)
r Bit -> Bit -> Bit
forall a. Bits a => a -> a -> a
`xor` BitVector n -> Bit
forall a. BitPack a => a -> Bit
msb BitVector n
r' of
Bit
0 -> BitVector n -> Signed n
forall (n :: Nat). KnownNat n => BitVector n -> Signed n
unpack# BitVector n
r'
Bit
_ -> case Signed n -> Bit
forall a. BitPack a => a -> Bit
msb Signed n
a Bit -> Bit -> Bit
forall a. Bits a => a -> a -> a
.&. Signed n -> Bit
forall a. BitPack a => a -> Bit
msb Signed n
b of
Bit
0 -> Signed n
forall (n :: Nat). KnownNat n => Signed n
maxBound#
Bit
_ -> Signed n
forall (n :: Nat). KnownNat n => Signed n
minBoundSym#
satSub :: SaturationMode -> Signed n -> Signed n -> Signed n
satSub SaturationMode
SatWrap Signed n
a Signed n
b = Signed n
a Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
-# Signed n
b
satSub SaturationMode
SatBound Signed n
a Signed n
b =
let r :: Signed (Max n n + 1)
r = Signed n -> Signed n -> Signed (Max n n + 1)
forall (m :: Nat) (n :: Nat).
Signed m -> Signed n -> Signed (Max m n + 1)
minus# Signed n
a Signed n
b
(BitVector 1
_,BitVector n
r') = Signed (n + 1) -> (BitVector 1, BitVector n)
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split Signed (n + 1)
Signed (Max n n + 1)
r
in case Signed (n + 1) -> Bit
forall a. BitPack a => a -> Bit
msb Signed (n + 1)
Signed (Max n n + 1)
r Bit -> Bit -> Bit
forall a. Bits a => a -> a -> a
`xor` BitVector n -> Bit
forall a. BitPack a => a -> Bit
msb BitVector n
r' of
Bit
0 -> BitVector n -> Signed n
forall (n :: Nat). KnownNat n => BitVector n -> Signed n
unpack# BitVector n
r'
Bit
_ -> case Bit -> BitVector 1
BV.pack# (Signed n -> Bit
forall a. BitPack a => a -> Bit
msb Signed n
a) BitVector 1 -> BitVector 1 -> BitVector (1 + 1)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# Bit -> BitVector 1
BV.pack# (Signed n -> Bit
forall a. BitPack a => a -> Bit
msb Signed n
b) of
BitVector (1 + 1)
2 -> Signed n
forall (n :: Nat). KnownNat n => Signed n
minBound#
BitVector (1 + 1)
_ -> Signed n
forall (n :: Nat). KnownNat n => Signed n
maxBound#
satSub SaturationMode
SatZero Signed n
a Signed n
b =
let r :: Signed (Max n n + 1)
r = Signed n -> Signed n -> Signed (Max n n + 1)
forall (m :: Nat) (n :: Nat).
Signed m -> Signed n -> Signed (Max m n + 1)
minus# Signed n
a Signed n
b
(BitVector 1
_,BitVector n
r') = Signed (n + 1) -> (BitVector 1, BitVector n)
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split Signed (n + 1)
Signed (Max n n + 1)
r
in case Signed (n + 1) -> Bit
forall a. BitPack a => a -> Bit
msb Signed (n + 1)
Signed (Max n n + 1)
r Bit -> Bit -> Bit
forall a. Bits a => a -> a -> a
`xor` BitVector n -> Bit
forall a. BitPack a => a -> Bit
msb BitVector n
r' of
Bit
0 -> BitVector n -> Signed n
forall (n :: Nat). KnownNat n => BitVector n -> Signed n
unpack# BitVector n
r'
Bit
_ -> Integer -> Signed n
forall (n :: Nat). KnownNat n => Integer -> Signed n
fromInteger# Integer
0
satSub SaturationMode
SatError Signed n
a Signed n
b =
let r :: Signed (Max n n + 1)
r = Signed n -> Signed n -> Signed (Max n n + 1)
forall (m :: Nat) (n :: Nat).
Signed m -> Signed n -> Signed (Max m n + 1)
minus# Signed n
a Signed n
b
(BitVector 1
_,BitVector n
r') = Signed (n + 1) -> (BitVector 1, BitVector n)
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split Signed (n + 1)
Signed (Max n n + 1)
r
in case Signed (n + 1) -> Bit
forall a. BitPack a => a -> Bit
msb Signed (n + 1)
Signed (Max n n + 1)
r Bit -> Bit -> Bit
forall a. Bits a => a -> a -> a
`xor` BitVector n -> Bit
forall a. BitPack a => a -> Bit
msb BitVector n
r' of
Bit
0 -> BitVector n -> Signed n
forall (n :: Nat). KnownNat n => BitVector n -> Signed n
unpack# BitVector n
r'
Bit
_ -> String -> Signed n
forall a. HasCallStack => String -> a
errorX String
"Signed.satSub: overflow/underflow"
satSub SaturationMode
SatSymmetric Signed n
a Signed n
b =
let r :: Signed (Max n n + 1)
r = Signed n -> Signed n -> Signed (Max n n + 1)
forall (m :: Nat) (n :: Nat).
Signed m -> Signed n -> Signed (Max m n + 1)
minus# Signed n
a Signed n
b
(BitVector 1
_,BitVector n
r') = Signed (n + 1) -> (BitVector 1, BitVector n)
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split Signed (n + 1)
Signed (Max n n + 1)
r
in case Signed (n + 1) -> Bit
forall a. BitPack a => a -> Bit
msb Signed (n + 1)
Signed (Max n n + 1)
r Bit -> Bit -> Bit
forall a. Bits a => a -> a -> a
`xor` BitVector n -> Bit
forall a. BitPack a => a -> Bit
msb BitVector n
r' of
Bit
0 -> BitVector n -> Signed n
forall (n :: Nat). KnownNat n => BitVector n -> Signed n
unpack# BitVector n
r'
Bit
_ -> case Bit -> BitVector 1
BV.pack# (Signed n -> Bit
forall a. BitPack a => a -> Bit
msb Signed n
a) BitVector 1 -> BitVector 1 -> BitVector (1 + 1)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# Bit -> BitVector 1
BV.pack# (Signed n -> Bit
forall a. BitPack a => a -> Bit
msb Signed n
b) of
BitVector (1 + 1)
2 -> Signed n
forall (n :: Nat). KnownNat n => Signed n
minBoundSym#
BitVector (1 + 1)
_ -> Signed n
forall (n :: Nat). KnownNat n => Signed n
maxBound#
satMul :: SaturationMode -> Signed n -> Signed n -> Signed n
satMul SaturationMode
SatWrap Signed n
a Signed n
b = Signed n
a Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
*# Signed n
b
satMul SaturationMode
SatBound Signed n
a Signed n
b =
let r :: Signed (n + n)
r = Signed n -> Signed n -> Signed (n + n)
forall (m :: Nat) (n :: Nat).
Signed m -> Signed n -> Signed (m + n)
times# Signed n
a Signed n
b
(BitVector n
rL,BitVector n
rR) = Signed (n + n) -> (BitVector n, BitVector n)
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split Signed (n + n)
r
overflow :: Bit
overflow = Bit -> Bit
forall a. Bits a => a -> a
complement (BitVector (1 + n) -> Bit
forall a. BitPack a => a -> Bit
reduceOr (Bit -> BitVector 1
BV.pack# (BitVector n -> Bit
forall a. BitPack a => a -> Bit
msb BitVector n
rR) BitVector 1 -> BitVector n -> BitVector (1 + n)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# BitVector n -> BitVector (BitSize (BitVector n))
forall a. BitPack a => a -> BitVector (BitSize a)
pack BitVector n
rL)) Bit -> Bit -> Bit
forall a. Bits a => a -> a -> a
.|.
BitVector (1 + n) -> Bit
forall a. BitPack a => a -> Bit
reduceAnd (Bit -> BitVector 1
BV.pack# (BitVector n -> Bit
forall a. BitPack a => a -> Bit
msb BitVector n
rR) BitVector 1 -> BitVector n -> BitVector (1 + n)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# BitVector n -> BitVector (BitSize (BitVector n))
forall a. BitPack a => a -> BitVector (BitSize a)
pack BitVector n
rL)
in case Bit
overflow of
Bit
1 -> BitVector n -> Signed n
forall (n :: Nat). KnownNat n => BitVector n -> Signed n
unpack# BitVector n
rR
Bit
_ -> case BitVector n -> Bit
forall a. BitPack a => a -> Bit
msb BitVector n
rL of
Bit
0 -> Signed n
forall (n :: Nat). KnownNat n => Signed n
maxBound#
Bit
_ -> Signed n
forall (n :: Nat). KnownNat n => Signed n
minBound#
satMul SaturationMode
SatZero Signed n
a Signed n
b =
let r :: Signed (n + n)
r = Signed n -> Signed n -> Signed (n + n)
forall (m :: Nat) (n :: Nat).
Signed m -> Signed n -> Signed (m + n)
times# Signed n
a Signed n
b
(BitVector n
rL,BitVector n
rR) = Signed (n + n) -> (BitVector n, BitVector n)
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split Signed (n + n)
r
overflow :: Bit
overflow = Bit -> Bit
forall a. Bits a => a -> a
complement (BitVector (1 + n) -> Bit
forall a. BitPack a => a -> Bit
reduceOr (Bit -> BitVector 1
BV.pack# (BitVector n -> Bit
forall a. BitPack a => a -> Bit
msb BitVector n
rR) BitVector 1 -> BitVector n -> BitVector (1 + n)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# BitVector n -> BitVector (BitSize (BitVector n))
forall a. BitPack a => a -> BitVector (BitSize a)
pack BitVector n
rL)) Bit -> Bit -> Bit
forall a. Bits a => a -> a -> a
.|.
BitVector (1 + n) -> Bit
forall a. BitPack a => a -> Bit
reduceAnd (Bit -> BitVector 1
BV.pack# (BitVector n -> Bit
forall a. BitPack a => a -> Bit
msb BitVector n
rR) BitVector 1 -> BitVector n -> BitVector (1 + n)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# BitVector n -> BitVector (BitSize (BitVector n))
forall a. BitPack a => a -> BitVector (BitSize a)
pack BitVector n
rL)
in case Bit
overflow of
Bit
1 -> BitVector n -> Signed n
forall (n :: Nat). KnownNat n => BitVector n -> Signed n
unpack# BitVector n
rR
Bit
_ -> Integer -> Signed n
forall (n :: Nat). KnownNat n => Integer -> Signed n
fromInteger# Integer
0
satMul SaturationMode
SatError Signed n
a Signed n
b =
let r :: Signed (n + n)
r = Signed n -> Signed n -> Signed (n + n)
forall (m :: Nat) (n :: Nat).
Signed m -> Signed n -> Signed (m + n)
times# Signed n
a Signed n
b
(BitVector n
rL,BitVector n
rR) = Signed (n + n) -> (BitVector n, BitVector n)
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split Signed (n + n)
r
overflow :: Bit
overflow = Bit -> Bit
forall a. Bits a => a -> a
complement (BitVector (1 + n) -> Bit
forall a. BitPack a => a -> Bit
reduceOr (Bit -> BitVector 1
BV.pack# (BitVector n -> Bit
forall a. BitPack a => a -> Bit
msb BitVector n
rR) BitVector 1 -> BitVector n -> BitVector (1 + n)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# BitVector n -> BitVector (BitSize (BitVector n))
forall a. BitPack a => a -> BitVector (BitSize a)
pack BitVector n
rL)) Bit -> Bit -> Bit
forall a. Bits a => a -> a -> a
.|.
BitVector (1 + n) -> Bit
forall a. BitPack a => a -> Bit
reduceAnd (Bit -> BitVector 1
BV.pack# (BitVector n -> Bit
forall a. BitPack a => a -> Bit
msb BitVector n
rR) BitVector 1 -> BitVector n -> BitVector (1 + n)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# BitVector n -> BitVector (BitSize (BitVector n))
forall a. BitPack a => a -> BitVector (BitSize a)
pack BitVector n
rL)
in case Bit
overflow of
Bit
1 -> BitVector n -> Signed n
forall (n :: Nat). KnownNat n => BitVector n -> Signed n
unpack# BitVector n
rR
Bit
_ -> String -> Signed n
forall a. HasCallStack => String -> a
errorX String
"Signed.satMul: overflow/underflow"
satMul SaturationMode
SatSymmetric Signed n
a Signed n
b =
let r :: Signed (n + n)
r = Signed n -> Signed n -> Signed (n + n)
forall (m :: Nat) (n :: Nat).
Signed m -> Signed n -> Signed (m + n)
times# Signed n
a Signed n
b
(BitVector n
rL,BitVector n
rR) = Signed (n + n) -> (BitVector n, BitVector n)
forall a (m :: Nat) (n :: Nat).
(BitPack a, BitSize a ~ (m + n), KnownNat n) =>
a -> (BitVector m, BitVector n)
split Signed (n + n)
r
overflow :: Bit
overflow = Bit -> Bit
forall a. Bits a => a -> a
complement (BitVector (1 + n) -> Bit
forall a. BitPack a => a -> Bit
reduceOr (Bit -> BitVector 1
BV.pack# (BitVector n -> Bit
forall a. BitPack a => a -> Bit
msb BitVector n
rR) BitVector 1 -> BitVector n -> BitVector (1 + n)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# BitVector n -> BitVector (BitSize (BitVector n))
forall a. BitPack a => a -> BitVector (BitSize a)
pack BitVector n
rL)) Bit -> Bit -> Bit
forall a. Bits a => a -> a -> a
.|.
BitVector (1 + n) -> Bit
forall a. BitPack a => a -> Bit
reduceAnd (Bit -> BitVector 1
BV.pack# (BitVector n -> Bit
forall a. BitPack a => a -> Bit
msb BitVector n
rR) BitVector 1 -> BitVector n -> BitVector (1 + n)
forall (m :: Nat) (n :: Nat).
KnownNat m =>
BitVector n -> BitVector m -> BitVector (n + m)
++# BitVector n -> BitVector (BitSize (BitVector n))
forall a. BitPack a => a -> BitVector (BitSize a)
pack BitVector n
rL)
in case Bit
overflow of
Bit
1 -> BitVector n -> Signed n
forall (n :: Nat). KnownNat n => BitVector n -> Signed n
unpack# BitVector n
rR
Bit
_ -> case BitVector n -> Bit
forall a. BitPack a => a -> Bit
msb BitVector n
rL of
Bit
0 -> Signed n
forall (n :: Nat). KnownNat n => Signed n
maxBound#
Bit
_ -> Signed n
forall (n :: Nat). KnownNat n => Signed n
minBoundSym#
satSucc :: SaturationMode -> Signed n -> Signed n
satSucc SaturationMode
SatError Signed n
a
| Signed n
a Signed n -> Signed n -> Bool
forall a. Eq a => a -> a -> Bool
== Signed n
forall a. Bounded a => a
maxBound = String -> Signed n
forall a. HasCallStack => String -> a
errorX String
"Signed.satSucc: overflow"
satSucc SaturationMode
satMode Signed n
a = SaturationMode -> Signed n -> Signed n -> Signed n
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satSub SaturationMode
satMode Signed n
a (Signed n -> Signed n) -> Signed n -> Signed n
forall a b. (a -> b) -> a -> b
$ Integer -> Signed n
forall (n :: Nat). KnownNat n => Integer -> Signed n
fromInteger# (-Integer
1)
{-# INLINE satSucc #-}
satPred :: SaturationMode -> Signed n -> Signed n
satPred SaturationMode
SatError Signed n
a
| Signed n
a Signed n -> Signed n -> Bool
forall a. Eq a => a -> a -> Bool
== Signed n
forall a. Bounded a => a
minBound = String -> Signed n
forall a. HasCallStack => String -> a
errorX String
"Signed.satPred: underflow"
satPred SaturationMode
satMode Signed n
a = SaturationMode -> Signed n -> Signed n -> Signed n
forall a. SaturatingNum a => SaturationMode -> a -> a -> a
satAdd SaturationMode
satMode Signed n
a (Signed n -> Signed n) -> Signed n -> Signed n
forall a b. (a -> b) -> a -> b
$ Integer -> Signed n
forall (n :: Nat). KnownNat n => Integer -> Signed n
fromInteger# (-Integer
1)
{-# INLINE satPred #-}
minBoundSym# :: KnownNat n => Signed n
minBoundSym# :: Signed n
minBoundSym# = Signed n
forall (n :: Nat). KnownNat n => Signed n
minBound# Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
+# Integer -> Signed n
forall (n :: Nat). KnownNat n => Integer -> Signed n
fromInteger# Integer
1
instance KnownNat n => Arbitrary (Signed n) where
arbitrary :: Gen (Signed n)
arbitrary = Gen (Signed n)
forall a. (Bounded a, Integral a) => Gen a
arbitraryBoundedIntegral
shrink :: Signed n -> [Signed n]
shrink = Signed n -> [Signed n]
forall (n :: Nat) (p :: Nat -> Type).
(KnownNat n, Integral (p n)) =>
p n -> [p n]
shrinkSizedSigned
shrinkSizedSigned :: (KnownNat n, Integral (p n)) => p n -> [p n]
shrinkSizedSigned :: p n -> [p n]
shrinkSizedSigned p n
x | p n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal p n
x Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
2 = case p n -> Integer
forall a. Integral a => a -> Integer
toInteger p n
x of
Integer
0 -> []
Integer
_ -> [p n
0]
| Bool
otherwise = p n -> [p n]
forall a. Integral a => a -> [a]
shrinkIntegral p n
x
{-# INLINE shrinkSizedSigned #-}
instance KnownNat n => CoArbitrary (Signed n) where
coarbitrary :: Signed n -> Gen b -> Gen b
coarbitrary = Signed n -> Gen b -> Gen b
forall a b. Integral a => a -> Gen b -> Gen b
coarbitraryIntegral
type instance Index (Signed n) = Int
type instance IxValue (Signed n) = Bit
instance KnownNat n => Ixed (Signed n) where
ix :: Index (Signed n) -> Traversal' (Signed n) (IxValue (Signed n))
ix Index (Signed n)
i IxValue (Signed n) -> f (IxValue (Signed n))
f Signed n
s = BitVector n -> Signed n
forall (n :: Nat). KnownNat n => BitVector n -> Signed n
unpack# (BitVector n -> Signed n)
-> (Bit -> BitVector n) -> Bit -> Signed n
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> BitVector n -> Int -> Bit -> BitVector n
forall (n :: Nat).
KnownNat n =>
BitVector n -> Int -> Bit -> BitVector n
BV.replaceBit# (Signed n -> BitVector n
forall (n :: Nat). KnownNat n => Signed n -> BitVector n
pack# Signed n
s) Int
Index (Signed n)
i
(Bit -> Signed n) -> f Bit -> f (Signed n)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> IxValue (Signed n) -> f (IxValue (Signed n))
f (BitVector n -> Int -> Bit
forall (n :: Nat). KnownNat n => BitVector n -> Int -> Bit
BV.index# (Signed n -> BitVector n
forall (n :: Nat). KnownNat n => Signed n -> BitVector n
pack# Signed n
s) Int
Index (Signed n)
i)
instance (KnownNat n) => Ix (Signed n) where
range :: (Signed n, Signed n) -> [Signed n]
range (Signed n
a, Signed n
b) = [Signed n
a..Signed n
b]
index :: (Signed n, Signed n) -> Signed n -> Int
index ab :: (Signed n, Signed n)
ab@(Signed n
a, Signed n
b) Signed n
x
| (Signed n, Signed n) -> Signed n -> Bool
forall a. Ix a => (a, a) -> a -> Bool
inRange (Signed n, Signed n)
ab Signed n
x = Signed n -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (Signed n -> Int) -> Signed n -> Int
forall a b. (a -> b) -> a -> b
$ Signed n
x Signed n -> Signed n -> Signed n
forall a. Num a => a -> a -> a
- Signed n
a
| Bool
otherwise = String -> Int
forall a. HasCallStack => String -> a
error (String -> Int) -> String -> Int
forall a b. (a -> b) -> a -> b
$ String -> Signed n -> Signed n -> Signed n -> String
forall r. PrintfType r => String -> r
printf String
"Index (%d) out of range ((%d, %d))" Signed n
x Signed n
a Signed n
b
inRange :: (Signed n, Signed n) -> Signed n -> Bool
inRange (Signed n
a, Signed n
b) Signed n
x = Signed n
a Signed n -> Signed n -> Bool
forall a. Ord a => a -> a -> Bool
<= Signed n
x Bool -> Bool -> Bool
&& Signed n
x Signed n -> Signed n -> Bool
forall a. Ord a => a -> a -> Bool
<= Signed n
b
shiftL0 :: Integer -> Int -> Integer
#if MIN_VERSION_base(4,15,0)
shiftL0 = \a sh -> if sh >= 0 then shiftL a sh else 0
#else
shiftL0 :: Integer -> Int -> Integer
shiftL0 = Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
shiftL
#endif
{-# INLINE shiftL0 #-}