{-# LANGUAGE CPP #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE NamedFieldPuns #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE UnboxedTuples #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
module Clash.GHC.Evaluator.Primitive
( ghcPrimStep
, ghcPrimUnwind
, isUndefinedPrimVal
, isUndefinedXPrimVal
) where
import Control.Concurrent.Supply (Supply,freshId)
import Control.DeepSeq (force)
import Control.Exception (ArithException(..), Exception, tryJust, evaluate)
import Control.Monad.State.Strict (State, MonadState)
import qualified Control.Monad.State.Strict as State
import Control.Monad.Trans.Except (runExcept)
import Data.Binary.IEEE754 (doubleToWord, floatToWord, wordToDouble, wordToFloat)
import Data.Bits
import qualified Data.ByteString.Internal as BS
import Data.Char (chr,ord)
import qualified Data.Either as Either
import Data.Maybe (fromMaybe, mapMaybe)
import qualified Data.List as List
import qualified Data.Primitive.ByteArray as BA
import Data.Proxy (Proxy)
import Data.Reflection (reifyNat)
import Data.Text (Text)
import qualified Data.Text as Text
import GHC.Exts (IsList(..))
import GHC.Float
import GHC.Int
import GHC.Integer
(decodeDoubleInteger,encodeDoubleInteger,compareInteger,orInteger,andInteger,
xorInteger,complementInteger,absInteger,signumInteger)
#if MIN_VERSION_base(4,16,0)
import GHC.Num.Integer (Integer (..), integerEncodeFloat#)
#elif MIN_VERSION_base(4,15,0)
import GHC.Num.Integer
(Integer (..), integerEncodeFloat#, integerToFloat#, integerToDouble#)
#else
import GHC.Integer.GMP.Internals
(Integer (..), BigNat (..))
#endif
#if MIN_VERSION_base(4,15,0)
import GHC.Num.Natural (naturalSubUnsafe)
#endif
import GHC.Natural
import GHC.ForeignPtr
import GHC.Prim
import GHC.Real (Ratio (..))
import GHC.TypeLits (KnownNat)
import GHC.Types (IO (..))
import GHC.Word
import System.IO.Unsafe (unsafeDupablePerformIO)
#if MIN_VERSION_ghc(9,4,0)
import Data.Bifunctor (first)
import qualified Data.Text.Array as Text
import qualified Data.Text.Internal as Text
#endif
#if MIN_VERSION_ghc(9,0,0)
import GHC.Types.Basic (Boxity (..))
import GHC.Types.Name (getSrcSpan, nameOccName, occNameString)
import GHC.Builtin.Names (trueDataConKey, falseDataConKey)
import qualified GHC.Core.TyCon as TyCon
import GHC.Builtin.Types (tupleTyCon)
import GHC.Types.Unique (getKey)
#else
import BasicTypes (Boxity (..))
import Name (getSrcSpan, nameOccName, occNameString)
import PrelNames (trueDataConKey, falseDataConKey)
import qualified TyCon
import TysWiredIn (tupleTyCon)
import Unique (getKey)
#endif
import Clash.Class.BitPack (pack,unpack)
import Clash.Core.DataCon (DataCon (..))
import Clash.Core.Evaluator.Types
import Clash.Core.HasType (piResultTys, applyTypeToArgs)
import Clash.Core.Literal (Literal (..))
import Clash.Core.Name
(Name (..), NameSort (..), mkUnsafeSystemName)
import Clash.Core.Pretty (showPpr)
import Clash.Core.Term
(IsMultiPrim (..), Pat (..), PrimInfo (..), Term (..), WorkInfo (..), mkApps,
PrimUnfolding(..), collectArgs)
import Clash.Core.Type
(Type (..), ConstTy (..), LitTy (..), TypeView (..), mkFunTy, mkTyConApp,
splitFunForallTy, tyView)
import Clash.Core.TyCon
(TyConMap, TyConName, tyConDataCons)
import Clash.Core.TysPrim
import Clash.Core.Util
(mkRTree,mkVec,tyNatSize,dataConInstArgTys,primCo, mkSelectorCase,undefinedPrims,
undefinedXPrims)
import Clash.Core.Var (mkLocalId, mkTyVar)
import qualified Clash.Data.UniqMap as UniqMap
import Clash.Debug
import Clash.GHC.GHC2Core (modNameM)
import Clash.Util
(MonadUnique (..), clogBase, flogBase, curLoc)
import Clash.Normalize.PrimitiveReductions
(typeNatMul, typeNatSub, typeNatAdd, vecLastPrim, vecInitPrim, vecHeadPrim,
vecTailPrim, mkVecCons, mkVecNil)
import qualified Clash.Normalize.Primitives as NP
import Clash.Promoted.Nat.Unsafe (unsafeSNat)
import qualified Clash.Sized.Internal.BitVector as BitVector
import qualified Clash.Sized.Internal.Signed as Signed
import qualified Clash.Sized.Internal.Unsigned as Unsigned
import Clash.Sized.Internal.BitVector(BitVector(..), Bit(..))
import Clash.Sized.Internal.Signed (Signed (..))
import Clash.Sized.Internal.Unsigned (Unsigned (..))
import Clash.XException (isX)
import {-# SOURCE #-} Clash.GHC.Evaluator
isUndefinedPrimVal :: Value -> Bool
isUndefinedPrimVal :: Value -> Bool
isUndefinedPrimVal (PrimVal (PrimInfo{Text
primName :: PrimInfo -> Text
primName :: Text
primName}) [Type]
_ [Value]
_) =
Text
primName Text -> [Text] -> Bool
forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`elem` [Text]
undefinedPrims
isUndefinedPrimVal Value
_ = Bool
False
isUndefinedXPrimVal :: Value -> Bool
isUndefinedXPrimVal :: Value -> Bool
isUndefinedXPrimVal (PrimVal (PrimInfo{Text
primName :: Text
primName :: PrimInfo -> Text
primName}) [Type]
_ [Value]
_) =
Text
primName Text -> [Text] -> Bool
forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`elem` [Text]
undefinedXPrims
isUndefinedXPrimVal Value
_ = Bool
False
ghcPrimUnwind :: PrimUnwind
ghcPrimUnwind :: PrimUnwind
ghcPrimUnwind TyConMap
tcm PrimInfo
p [Type]
tys [Value]
vs Value
v [] Machine
m
| PrimInfo -> Text
primName PrimInfo
p Text -> [Text] -> Bool
forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`elem` [ Text
"Clash.Sized.Internal.Index.fromInteger#"
, Text
"GHC.CString.unpackCString#"
, String -> Text
Text.pack (Name -> String
forall a. Show a => a -> String
show 'NP.removedArg)
, Text
"GHC.Prim.MutableByteArray#"
, String -> Text
Text.pack (Name -> String
forall a. Show a => a -> String
show 'NP.undefined)
, String -> Text
Text.pack (Name -> String
forall a. Show a => a -> String
show 'NP.undefinedX)
]
= Unwind
ghcUnwind (PrimInfo -> [Type] -> [Value] -> Value
PrimVal PrimInfo
p [Type]
tys ([Value]
vs [Value] -> [Value] -> [Value]
forall a. [a] -> [a] -> [a]
++ [Value
v])) Machine
m TyConMap
tcm
| PrimInfo -> Text
primName PrimInfo
p Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== Text
"Clash.Sized.Internal.BitVector.fromInteger#"
= case ([Value]
vs,Value
v) of
([Value -> Maybe Integer
naturalLiteral -> Just Integer
n,Value
mask], Value -> Maybe Integer
integerLiteral -> Just Integer
i) ->
Unwind
ghcUnwind (PrimInfo -> [Type] -> [Value] -> Value
PrimVal PrimInfo
p [Type]
tys [Literal -> Value
Lit (Integer -> Literal
NaturalLiteral Integer
n), Value
mask, Literal -> Value
Lit (Integer -> Literal
IntegerLiteral (Integer -> Integer -> Integer
wrapUnsigned Integer
n Integer
i))]) Machine
m TyConMap
tcm
([Value], Value)
_ -> String -> Maybe Machine
forall a. HasCallStack => String -> a
error ($(String
curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"Internal error" String -> String -> String
forall a. [a] -> [a] -> [a]
++ ([Value], Value) -> String
forall a. Show a => a -> String
show ([Value]
vs,Value
v))
| PrimInfo -> Text
primName PrimInfo
p Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== Text
"Clash.Sized.Internal.BitVector.fromInteger##"
= case ([Value]
vs,Value
v) of
([Value
mask], Value -> Maybe Integer
integerLiteral -> Just Integer
i) ->
Unwind
ghcUnwind (PrimInfo -> [Type] -> [Value] -> Value
PrimVal PrimInfo
p [Type]
tys [Value
mask, Literal -> Value
Lit (Integer -> Literal
IntegerLiteral (Integer -> Integer -> Integer
wrapUnsigned Integer
1 Integer
i))]) Machine
m TyConMap
tcm
([Value], Value)
_ -> String -> Maybe Machine
forall a. HasCallStack => String -> a
error ($(String
curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"Internal error" String -> String -> String
forall a. [a] -> [a] -> [a]
++ ([Value], Value) -> String
forall a. Show a => a -> String
show ([Value]
vs,Value
v))
| PrimInfo -> Text
primName PrimInfo
p Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== Text
"Clash.Sized.Internal.Signed.fromInteger#"
= case ([Value]
vs,Value
v) of
([Value -> Maybe Integer
naturalLiteral -> Just Integer
n],Value -> Maybe Integer
integerLiteral -> Just Integer
i) ->
Unwind
ghcUnwind (PrimInfo -> [Type] -> [Value] -> Value
PrimVal PrimInfo
p [Type]
tys [Literal -> Value
Lit (Integer -> Literal
NaturalLiteral Integer
n), Literal -> Value
Lit (Integer -> Literal
IntegerLiteral (Integer -> Integer -> Integer
wrapSigned Integer
n Integer
i))]) Machine
m TyConMap
tcm
([Value], Value)
_ -> String -> Maybe Machine
forall a. HasCallStack => String -> a
error ($(String
curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"Internal error" String -> String -> String
forall a. [a] -> [a] -> [a]
++ ([Value], Value) -> String
forall a. Show a => a -> String
show ([Value]
vs,Value
v))
| PrimInfo -> Text
primName PrimInfo
p Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== Text
"Clash.Sized.Internal.Unsigned.fromInteger#"
= case ([Value]
vs,Value
v) of
([Value -> Maybe Integer
naturalLiteral -> Just Integer
n],Value -> Maybe Integer
integerLiteral -> Just Integer
i) ->
Unwind
ghcUnwind (PrimInfo -> [Type] -> [Value] -> Value
PrimVal PrimInfo
p [Type]
tys [Literal -> Value
Lit (Integer -> Literal
NaturalLiteral Integer
n), Literal -> Value
Lit (Integer -> Literal
IntegerLiteral (Integer -> Integer -> Integer
wrapUnsigned Integer
n Integer
i))]) Machine
m TyConMap
tcm
([Value], Value)
_ -> String -> Maybe Machine
forall a. HasCallStack => String -> a
error ($(String
curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"Internal error" String -> String -> String
forall a. [a] -> [a] -> [a]
++ ([Value], Value) -> String
forall a. Show a => a -> String
show ([Value]
vs,Value
v))
| Value -> Bool
isUndefinedPrimVal Value
v
= let tyArgs :: [Either a Type]
tyArgs = (Type -> Either a Type) -> [Type] -> [Either a Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either a Type
forall a b. b -> Either a b
Right [Type]
tys
tmArgs :: [Either Term b]
tmArgs = (Value -> Either Term b) -> [Value] -> [Either Term b]
forall a b. (a -> b) -> [a] -> [b]
map (Term -> Either Term b
forall a b. a -> Either a b
Left (Term -> Either Term b)
-> (Value -> Term) -> Value -> Either Term b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Value -> Term
valToTerm) ([Value]
vs [Value] -> [Value] -> [Value]
forall a. [a] -> [a] -> [a]
++ [Value
v])
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ (Term -> Machine -> Machine) -> Machine -> Term -> Machine
forall a b c. (a -> b -> c) -> b -> a -> c
flip Term -> Machine -> Machine
setTerm Machine
m (Term -> Machine) -> Term -> Machine
forall a b. (a -> b) -> a -> b
$ Term -> Type -> Term
TyApp (PrimInfo -> Term
Prim PrimInfo
NP.undefined) (Type -> Term) -> Type -> Term
forall a b. (a -> b) -> a -> b
$
Term -> TyConMap -> Type -> [Either Term Type] -> Type
applyTypeToArgs (PrimInfo -> Term
Prim PrimInfo
p) TyConMap
tcm (PrimInfo -> Type
primType PrimInfo
p) ([Either Term Type]
forall a. [Either a Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++ [Either Term Type]
forall b. [Either Term b]
tmArgs)
| Value -> Bool
isUndefinedXPrimVal Value
v
= let tyArgs :: [Either a Type]
tyArgs = (Type -> Either a Type) -> [Type] -> [Either a Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either a Type
forall a b. b -> Either a b
Right [Type]
tys
tmArgs :: [Either Term b]
tmArgs = (Value -> Either Term b) -> [Value] -> [Either Term b]
forall a b. (a -> b) -> [a] -> [b]
map (Term -> Either Term b
forall a b. a -> Either a b
Left (Term -> Either Term b)
-> (Value -> Term) -> Value -> Either Term b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Value -> Term
valToTerm) ([Value]
vs [Value] -> [Value] -> [Value]
forall a. [a] -> [a] -> [a]
++ [Value
v])
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ (Term -> Machine -> Machine) -> Machine -> Term -> Machine
forall a b c. (a -> b -> c) -> b -> a -> c
flip Term -> Machine -> Machine
setTerm Machine
m (Term -> Machine) -> Term -> Machine
forall a b. (a -> b) -> a -> b
$ Term -> Type -> Term
TyApp (PrimInfo -> Term
Prim PrimInfo
NP.undefinedX) (Type -> Term) -> Type -> Term
forall a b. (a -> b) -> a -> b
$
Term -> TyConMap -> Type -> [Either Term Type] -> Type
applyTypeToArgs (PrimInfo -> Term
Prim PrimInfo
p) TyConMap
tcm (PrimInfo -> Type
primType PrimInfo
p) ([Either Term Type]
forall a. [Either a Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++ [Either Term Type]
forall b. [Either Term b]
tmArgs)
| Bool
otherwise
= PrimStep
ghcPrimStep TyConMap
tcm (Machine -> Bool
forcePrims Machine
m) PrimInfo
p [Type]
tys ([Value]
vs [Value] -> [Value] -> [Value]
forall a. [a] -> [a] -> [a]
++ [Value
v]) Machine
m
ghcPrimUnwind TyConMap
tcm PrimInfo
p [Type]
tys [Value]
vs Value
v [Term
e] Machine
m0
| PrimInfo -> Text
primName PrimInfo
p Text -> [Text] -> Bool
forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`elem` [ Text
"Clash.Sized.Vector.lazyV"
, Text
"Clash.Sized.Vector.replicate"
, Text
"Clash.Sized.Vector.replace_int"
, Text
"GHC.Classes.&&"
, Text
"GHC.Classes.||"
, Text
"Clash.Class.BitPack.Internal.xToBV"
, Text
"Clash.Sized.Vector.imap_go"
]
= if Value -> Bool
isUndefinedPrimVal Value
v then
let tyArgs :: [Either a Type]
tyArgs = (Type -> Either a Type) -> [Type] -> [Either a Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either a Type
forall a b. b -> Either a b
Right [Type]
tys
tmArgs :: [Either Term b]
tmArgs = (Value -> Either Term b) -> [Value] -> [Either Term b]
forall a b. (a -> b) -> [a] -> [b]
map (Term -> Either Term b
forall a b. a -> Either a b
Left (Term -> Either Term b)
-> (Value -> Term) -> Value -> Either Term b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Value -> Term
valToTerm) ([Value]
vs [Value] -> [Value] -> [Value]
forall a. [a] -> [a] -> [a]
++ [Value
v]) [Either Term b] -> [Either Term b] -> [Either Term b]
forall a. [a] -> [a] -> [a]
++ [Term -> Either Term b
forall a b. a -> Either a b
Left Term
e]
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ (Term -> Machine -> Machine) -> Machine -> Term -> Machine
forall a b c. (a -> b -> c) -> b -> a -> c
flip Term -> Machine -> Machine
setTerm Machine
m0 (Term -> Machine) -> Term -> Machine
forall a b. (a -> b) -> a -> b
$ Term -> Type -> Term
TyApp (PrimInfo -> Term
Prim PrimInfo
NP.undefined) (Type -> Term) -> Type -> Term
forall a b. (a -> b) -> a -> b
$
Term -> TyConMap -> Type -> [Either Term Type] -> Type
applyTypeToArgs (PrimInfo -> Term
Prim PrimInfo
p) TyConMap
tcm (PrimInfo -> Type
primType PrimInfo
p) ([Either Term Type]
forall a. [Either a Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++ [Either Term Type]
forall b. [Either Term b]
tmArgs)
else
let (Machine
m1,Id
i) = TyConMap -> Machine -> Term -> (Machine, Id)
newLetBinding TyConMap
tcm Machine
m0 Term
e
in PrimStep
ghcPrimStep TyConMap
tcm (Machine -> Bool
forcePrims Machine
m0) PrimInfo
p [Type]
tys ([Value]
vs [Value] -> [Value] -> [Value]
forall a. [a] -> [a] -> [a]
++ [Value
v,Term -> Value
Suspend (Id -> Term
Var Id
i)]) Machine
m1
ghcPrimUnwind TyConMap
tcm PrimInfo
p [Type]
tys [Value]
vs (Value -> (Value, [TickInfo])
collectValueTicks -> (Value
v, [TickInfo]
ts)) (Term
e:[Term]
es) Machine
m
| Value -> Bool
isUndefinedPrimVal Value
v
= let tyArgs :: [Either a Type]
tyArgs = (Type -> Either a Type) -> [Type] -> [Either a Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either a Type
forall a b. b -> Either a b
Right [Type]
tys
tmArgs :: [Either Term b]
tmArgs = (Value -> Either Term b) -> [Value] -> [Either Term b]
forall a b. (a -> b) -> [a] -> [b]
map (Term -> Either Term b
forall a b. a -> Either a b
Left (Term -> Either Term b)
-> (Value -> Term) -> Value -> Either Term b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Value -> Term
valToTerm) ([Value]
vs [Value] -> [Value] -> [Value]
forall a. [a] -> [a] -> [a]
++ [Value
v]) [Either Term b] -> [Either Term b] -> [Either Term b]
forall a. [a] -> [a] -> [a]
++ (Term -> Either Term b) -> [Term] -> [Either Term b]
forall a b. (a -> b) -> [a] -> [b]
map Term -> Either Term b
forall a b. a -> Either a b
Left (Term
eTerm -> [Term] -> [Term]
forall a. a -> [a] -> [a]
:[Term]
es)
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ (Term -> Machine -> Machine) -> Machine -> Term -> Machine
forall a b c. (a -> b -> c) -> b -> a -> c
flip Term -> Machine -> Machine
setTerm Machine
m (Term -> Machine) -> Term -> Machine
forall a b. (a -> b) -> a -> b
$ Term -> Type -> Term
TyApp (PrimInfo -> Term
Prim PrimInfo
NP.undefined) (Type -> Term) -> Type -> Term
forall a b. (a -> b) -> a -> b
$
Term -> TyConMap -> Type -> [Either Term Type] -> Type
applyTypeToArgs (PrimInfo -> Term
Prim PrimInfo
p) TyConMap
tcm (PrimInfo -> Type
primType PrimInfo
p) ([Either Term Type]
forall a. [Either a Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++ [Either Term Type]
forall b. [Either Term b]
tmArgs)
| Bool
otherwise
= Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Machine -> Machine
setTerm Term
e (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ StackFrame -> Machine -> Machine
stackPush (PrimInfo -> [Type] -> [Value] -> [Term] -> StackFrame
PrimApply PrimInfo
p [Type]
tys ([Value]
vs [Value] -> [Value] -> [Value]
forall a. [a] -> [a] -> [a]
++ [(TickInfo -> Value -> Value) -> Value -> [TickInfo] -> Value
forall (t :: Type -> Type) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr TickInfo -> Value -> Value
TickValue Value
v [TickInfo]
ts]) [Term]
es) Machine
m
newtype PrimEvalMonad a = PEM (State Supply a)
deriving (a -> PrimEvalMonad b -> PrimEvalMonad a
(a -> b) -> PrimEvalMonad a -> PrimEvalMonad b
(forall a b. (a -> b) -> PrimEvalMonad a -> PrimEvalMonad b)
-> (forall a b. a -> PrimEvalMonad b -> PrimEvalMonad a)
-> Functor PrimEvalMonad
forall a b. a -> PrimEvalMonad b -> PrimEvalMonad a
forall a b. (a -> b) -> PrimEvalMonad a -> PrimEvalMonad b
forall (f :: Type -> Type).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: a -> PrimEvalMonad b -> PrimEvalMonad a
$c<$ :: forall a b. a -> PrimEvalMonad b -> PrimEvalMonad a
fmap :: (a -> b) -> PrimEvalMonad a -> PrimEvalMonad b
$cfmap :: forall a b. (a -> b) -> PrimEvalMonad a -> PrimEvalMonad b
Functor, Functor PrimEvalMonad
a -> PrimEvalMonad a
Functor PrimEvalMonad
-> (forall a. a -> PrimEvalMonad a)
-> (forall a b.
PrimEvalMonad (a -> b) -> PrimEvalMonad a -> PrimEvalMonad b)
-> (forall a b c.
(a -> b -> c)
-> PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad c)
-> (forall a b.
PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad b)
-> (forall a b.
PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad a)
-> Applicative PrimEvalMonad
PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad b
PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad a
PrimEvalMonad (a -> b) -> PrimEvalMonad a -> PrimEvalMonad b
(a -> b -> c)
-> PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad c
forall a. a -> PrimEvalMonad a
forall a b. PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad a
forall a b. PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad b
forall a b.
PrimEvalMonad (a -> b) -> PrimEvalMonad a -> PrimEvalMonad b
forall a b c.
(a -> b -> c)
-> PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad c
forall (f :: Type -> Type).
Functor f
-> (forall a. a -> f a)
-> (forall a b. f (a -> b) -> f a -> f b)
-> (forall a b c. (a -> b -> c) -> f a -> f b -> f c)
-> (forall a b. f a -> f b -> f b)
-> (forall a b. f a -> f b -> f a)
-> Applicative f
<* :: PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad a
$c<* :: forall a b. PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad a
*> :: PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad b
$c*> :: forall a b. PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad b
liftA2 :: (a -> b -> c)
-> PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad c
$cliftA2 :: forall a b c.
(a -> b -> c)
-> PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad c
<*> :: PrimEvalMonad (a -> b) -> PrimEvalMonad a -> PrimEvalMonad b
$c<*> :: forall a b.
PrimEvalMonad (a -> b) -> PrimEvalMonad a -> PrimEvalMonad b
pure :: a -> PrimEvalMonad a
$cpure :: forall a. a -> PrimEvalMonad a
$cp1Applicative :: Functor PrimEvalMonad
Applicative, Applicative PrimEvalMonad
a -> PrimEvalMonad a
Applicative PrimEvalMonad
-> (forall a b.
PrimEvalMonad a -> (a -> PrimEvalMonad b) -> PrimEvalMonad b)
-> (forall a b.
PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad b)
-> (forall a. a -> PrimEvalMonad a)
-> Monad PrimEvalMonad
PrimEvalMonad a -> (a -> PrimEvalMonad b) -> PrimEvalMonad b
PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad b
forall a. a -> PrimEvalMonad a
forall a b. PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad b
forall a b.
PrimEvalMonad a -> (a -> PrimEvalMonad b) -> PrimEvalMonad b
forall (m :: Type -> Type).
Applicative m
-> (forall a b. m a -> (a -> m b) -> m b)
-> (forall a b. m a -> m b -> m b)
-> (forall a. a -> m a)
-> Monad m
return :: a -> PrimEvalMonad a
$creturn :: forall a. a -> PrimEvalMonad a
>> :: PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad b
$c>> :: forall a b. PrimEvalMonad a -> PrimEvalMonad b -> PrimEvalMonad b
>>= :: PrimEvalMonad a -> (a -> PrimEvalMonad b) -> PrimEvalMonad b
$c>>= :: forall a b.
PrimEvalMonad a -> (a -> PrimEvalMonad b) -> PrimEvalMonad b
$cp1Monad :: Applicative PrimEvalMonad
Monad, MonadState Supply)
instance MonadUnique PrimEvalMonad where
getUniqueM :: PrimEvalMonad Int
getUniqueM = State Supply Int -> PrimEvalMonad Int
forall a. State Supply a -> PrimEvalMonad a
PEM (State Supply Int -> PrimEvalMonad Int)
-> State Supply Int -> PrimEvalMonad Int
forall a b. (a -> b) -> a -> b
$ (Supply -> (Int, Supply)) -> State Supply Int
forall s (m :: Type -> Type) a.
MonadState s m =>
(s -> (a, s)) -> m a
State.state (\Supply
s -> case Supply -> (Int, Supply)
freshId Supply
s of (!Int
i,!Supply
s') -> (Int
i,Supply
s'))
runPEM :: PrimEvalMonad a -> Supply -> (a, Supply)
runPEM :: PrimEvalMonad a -> Supply -> (a, Supply)
runPEM (PEM State Supply a
m) = State Supply a -> Supply -> (a, Supply)
forall s a. State s a -> s -> (a, s)
State.runState State Supply a
m
ghcPrimStep :: PrimStep
ghcPrimStep :: PrimStep
ghcPrimStep TyConMap
tcm Bool
isSubj PrimInfo
pInfo [Type]
tys [Value]
args Machine
mach = case PrimInfo -> Text
primName PrimInfo
pInfo of
Text
"GHC.Prim.gtChar#" | Just (Char
i,Char
j) <- [Value] -> Maybe (Char, Char)
charLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Char
i Char -> Char -> Bool
forall a. Ord a => a -> a -> Bool
> Char
j))
Text
"GHC.Prim.geChar#" | Just (Char
i,Char
j) <- [Value] -> Maybe (Char, Char)
charLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Char
i Char -> Char -> Bool
forall a. Ord a => a -> a -> Bool
>= Char
j))
Text
"GHC.Prim.eqChar#" | Just (Char
i,Char
j) <- [Value] -> Maybe (Char, Char)
charLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Char
i Char -> Char -> Bool
forall a. Eq a => a -> a -> Bool
== Char
j))
Text
"GHC.Prim.neChar#" | Just (Char
i,Char
j) <- [Value] -> Maybe (Char, Char)
charLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Char
i Char -> Char -> Bool
forall a. Eq a => a -> a -> Bool
/= Char
j))
Text
"GHC.Prim.ltChar#" | Just (Char
i,Char
j) <- [Value] -> Maybe (Char, Char)
charLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Char
i Char -> Char -> Bool
forall a. Ord a => a -> a -> Bool
< Char
j))
Text
"GHC.Prim.leChar#" | Just (Char
i,Char
j) <- [Value] -> Maybe (Char, Char)
charLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Char
i Char -> Char -> Bool
forall a. Ord a => a -> a -> Bool
<= Char
j))
Text
"GHC.Prim.ord#" | [Char
i] <- [Value] -> String
charLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntLiteral (Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> Int -> Integer
forall a b. (a -> b) -> a -> b
$ Char -> Int
ord Char
i))
Text
"GHC.Prim.+#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntLiteral (Integer
iInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
+Integer
j))
Text
"GHC.Prim.-#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntLiteral (Integer
iInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
j))
Text
"GHC.Prim.*#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntLiteral (Integer
iInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
j))
Text
"GHC.Prim.mulIntMayOflo#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> let !(I# Int#
a) = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
i
!(I# Int#
b) = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j
c :: Int#
c :: Int#
c = Int# -> Int# -> Int#
mulIntMayOflo# Int#
a Int#
b
in Term -> Maybe Machine
reduce (Integer -> Term
integerToIntLiteral (Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> Int -> Integer
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
c))
Text
"GHC.Prim.quotInt#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Integer -> Term
integerToIntLiteral (Integer
i Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`quot` Integer
j))
Text
"GHC.Prim.remInt#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Integer -> Term
integerToIntLiteral (Integer
i Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`rem` Integer
j))
Text
"GHC.Prim.quotRemInt#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
(Integer
q,Integer
r) = Integer -> Integer -> (Integer, Integer)
forall a. Integral a => a -> a -> (a, a)
quotRem Integer
i Integer
j
ret :: Term
ret = Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Either Term Type) -> Term -> Either Term Type
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Integer -> Term
integerToIntLiteral Integer
q)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Either Term Type) -> Term -> Either Term Type
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Integer -> Term
integerToIntLiteral Integer
r)])
in Term -> Maybe Machine
reduce Term
ret
Text
"GHC.Prim.andI#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntLiteral (Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. Integer
j))
Text
"GHC.Prim.orI#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntLiteral (Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.|. Integer
j))
Text
"GHC.Prim.xorI#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntLiteral (Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
`xor` Integer
j))
Text
"GHC.Prim.notI#" | [Integer
i] <- [Value] -> [Integer]
intLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntLiteral (Integer -> Integer
forall a. Bits a => a -> a
complement Integer
i))
Text
"GHC.Prim.negateInt#"
| [Lit (IntLiteral Integer
i)] <- [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntLiteral (Integer -> Integer
forall a. Num a => a -> a
negate Integer
i))
Text
"GHC.Prim.addIntC#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
!(I# Int#
a) = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
i
!(I# Int#
b) = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j
!(# Int#
d, Int#
c #) = Int# -> Int# -> (# Int#, Int# #)
addIntC# Int#
a Int#
b
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[ Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Term) -> Int -> Term
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
d)
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Term) -> Int -> Term
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
c)])
Text
"GHC.Prim.subIntC#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
!(I# Int#
a) = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
i
!(I# Int#
b) = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j
!(# Int#
d, Int#
c #) = Int# -> Int# -> (# Int#, Int# #)
subIntC# Int#
a Int#
b
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[ Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Term) -> Int -> Term
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
d)
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Term) -> Int -> Term
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
c)])
Text
"GHC.Prim.>#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
j))
Text
"GHC.Prim.>=#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
j))
Text
"GHC.Prim.==#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
j))
Text
"GHC.Prim./=#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
/= Integer
j))
Text
"GHC.Prim.<#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
j))
Text
"GHC.Prim.<=#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
j))
Text
"GHC.Prim.chr#" | [Integer
i] <- [Value] -> [Integer]
intLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Char -> Term
charToCharLiteral (Int -> Char
chr (Int -> Char) -> Int -> Char
forall a b. (a -> b) -> a -> b
$ Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
i))
Text
"GHC.Prim.int2Word#"
| [Lit (IntLiteral Integer
i)] <- [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> (Word -> Term) -> Word -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Literal -> Term
Literal (Literal -> Term) -> (Word -> Literal) -> Word -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
WordLiteral (Integer -> Literal) -> (Word -> Integer) -> Word -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Integer
forall a. Integral a => a -> Integer
toInteger (Word -> Maybe Machine) -> Word -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ (Integer -> Word
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word) Integer
i
Text
"GHC.Prim.int2Float#"
| [Lit (IntLiteral Integer
i)] <- [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Float -> Term) -> Float -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Literal -> Term
Literal (Literal -> Term) -> (Float -> Literal) -> Float -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word32 -> Literal
FloatLiteral (Word32 -> Literal) -> (Float -> Word32) -> Float -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Float -> Word32
floatToWord (Float -> Maybe Machine) -> Float -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer -> Float
forall a. Num a => Integer -> a
fromInteger Integer
i
Text
"GHC.Prim.int2Double#"
| [Lit (IntLiteral Integer
i)] <- [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Double -> Term) -> Double -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Literal -> Term
Literal (Literal -> Term) -> (Double -> Literal) -> Double -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word64 -> Literal
DoubleLiteral (Word64 -> Literal) -> (Double -> Word64) -> Double -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Double -> Word64
doubleToWord (Double -> Maybe Machine) -> Double -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer -> Double
forall a. Num a => Integer -> a
fromInteger Integer
i
Text
"GHC.Prim.word2Float#"
| [Lit (WordLiteral Integer
i)] <- [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Float -> Term) -> Float -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Literal -> Term
Literal (Literal -> Term) -> (Float -> Literal) -> Float -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word32 -> Literal
FloatLiteral (Word32 -> Literal) -> (Float -> Word32) -> Float -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Float -> Word32
floatToWord (Float -> Maybe Machine) -> Float -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer -> Float
forall a. Num a => Integer -> a
fromInteger Integer
i
Text
"GHC.Prim.word2Double#"
| [Lit (WordLiteral Integer
i)] <- [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Double -> Term) -> Double -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Literal -> Term
Literal (Literal -> Term) -> (Double -> Literal) -> Double -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word64 -> Literal
DoubleLiteral (Word64 -> Literal) -> (Double -> Word64) -> Double -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Double -> Word64
doubleToWord (Double -> Maybe Machine) -> Double -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer -> Double
forall a. Num a => Integer -> a
fromInteger Integer
i
Text
"GHC.Prim.uncheckedIShiftL#"
| [ Lit (IntLiteral Integer
i)
, Lit (IntLiteral Integer
s)
] <- [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntLiteral (Integer
i Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
s))
Text
"GHC.Prim.uncheckedIShiftRA#"
| [ Lit (IntLiteral Integer
i)
, Lit (IntLiteral Integer
s)
] <- [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntLiteral (Integer
i Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftR` Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
s))
Text
"GHC.Prim.uncheckedIShiftRL#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> let !(I# Int#
a) = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
i
!(I# Int#
b) = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j
c :: Int#
c :: Int#
c = Int# -> Int# -> Int#
uncheckedIShiftRL# Int#
a Int#
b
in Term -> Maybe Machine
reduce (Integer -> Term
integerToIntLiteral (Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> Int -> Integer
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
c))
Text
"GHC.Prim.plusWord#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
wordLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToWordLiteral (Integer
iInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
+Integer
j))
Text
"GHC.Prim.subWordC#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
wordLiterals [Value]
args
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
!(W# Word#
a) = Integer -> Word
forall a. Num a => Integer -> a
fromInteger Integer
i
!(W# Word#
b) = Integer -> Word
forall a. Num a => Integer -> a
fromInteger Integer
j
!(# Word#
d, Int#
c #) = Word# -> Word# -> (# Word#, Int# #)
subWordC# Word#
a Word#
b
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[ Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Word -> Literal) -> Word -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
WordLiteral (Integer -> Literal) -> (Word -> Integer) -> Word -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Integer
forall a. Integral a => a -> Integer
toInteger (Word -> Term) -> Word -> Term
forall a b. (a -> b) -> a -> b
$ Word# -> Word
W# Word#
d)
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Term) -> Int -> Term
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
c)])
Text
"GHC.Prim.plusWord2#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
wordLiterals [Value]
args
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
!(W# Word#
a) = Integer -> Word
forall a. Num a => Integer -> a
fromInteger Integer
i
!(W# Word#
b) = Integer -> Word
forall a. Num a => Integer -> a
fromInteger Integer
j
!(# Word#
h', Word#
l #) = Word# -> Word# -> (# Word#, Word# #)
plusWord2# Word#
a Word#
b
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[ Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Word -> Literal) -> Word -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
WordLiteral (Integer -> Literal) -> (Word -> Integer) -> Word -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Integer
forall a. Integral a => a -> Integer
toInteger (Word -> Term) -> Word -> Term
forall a b. (a -> b) -> a -> b
$ Word# -> Word
W# Word#
h')
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Word -> Literal) -> Word -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
WordLiteral (Integer -> Literal) -> (Word -> Integer) -> Word -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Integer
forall a. Integral a => a -> Integer
toInteger (Word -> Term) -> Word -> Term
forall a b. (a -> b) -> a -> b
$ Word# -> Word
W# Word#
l)])
Text
"GHC.Prim.minusWord#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
wordLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToWordLiteral (Integer
iInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
j))
Text
"GHC.Prim.timesWord#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
wordLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToWordLiteral (Integer
iInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
j))
Text
"GHC.Prim.timesWord2#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
wordLiterals [Value]
args
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
!(W# Word#
a) = Integer -> Word
forall a. Num a => Integer -> a
fromInteger Integer
i
!(W# Word#
b) = Integer -> Word
forall a. Num a => Integer -> a
fromInteger Integer
j
!(# Word#
h', Word#
l #) = Word# -> Word# -> (# Word#, Word# #)
timesWord2# Word#
a Word#
b
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[ Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Word -> Literal) -> Word -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
WordLiteral (Integer -> Literal) -> (Word -> Integer) -> Word -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Integer
forall a. Integral a => a -> Integer
toInteger (Word -> Term) -> Word -> Term
forall a b. (a -> b) -> a -> b
$ Word# -> Word
W# Word#
h')
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Word -> Literal) -> Word -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
WordLiteral (Integer -> Literal) -> (Word -> Integer) -> Word -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Integer
forall a. Integral a => a -> Integer
toInteger (Word -> Term) -> Word -> Term
forall a b. (a -> b) -> a -> b
$ Word# -> Word
W# Word#
l)])
Text
"GHC.Prim.quotWord#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
wordLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Integer -> Term
integerToWordLiteral (Integer
i Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`quot` Integer
j))
Text
"GHC.Prim.remWord#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
wordLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Integer -> Term
integerToWordLiteral (Integer
i Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`rem` Integer
j))
Text
"GHC.Prim.quotRemWord#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
wordLiterals [Value]
args
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
(Integer
q,Integer
r) = Integer -> Integer -> (Integer, Integer)
forall a. Integral a => a -> a -> (a, a)
quotRem Integer
i Integer
j
ret :: Term
ret = Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Either Term Type) -> Term -> Either Term Type
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Integer -> Term
integerToWordLiteral Integer
q)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Either Term Type) -> Term -> Either Term Type
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Integer -> Term
integerToWordLiteral Integer
r)])
in Term -> Maybe Machine
reduce Term
ret
Text
"GHC.Prim.quotRemWord2#" | [Integer
i,Integer
j,Integer
k'] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
!(W# Word#
a) = Integer -> Word
forall a. Num a => Integer -> a
fromInteger Integer
i
!(W# Word#
b) = Integer -> Word
forall a. Num a => Integer -> a
fromInteger Integer
j
!(W# Word#
c) = Integer -> Word
forall a. Num a => Integer -> a
fromInteger Integer
k'
!(# Word#
x, Word#
y #) = Word# -> Word# -> Word# -> (# Word#, Word# #)
quotRemWord2# Word#
a Word#
b Word#
c
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[ Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Either Term Type) -> Term -> Either Term Type
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Literal -> Term
Literal (Literal -> Term) -> (Word -> Literal) -> Word -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
WordLiteral (Integer -> Literal) -> (Word -> Integer) -> Word -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Integer
forall a. Integral a => a -> Integer
toInteger (Word -> Term) -> Word -> Term
forall a b. (a -> b) -> a -> b
$ Word# -> Word
W# Word#
x)
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Either Term Type) -> Term -> Either Term Type
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Literal -> Term
Literal (Literal -> Term) -> (Word -> Literal) -> Word -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
WordLiteral (Integer -> Literal) -> (Word -> Integer) -> Word -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Integer
forall a. Integral a => a -> Integer
toInteger (Word -> Term) -> Word -> Term
forall a b. (a -> b) -> a -> b
$ Word# -> Word
W# Word#
y)])
Text
"GHC.Prim.and#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
wordLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToWordLiteral (Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. Integer
j))
Text
"GHC.Prim.or#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
wordLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToWordLiteral (Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.|. Integer
j))
Text
"GHC.Prim.xor#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
wordLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToWordLiteral (Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
`xor` Integer
j))
Text
"GHC.Prim.not#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToWordLiteral (Integer -> Integer
forall a. Bits a => a -> a
complement Integer
i))
Text
"GHC.Prim.uncheckedShiftL#"
| [ Lit (WordLiteral Integer
w)
, Lit (IntLiteral Integer
i)
] <- [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
WordLiteral (Integer
w Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
i)))
Text
"GHC.Prim.uncheckedShiftRL#"
| [ Lit (WordLiteral Integer
w)
, Lit (IntLiteral Integer
i)
] <- [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
WordLiteral (Integer
w Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftR` Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
i)))
Text
"GHC.Prim.word2Int#"
| [Lit (WordLiteral Integer
i)] <- [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> (Int -> Term) -> Int -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Maybe Machine) -> Int -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ (Integer -> Int
forall a. Num a => Integer -> a
fromInteger :: Integer -> Int) Integer
i
Text
"GHC.Prim.gtWord#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
wordLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
j))
Text
"GHC.Prim.geWord#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
wordLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
j))
Text
"GHC.Prim.eqWord#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
wordLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
j))
Text
"GHC.Prim.neWord#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
wordLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
/= Integer
j))
Text
"GHC.Prim.ltWord#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
wordLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
j))
Text
"GHC.Prim.leWord#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
wordLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
j))
Text
"GHC.Prim.popCnt8#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> (Integer -> Int) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> Int
forall a. Bits a => a -> Int
popCount (Word8 -> Int) -> (Integer -> Word8) -> Integer -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word8
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word8) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
Text
"GHC.Prim.popCnt16#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> (Integer -> Int) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word16 -> Int
forall a. Bits a => a -> Int
popCount (Word16 -> Int) -> (Integer -> Word16) -> Integer -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word16
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word16) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
Text
"GHC.Prim.popCnt32#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> (Integer -> Int) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word32 -> Int
forall a. Bits a => a -> Int
popCount (Word32 -> Int) -> (Integer -> Word32) -> Integer -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word32
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word32) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
Text
"GHC.Prim.popCnt64#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> (Integer -> Int) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word64 -> Int
forall a. Bits a => a -> Int
popCount (Word64 -> Int) -> (Integer -> Word64) -> Integer -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word64
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word64) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
Text
"GHC.Prim.popCnt#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> (Integer -> Int) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Int
forall a. Bits a => a -> Int
popCount (Word -> Int) -> (Integer -> Word) -> Integer -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
Text
"GHC.Prim.clz8#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> (Integer -> Int) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> Int
forall b. FiniteBits b => b -> Int
countLeadingZeros (Word8 -> Int) -> (Integer -> Word8) -> Integer -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word8
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word8) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
Text
"GHC.Prim.clz16#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> (Integer -> Int) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word16 -> Int
forall b. FiniteBits b => b -> Int
countLeadingZeros (Word16 -> Int) -> (Integer -> Word16) -> Integer -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word16
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word16) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
Text
"GHC.Prim.clz32#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> (Integer -> Int) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word32 -> Int
forall b. FiniteBits b => b -> Int
countLeadingZeros (Word32 -> Int) -> (Integer -> Word32) -> Integer -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word32
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word32) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
Text
"GHC.Prim.clz64#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> (Integer -> Int) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word64 -> Int
forall b. FiniteBits b => b -> Int
countLeadingZeros (Word64 -> Int) -> (Integer -> Word64) -> Integer -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word64
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word64) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
Text
"GHC.Prim.clz#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> (Integer -> Int) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Int
forall b. FiniteBits b => b -> Int
countLeadingZeros (Word -> Int) -> (Integer -> Word) -> Integer -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
Text
"GHC.Prim.ctz8#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> (Integer -> Int) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Int
forall b. FiniteBits b => b -> Int
countTrailingZeros (Word -> Int) -> (Integer -> Word) -> Integer -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. (Int -> Integer
forall a. Bits a => Int -> a
bit Int
8 Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)
Text
"GHC.Prim.ctz16#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> (Integer -> Int) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Int
forall b. FiniteBits b => b -> Int
countTrailingZeros (Word -> Int) -> (Integer -> Word) -> Integer -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. (Int -> Integer
forall a. Bits a => Int -> a
bit Int
16 Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)
Text
"GHC.Prim.ctz32#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> (Integer -> Int) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Int
forall b. FiniteBits b => b -> Int
countTrailingZeros (Word -> Int) -> (Integer -> Word) -> Integer -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. (Int -> Integer
forall a. Bits a => Int -> a
bit Int
32 Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)
Text
"GHC.Prim.ctz64#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> (Integer -> Int) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word64 -> Int
forall b. FiniteBits b => b -> Int
countTrailingZeros (Word64 -> Int) -> (Integer -> Word64) -> Integer -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word64
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word64) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. (Int -> Integer
forall a. Bits a => Int -> a
bit Int
64 Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)
Text
"GHC.Prim.ctz#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> (Integer -> Int) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Int
forall b. FiniteBits b => b -> Int
countTrailingZeros (Word -> Int) -> (Integer -> Word) -> Integer -> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
Text
"GHC.Prim.byteSwap16#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word16 -> Integer
forall a. Integral a => a -> Integer
toInteger (Word16 -> Integer) -> (Integer -> Word16) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word16 -> Word16
byteSwap16 (Word16 -> Word16) -> (Integer -> Word16) -> Integer -> Word16
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word16
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word16) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
Text
"GHC.Prim.byteSwap32#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word32 -> Integer
forall a. Integral a => a -> Integer
toInteger (Word32 -> Integer) -> (Integer -> Word32) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word32 -> Word32
byteSwap32 (Word32 -> Word32) -> (Integer -> Word32) -> Integer -> Word32
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word32
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word32) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
Text
"GHC.Prim.byteSwap64#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word64 -> Integer
forall a. Integral a => a -> Integer
toInteger (Word64 -> Integer) -> (Integer -> Word64) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word64 -> Word64
byteSwap64 (Word64 -> Word64) -> (Integer -> Word64) -> Integer -> Word64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word64
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word64) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
Text
"GHC.Prim.byteSwap#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word64 -> Integer
forall a. Integral a => a -> Integer
toInteger (Word64 -> Integer) -> (Integer -> Word64) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word64 -> Word64
byteSwap64 (Word64 -> Word64) -> (Integer -> Word64) -> Integer -> Word64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word64
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word64) (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
#if MIN_VERSION_base(4,14,0)
Text
"GHC.Prim.bitReverse#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word64 -> Integer
forall a. Integral a => a -> Integer
toInteger (Word64 -> Integer) -> (Integer -> Word64) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word64 -> Word64
bitReverse64 (Word64 -> Word64) -> (Integer -> Word64) -> Integer -> Word64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Word64
forall a. Num a => Integer -> a
fromInteger (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
Text
"GHC.Prim.bitReverse8#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> Integer
forall a. Integral a => a -> Integer
toInteger (Word8 -> Integer) -> (Integer -> Word8) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> Word8
bitReverse8 (Word8 -> Word8) -> (Integer -> Word8) -> Integer -> Word8
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Word8
forall a. Num a => Integer -> a
fromInteger (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
Text
"GHC.Prim.bitReverse16#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word16 -> Integer
forall a. Integral a => a -> Integer
toInteger (Word16 -> Integer) -> (Integer -> Word16) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word16 -> Word16
bitReverse16 (Word16 -> Word16) -> (Integer -> Word16) -> Integer -> Word16
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Word16
forall a. Num a => Integer -> a
fromInteger (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
Text
"GHC.Prim.bitReverse32#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word32 -> Integer
forall a. Integral a => a -> Integer
toInteger (Word32 -> Integer) -> (Integer -> Word32) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word32 -> Word32
bitReverse32 (Word32 -> Word32) -> (Integer -> Word32) -> Integer -> Word32
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Word32
forall a. Num a => Integer -> a
fromInteger (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
Text
"GHC.Prim.bitReverse64#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Integer -> Term) -> Integer -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Term
integerToWordLiteral (Integer -> Term) -> (Integer -> Integer) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word64 -> Integer
forall a. Integral a => a -> Integer
toInteger (Word64 -> Integer) -> (Integer -> Word64) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word64 -> Word64
bitReverse64 (Word64 -> Word64) -> (Integer -> Word64) -> Integer -> Word64
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Word64
forall a. Num a => Integer -> a
fromInteger (Integer -> Maybe Machine) -> Integer -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Integer
i
#endif
Text
"GHC.Prim.narrow8Int#" | [Integer
i] <- [Value] -> [Integer]
intLiterals' [Value]
args
-> let !(I# Int#
a) = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
i
b :: Int#
b = Int# -> Int#
narrow8Int# Int#
a
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> (Int -> Term) -> Int -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Maybe Machine) -> Int -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
b
Text
"GHC.Prim.narrow16Int#" | [Integer
i] <- [Value] -> [Integer]
intLiterals' [Value]
args
-> let !(I# Int#
a) = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
i
b :: Int#
b = Int# -> Int#
narrow16Int# Int#
a
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> (Int -> Term) -> Int -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Maybe Machine) -> Int -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
b
Text
"GHC.Prim.narrow32Int#" | [Integer
i] <- [Value] -> [Integer]
intLiterals' [Value]
args
-> let !(I# Int#
a) = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
i
b :: Int#
b = Int# -> Int#
narrow32Int# Int#
a
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> (Int -> Term) -> Int -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Maybe Machine) -> Int -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
b
Text
"GHC.Prim.narrow8Word#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> let !(W# Word#
a) = Integer -> Word
forall a. Num a => Integer -> a
fromInteger Integer
i
b :: Word#
b = Word# -> Word#
narrow8Word# Word#
a
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> (Word -> Term) -> Word -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Literal -> Term
Literal (Literal -> Term) -> (Word -> Literal) -> Word -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
WordLiteral (Integer -> Literal) -> (Word -> Integer) -> Word -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Integer
forall a. Integral a => a -> Integer
toInteger (Word -> Maybe Machine) -> Word -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Word# -> Word
W# Word#
b
Text
"GHC.Prim.narrow16Word#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> let !(W# Word#
a) = Integer -> Word
forall a. Num a => Integer -> a
fromInteger Integer
i
b :: Word#
b = Word# -> Word#
narrow16Word# Word#
a
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> (Word -> Term) -> Word -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Literal -> Term
Literal (Literal -> Term) -> (Word -> Literal) -> Word -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
WordLiteral (Integer -> Literal) -> (Word -> Integer) -> Word -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Integer
forall a. Integral a => a -> Integer
toInteger (Word -> Maybe Machine) -> Word -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Word# -> Word
W# Word#
b
Text
"GHC.Prim.narrow32Word#" | [Integer
i] <- [Value] -> [Integer]
wordLiterals' [Value]
args
-> let !(W# Word#
a) = Integer -> Word
forall a. Num a => Integer -> a
fromInteger Integer
i
b :: Word#
b = Word# -> Word#
narrow32Word# Word#
a
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> (Word -> Term) -> Word -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Literal -> Term
Literal (Literal -> Term) -> (Word -> Literal) -> Word -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
WordLiteral (Integer -> Literal) -> (Word -> Integer) -> Word -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Integer
forall a. Integral a => a -> Integer
toInteger (Word -> Maybe Machine) -> Word -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Word# -> Word
W# Word#
b
#if MIN_VERSION_base(4,16,0)
"GHC.Prim.intToInt8#" | [i] <- intLiterals' args
-> let !(I# a) = fromInteger i
b = narrow8Int# a
in reduce . Literal . Int8Literal . toInteger $ I# b
"GHC.Prim.int8ToInt#" | [i] <- int8Literals' args
-> reduce . Literal $ IntLiteral i
"GHC.Prim.negateInt8" | [i] <- int8Literals' args
-> let !(I8# a) = fromInteger i
in reduce (Literal (Int8Literal (toInteger (I8# (negateInt8# a)))))
"GHC.Prim.plusInt8#" | Just r <- liftI8 plusInt8# args
-> reduce r
"GHC.Prim.subInt8#" | Just r <- liftI8 subInt8# args
-> reduce r
"GHC.Prim.timesInt8#" | Just r <- liftI8 timesInt8# args
-> reduce r
"GHC.Prim.quotInt8#" | Just r <- liftI8 quotInt8# args
-> reduce r
"GHC.Prim.remInt8#" | Just r <- liftI8 remInt8# args
-> reduce r
"GHC.Prim.quotRemInt8#"
| [i, j] <- int8Literals' args
, (_,tyView -> TyConApp tupTcNm tyArgs) <- splitFunForallTy ty
, (Just tupTc) <- UniqMap.lookup tupTcNm tcm
, [tupDc] <- tyConDataCons tupTc
-> let !(I8# a) = fromInteger i
!(I8# b) = fromInteger j
!(# q, r #) = quotRemInt8# a b
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal (Int8Literal (toInteger (I8# q))))
, Left (Literal (Int8Literal (toInteger (I8# r))))])
"GHC.Prim.uncheckedShiftLInt8#" | Just r <- liftI8I uncheckedShiftLInt8# args
-> reduce r
"GHC.Prim.uncheckedShiftRAInt8#" | Just r <- liftI8I uncheckedShiftRAInt8# args
-> reduce r
"GHC.Prim.uncheckedShiftRLInt8#" | Just r <- liftI8I uncheckedShiftRLInt8# args
-> reduce r
"GHC.Prim.int8ToWord8#" | [i] <- int8Literals' args
-> let !(I8# a) = fromInteger i
in reduce (Literal (Word8Literal (toInteger (W8# (int8ToWord8# a)))))
"GHC.Prim.eqInt8#" | Just r <- liftI8RI eqInt8# args
-> reduce r
"GHC.Prim.geInt8#" | Just r <- liftI8RI geInt8# args
-> reduce r
"GHC.Prim.gtInt8#" | Just r <- liftI8RI gtInt8# args
-> reduce r
"GHC.Prim.leInt8#" | Just r <- liftI8RI leInt8# args
-> reduce r
"GHC.Prim.ltInt8#" | Just r <- liftI8RI ltInt8# args
-> reduce r
"GHC.Prim.neInt8#" | Just r <- liftI8RI neInt8# args
-> reduce r
"GHC.Prim.intToInt16#" | [i] <- intLiterals' args
-> let !(I# a) = fromInteger i
b = narrow16Int# a
in reduce . Literal . Int16Literal . toInteger $ I# b
"GHC.Prim.int16ToInt#" | [i] <- int16Literals' args
-> reduce . Literal $ IntLiteral i
"GHC.Prim.negateInt16" | [i] <- int16Literals' args
-> let !(I16# a) = fromInteger i
in reduce (Literal (Int16Literal (toInteger (I16# (negateInt16# a)))))
"GHC.Prim.plusInt16#" | Just r <- liftI16 plusInt16# args
-> reduce r
"GHC.Prim.subInt16#" | Just r <- liftI16 subInt16# args
-> reduce r
"GHC.Prim.timesInt16#" | Just r <- liftI16 timesInt16# args
-> reduce r
"GHC.Prim.quotInt16#" | Just r <- liftI16 quotInt16# args
-> reduce r
"GHC.Prim.remInt16#" | Just r <- liftI16 remInt16# args
-> reduce r
"GHC.Prim.quotRemInt16#"
| [i, j] <- int16Literals' args
, (_,tyView -> TyConApp tupTcNm tyArgs) <- splitFunForallTy ty
, (Just tupTc) <- UniqMap.lookup tupTcNm tcm
, [tupDc] <- tyConDataCons tupTc
-> let !(I16# a) = fromInteger i
!(I16# b) = fromInteger j
!(# q, r #) = quotRemInt16# a b
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal (Int16Literal (toInteger (I16# q))))
, Left (Literal (Int16Literal (toInteger (I16# r))))])
"GHC.Prim.uncheckedShiftLInt16#" | Just r <- liftI16I uncheckedShiftLInt16# args
-> reduce r
"GHC.Prim.uncheckedShiftRAInt16#" | Just r <- liftI16I uncheckedShiftRAInt16# args
-> reduce r
"GHC.Prim.uncheckedShiftRLInt16#" | Just r <- liftI16I uncheckedShiftRLInt16# args
-> reduce r
"GHC.Prim.int16ToWord16#" | [i] <- int16Literals' args
-> let !(I16# a) = fromInteger i
in reduce (Literal (Word16Literal (toInteger (W16# (int16ToWord16# a)))))
"GHC.Prim.eqInt16#" | Just r <- liftI16RI eqInt16# args
-> reduce r
"GHC.Prim.geInt16#" | Just r <- liftI16RI geInt16# args
-> reduce r
"GHC.Prim.gtInt16#" | Just r <- liftI16RI gtInt16# args
-> reduce r
"GHC.Prim.leInt16#" | Just r <- liftI16RI leInt16# args
-> reduce r
"GHC.Prim.ltInt16#" | Just r <- liftI16RI ltInt16# args
-> reduce r
"GHC.Prim.neInt16#" | Just r <- liftI16RI neInt16# args
-> reduce r
"GHC.Prim.intToInt32#" | [i] <- intLiterals' args
-> let !(I# a) = fromInteger i
b = narrow32Int# a
in reduce . Literal . Int32Literal . toInteger $ I# b
"GHC.Prim.int32ToInt#" | [i] <- int32Literals' args
-> reduce . Literal $ IntLiteral i
"GHC.Prim.negateInt32" | [i] <- int32Literals' args
-> let !(I32# a) = fromInteger i
in reduce (Literal (Int32Literal (toInteger (I32# (negateInt32# a)))))
"GHC.Prim.plusInt32#" | Just r <- liftI32 plusInt32# args
-> reduce r
"GHC.Prim.subInt32#" | Just r <- liftI32 subInt32# args
-> reduce r
"GHC.Prim.timesInt32#" | Just r <- liftI32 timesInt32# args
-> reduce r
"GHC.Prim.quotInt32#" | Just r <- liftI32 quotInt32# args
-> reduce r
"GHC.Prim.remInt32#" | Just r <- liftI32 remInt32# args
-> reduce r
"GHC.Prim.quotRemInt32#"
| [i, j] <- int32Literals' args
, (_,tyView -> TyConApp tupTcNm tyArgs) <- splitFunForallTy ty
, (Just tupTc) <- UniqMap.lookup tupTcNm tcm
, [tupDc] <- tyConDataCons tupTc
-> let !(I32# a) = fromInteger i
!(I32# b) = fromInteger j
!(# q, r #) = quotRemInt32# a b
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal (Int32Literal (toInteger (I32# q))))
, Left (Literal (Int32Literal (toInteger (I32# r))))])
"GHC.Prim.uncheckedShiftLInt32#" | Just r <- liftI32I uncheckedShiftLInt32# args
-> reduce r
"GHC.Prim.uncheckedShiftRAInt32#" | Just r <- liftI32I uncheckedShiftRAInt32# args
-> reduce r
"GHC.Prim.uncheckedShiftRLInt32#" | Just r <- liftI32I uncheckedShiftRLInt32# args
-> reduce r
"GHC.Prim.int32ToWord32#" | [i] <- int32Literals' args
-> let !(I32# a) = fromInteger i
in reduce (Literal (Word32Literal (toInteger (W32# (int32ToWord32# a)))))
"GHC.Prim.eqInt32#" | Just r <- liftI32RI eqInt32# args
-> reduce r
"GHC.Prim.geInt32#" | Just r <- liftI32RI geInt32# args
-> reduce r
"GHC.Prim.gtInt32#" | Just r <- liftI32RI gtInt32# args
-> reduce r
"GHC.Prim.leInt32#" | Just r <- liftI32RI leInt32# args
-> reduce r
"GHC.Prim.ltInt32#" | Just r <- liftI32RI ltInt32# args
-> reduce r
"GHC.Prim.neInt32#" | Just r <- liftI32RI neInt32# args
-> reduce r
#if MIN_VERSION_base(4,17,0)
"GHC.Prim.intToInt64#" | [i] <- intLiterals' args
-> reduce (Literal (Int64Literal i))
"GHC.Prim.int64ToInt#" | [i] <- int64Literals' args
-> reduce . Literal $ IntLiteral i
"GHC.Prim.negateInt64" | [i] <- int64Literals' args
-> let !(I64# a) = fromInteger i
in reduce (Literal (Int64Literal (toInteger (I64# (negateInt64# a)))))
"GHC.Prim.plusInt64#" | Just r <- liftI64 plusInt64# args
-> reduce r
"GHC.Prim.subInt64#" | Just r <- liftI64 subInt64# args
-> reduce r
"GHC.Prim.timesInt64#" | Just r <- liftI64 timesInt64# args
-> reduce r
"GHC.Prim.quotInt64#" | Just r <- liftI64 quotInt64# args
-> reduce r
"GHC.Prim.remInt64#" | Just r <- liftI64 remInt64# args
-> reduce r
"GHC.Prim.uncheckedIShiftL64#" | Just r <- liftI64I uncheckedIShiftL64# args
-> reduce r
"GHC.Prim.uncheckedIShiftRA64#" | Just r <- liftI64I uncheckedIShiftRA64# args
-> reduce r
"GHC.Prim.uncheckedIShiftRL64#" | Just r <- liftI64I uncheckedIShiftRL64# args
-> reduce r
"GHC.Prim.int64ToWord64#" | [i] <- int64Literals' args
-> let !(I64# a) = fromInteger i
in reduce (Literal (Word64Literal (toInteger (W64# (int64ToWord64# a)))))
"GHC.Prim.eqInt64#" | Just r <- liftI64RI eqInt64# args
-> reduce r
"GHC.Prim.geInt64#" | Just r <- liftI64RI geInt64# args
-> reduce r
"GHC.Prim.gtInt64#" | Just r <- liftI64RI gtInt64# args
-> reduce r
"GHC.Prim.leInt64#" | Just r <- liftI64RI leInt64# args
-> reduce r
"GHC.Prim.ltInt64#" | Just r <- liftI64RI ltInt64# args
-> reduce r
"GHC.Prim.neInt64#" | Just r <- liftI64RI neInt64# args
-> reduce r
#endif
"GHC.Prim.wordToWord8#" | [i] <- wordLiterals' args
-> let !(W# a) = fromInteger i
b = narrow8Word# a
in reduce . Literal . Word8Literal . toInteger $ W# b
"GHC.Prim.word8ToWord#" | [i] <- word8Literals' args
-> reduce . Literal $ WordLiteral i
"GHC.Prim.plusWord8#" | Just r <- liftW8 plusWord8# args
-> reduce r
"GHC.Prim.subWord8#" | Just r <- liftW8 subWord8# args
-> reduce r
"GHC.Prim.timesWord8#" | Just r <- liftW8 timesWord8# args
-> reduce r
"GHC.Prim.quotWord8#" | Just r <- liftW8 quotWord8# args
-> reduce r
"GHC.Prim.remWord8#" | Just r <- liftW8 remWord8# args
-> reduce r
"GHC.Prim.quotRemWord8#"
| [i, j] <- word8Literals' args
, (_,tyView -> TyConApp tupTcNm tyArgs) <- splitFunForallTy ty
, (Just tupTc) <- UniqMap.lookup tupTcNm tcm
, [tupDc] <- tyConDataCons tupTc
-> let !(W8# a) = fromInteger i
!(W8# b) = fromInteger j
!(# q, r #) = quotRemWord8# a b
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal (Word8Literal (toInteger (W8# q))))
, Left (Literal (Word8Literal (toInteger (W8# r))))])
"GHC.Prim.andWord8#" | Just r <- liftW8 andWord8# args
-> reduce r
"GHC.Prim.orWord8#" | Just r <- liftW8 orWord8# args
-> reduce r
"GHC.Prim.xorWord8#" | Just r <- liftW8 xorWord8# args
-> reduce r
"GHC.Prim.notWord8#" | [i] <- word8Literals' args
-> let !(W8# a) = fromInteger i
in reduce (Literal (Word8Literal (toInteger (W8# (notWord8# a)))))
"GHC.Prim.uncheckedShiftLWord8#" | Just r <- liftW8I uncheckedShiftLWord8# args
-> reduce r
"GHC.Prim.uncheckedShiftRLWord8#" | Just r <- liftW8I uncheckedShiftRLWord8# args
-> reduce r
"GHC.Prim.word8ToInt8#" | [i] <- word8Literals' args
-> let !(W8# a) = fromInteger i
in reduce (Literal (Int8Literal (toInteger (I8# (word8ToInt8# a)))))
"GHC.Prim.eqWord8#" | Just r <- liftW8RI eqWord8# args
-> reduce r
"GHC.Prim.geWord8#" | Just r <- liftW8RI geWord8# args
-> reduce r
"GHC.Prim.gtWord8#" | Just r <- liftW8RI gtWord8# args
-> reduce r
"GHC.Prim.leWord8#" | Just r <- liftW8RI leWord8# args
-> reduce r
"GHC.Prim.ltWord8#" | Just r <- liftW8RI ltWord8# args
-> reduce r
"GHC.Prim.neWord8#" | Just r <- liftW8RI neWord8# args
-> reduce r
"GHC.Prim.wordToWord16#" | [i] <- wordLiterals' args
-> let !(W# a) = fromInteger i
b = narrow16Word# a
in reduce . Literal . Word16Literal . toInteger $ W# b
"GHC.Prim.word16ToWord#" | [i] <- word16Literals' args
-> reduce . Literal $ WordLiteral i
"GHC.Prim.plusWord16#" | Just r <- liftW16 plusWord16# args
-> reduce r
"GHC.Prim.subWord16#" | Just r <- liftW16 subWord16# args
-> reduce r
"GHC.Prim.timesWord16#" | Just r <- liftW16 timesWord16# args
-> reduce r
"GHC.Prim.quotWord16#" | Just r <- liftW16 quotWord16# args
-> reduce r
"GHC.Prim.remWord16#" | Just r <- liftW16 remWord16# args
-> reduce r
"GHC.Prim.quotRemWord16#"
| [i, j] <- word16Literals' args
, (_,tyView -> TyConApp tupTcNm tyArgs) <- splitFunForallTy ty
, (Just tupTc) <- UniqMap.lookup tupTcNm tcm
, [tupDc] <- tyConDataCons tupTc
-> let !(W16# a) = fromInteger i
!(W16# b) = fromInteger j
!(# q, r #) = quotRemWord16# a b
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal (Word16Literal (toInteger (W16# q))))
, Left (Literal (Word16Literal (toInteger (W16# r))))])
"GHC.Prim.andWord16#" | Just r <- liftW16 andWord16# args
-> reduce r
"GHC.Prim.orWord16#" | Just r <- liftW16 orWord16# args
-> reduce r
"GHC.Prim.xorWord16#" | Just r <- liftW16 xorWord16# args
-> reduce r
"GHC.Prim.notWord16#" | [i] <- word16Literals' args
-> let !(W16# a) = fromInteger i
in reduce (Literal (Word16Literal (toInteger (W16# (notWord16# a)))))
"GHC.Prim.uncheckedShiftLWord16#" | Just r <- liftW16I uncheckedShiftLWord16# args
-> reduce r
"GHC.Prim.uncheckedShiftRLWord16#" | Just r <- liftW16I uncheckedShiftRLWord16# args
-> reduce r
"GHC.Prim.word16ToInt16#" | [i] <- word16Literals' args
-> let !(W16# a) = fromInteger i
in reduce (Literal (Int16Literal (toInteger (I16# (word16ToInt16# a)))))
"GHC.Prim.eqWord16#" | Just r <- liftW16RI eqWord16# args
-> reduce r
"GHC.Prim.geWord16#" | Just r <- liftW16RI geWord16# args
-> reduce r
"GHC.Prim.gtWord16#" | Just r <- liftW16RI gtWord16# args
-> reduce r
"GHC.Prim.leWord16#" | Just r <- liftW16RI leWord16# args
-> reduce r
"GHC.Prim.ltWord16#" | Just r <- liftW16RI ltWord16# args
-> reduce r
"GHC.Prim.neWord16#" | Just r <- liftW16RI neWord16# args
-> reduce r
"GHC.Prim.wordToWord32#" | [i] <- wordLiterals' args
-> let !(W# a) = fromInteger i
b = narrow32Word# a
in reduce . Literal . Word32Literal . toInteger $ W# b
"GHC.Prim.word32ToWord#" | [i] <- word32Literals' args
-> reduce . Literal $ WordLiteral i
"GHC.Prim.plusWord32#" | Just r <- liftW32 plusWord32# args
-> reduce r
"GHC.Prim.subWord32#" | Just r <- liftW32 subWord32# args
-> reduce r
"GHC.Prim.timesWord32#" | Just r <- liftW32 timesWord32# args
-> reduce r
"GHC.Prim.quotWord32#" | Just r <- liftW32 quotWord32# args
-> reduce r
"GHC.Prim.remWord32#" | Just r <- liftW32 remWord32# args
-> reduce r
"GHC.Prim.quotRemWord32#"
| [i, j] <- word32Literals' args
, (_,tyView -> TyConApp tupTcNm tyArgs) <- splitFunForallTy ty
, (Just tupTc) <- UniqMap.lookup tupTcNm tcm
, [tupDc] <- tyConDataCons tupTc
-> let !(W32# a) = fromInteger i
!(W32# b) = fromInteger j
!(# q, r #) = quotRemWord32# a b
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal (Word32Literal (toInteger (W32# q))))
, Left (Literal (Word32Literal (toInteger (W32# r))))])
"GHC.Prim.andWord32#" | Just r <- liftW32 andWord32# args
-> reduce r
"GHC.Prim.orWord32#" | Just r <- liftW32 orWord32# args
-> reduce r
"GHC.Prim.xorWord32#" | Just r <- liftW32 xorWord32# args
-> reduce r
"GHC.Prim.notWord32#" | [i] <- word32Literals' args
-> let !(W32# a) = fromInteger i
in reduce (Literal (Word32Literal (toInteger (W32# (notWord32# a)))))
"GHC.Prim.uncheckedShiftLWord32#" | Just r <- liftW32I uncheckedShiftLWord32# args
-> reduce r
"GHC.Prim.uncheckedShiftRLWord32#" | Just r <- liftW32I uncheckedShiftRLWord32# args
-> reduce r
"GHC.Prim.word32ToInt32#" | [i] <- word32Literals' args
-> let !(W32# a) = fromInteger i
in reduce (Literal (Int32Literal (toInteger (I32# (word32ToInt32# a)))))
"GHC.Prim.eqWord32#" | Just r <- liftW32RI eqWord32# args
-> reduce r
"GHC.Prim.geWord32#" | Just r <- liftW32RI geWord32# args
-> reduce r
"GHC.Prim.gtWord32#" | Just r <- liftW32RI gtWord32# args
-> reduce r
"GHC.Prim.leWord32#" | Just r <- liftW32RI leWord32# args
-> reduce r
"GHC.Prim.ltWord32#" | Just r <- liftW32RI ltWord32# args
-> reduce r
"GHC.Prim.neWord32#" | Just r <- liftW32RI neWord32# args
-> reduce r
#if MIN_VERSION_base(4,17,0)
"GHC.Prim.wordToWord64#" | [i] <- wordLiterals' args
-> reduce (Literal (Word64Literal i))
"GHC.Prim.word64ToWord#" | [i] <- word64Literals' args
-> reduce . Literal $ WordLiteral i
"GHC.Prim.plusWord64#" | Just r <- liftW64 plusWord64# args
-> reduce r
"GHC.Prim.subWord64#" | Just r <- liftW64 subWord64# args
-> reduce r
"GHC.Prim.timesWord64#" | Just r <- liftW64 timesWord64# args
-> reduce r
"GHC.Prim.quotWord64#" | Just r <- liftW64 quotWord64# args
-> reduce r
"GHC.Prim.remWord64#" | Just r <- liftW64 remWord64# args
-> reduce r
"GHC.Prim.and64#" | Just r <- liftW64 and64# args
-> reduce r
"GHC.Prim.or64#" | Just r <- liftW64 or64# args
-> reduce r
"GHC.Prim.xor64#" | Just r <- liftW64 xor64# args
-> reduce r
"GHC.Prim.not64#" | [i] <- word64Literals' args
-> let !(W64# a) = fromInteger i
in reduce (Literal (Word64Literal (toInteger (W64# (not64# a)))))
"GHC.Prim.uncheckedShiftL64#" | Just r <- liftW64I uncheckedShiftL64# args
-> reduce r
"GHC.Prim.uncheckedShiftRL64#" | Just r <- liftW64I uncheckedShiftRL64# args
-> reduce r
"GHC.Prim.word64ToInt64#" | [i] <- word64Literals' args
-> let !(W64# a) = fromInteger i
in reduce (Literal (Int64Literal (toInteger (I64# (word64ToInt64# a)))))
"GHC.Prim.eqWord64#" | Just r <- liftW64RI eqWord64# args
-> reduce r
"GHC.Prim.geWord64#" | Just r <- liftW64RI geWord64# args
-> reduce r
"GHC.Prim.gtWord64#" | Just r <- liftW64RI gtWord64# args
-> reduce r
"GHC.Prim.leWord64#" | Just r <- liftW64RI leWord64# args
-> reduce r
"GHC.Prim.ltWord64#" | Just r <- liftW64RI ltWord64# args
-> reduce r
"GHC.Prim.neWord64#" | Just r <- liftW64RI neWord64# args
-> reduce r
#endif
#endif
Text
"GHC.Prim.>##" | Just Term
r <- (Double# -> Double# -> Int#) -> [Value] -> Maybe Term
liftDDI Double# -> Double# -> Int#
(>##) [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.>=##" | Just Term
r <- (Double# -> Double# -> Int#) -> [Value] -> Maybe Term
liftDDI Double# -> Double# -> Int#
(>=##) [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.==##" | Just Term
r <- (Double# -> Double# -> Int#) -> [Value] -> Maybe Term
liftDDI Double# -> Double# -> Int#
(==##) [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim./=##" | Just Term
r <- (Double# -> Double# -> Int#) -> [Value] -> Maybe Term
liftDDI Double# -> Double# -> Int#
(/=##) [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.<##" | Just Term
r <- (Double# -> Double# -> Int#) -> [Value] -> Maybe Term
liftDDI Double# -> Double# -> Int#
(<##) [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.<=##" | Just Term
r <- (Double# -> Double# -> Int#) -> [Value] -> Maybe Term
liftDDI Double# -> Double# -> Int#
(<=##) [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.+##" | Just Term
r <- (Double# -> Double# -> Double#) -> [Value] -> Maybe Term
liftDDD Double# -> Double# -> Double#
(+##) [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.-##" | Just Term
r <- (Double# -> Double# -> Double#) -> [Value] -> Maybe Term
liftDDD Double# -> Double# -> Double#
(-##) [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.*##" | Just Term
r <- (Double# -> Double# -> Double#) -> [Value] -> Maybe Term
liftDDD Double# -> Double# -> Double#
(*##) [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim./##" | Just Term
r <- (Double# -> Double# -> Double#) -> [Value] -> Maybe Term
liftDDD Double# -> Double# -> Double#
(/##) [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.negateDouble#" | Just Term
r <- (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
negateDouble# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.fabsDouble#" | Just Term
r <- (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
fabsDouble# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.double2Int#" | [Word64
i] <- [Value] -> [Word64]
doubleLiterals' [Value]
args
-> let !(D# Double#
a) = Word64 -> Double
wordToDouble Word64
i
r :: Int#
r = Double# -> Int#
double2Int# Double#
a
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> (Int -> Term) -> Int -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Maybe Machine) -> Int -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
r
Text
"GHC.Prim.double2Float#"
| [Lit (DoubleLiteral Word64
d)] <- [Value]
args
-> let !(D# Double#
a) = Word64 -> Double
wordToDouble Word64
d
r :: Float#
r = Double# -> Float#
double2Float# Double#
a
in Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Float -> Term) -> Float -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Literal -> Term
Literal (Literal -> Term) -> (Float -> Literal) -> Float -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word32 -> Literal
FloatLiteral (Word32 -> Literal) -> (Float -> Word32) -> Float -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Float -> Word32
floatToWord (Float -> Maybe Machine) -> Float -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Float# -> Float
F# Float#
r
Text
"GHC.Prim.expDouble#" | Just Term
r <- (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
expDouble# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.logDouble#" | Just Term
r <- (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
logDouble# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.sqrtDouble#" | Just Term
r <- (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
sqrtDouble# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.sinDouble#" | Just Term
r <- (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
sinDouble# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.cosDouble#" | Just Term
r <- (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
cosDouble# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.tanDouble#" | Just Term
r <- (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
tanDouble# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.asinDouble#" | Just Term
r <- (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
asinDouble# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.acosDouble#" | Just Term
r <- (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
acosDouble# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.atanDouble#" | Just Term
r <- (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
atanDouble# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.sinhDouble#" | Just Term
r <- (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
sinhDouble# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.coshDouble#" | Just Term
r <- (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
coshDouble# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.tanhDouble#" | Just Term
r <- (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
tanhDouble# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
#if MIN_VERSION_ghc(8,7,0)
Text
"GHC.Prim.asinhDouble#" | Just Term
r <- (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
asinhDouble# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.acoshDouble#" | Just Term
r <- (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
acoshDouble# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.atanhDouble#" | Just Term
r <- (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
atanhDouble# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
#endif
Text
"GHC.Prim.**##" | Just Term
r <- (Double# -> Double# -> Double#) -> [Value] -> Maybe Term
liftDDD Double# -> Double# -> Double#
(**##) [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.decodeDouble_2Int#" | [Word64
i] <- [Value] -> [Word64]
doubleLiterals' [Value]
args
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
!(D# Double#
a) = Word64 -> Double
wordToDouble Word64
i
!(# Int#
p, Word#
q, Word#
r, Int#
s #) = Double# -> (# Int#, Word#, Word#, Int# #)
decodeDouble_2Int# Double#
a
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[ Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Term) -> Int -> Term
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
p)
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Word -> Literal) -> Word -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
WordLiteral (Integer -> Literal) -> (Word -> Integer) -> Word -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Integer
forall a. Integral a => a -> Integer
toInteger (Word -> Term) -> Word -> Term
forall a b. (a -> b) -> a -> b
$ Word# -> Word
W# Word#
q)
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Word -> Literal) -> Word -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
WordLiteral (Integer -> Literal) -> (Word -> Integer) -> Word -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Integer
forall a. Integral a => a -> Integer
toInteger (Word -> Term) -> Word -> Term
forall a b. (a -> b) -> a -> b
$ Word# -> Word
W# Word#
r)
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Term) -> Int -> Term
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
s)])
Text
"GHC.Prim.decodeDouble_Int64#" | [Word64
i] <- [Value] -> [Word64]
doubleLiterals' [Value]
args
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
!(D# Double#
a) = Word64 -> Double
wordToDouble Word64
i
!(# Int#
p, Int#
q #) = Double# -> (# Int#, Int# #)
decodeDouble_Int64# Double#
a
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
#if MIN_VERSION_ghc_prim(0,9,0)
[ Left (Literal . Int64Literal . toInteger $ I64# p)
#else
[ Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Int64 -> Literal) -> Int64 -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int64 -> Integer) -> Int64 -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int64 -> Integer
forall a. Integral a => a -> Integer
toInteger (Int64 -> Term) -> Int64 -> Term
forall a b. (a -> b) -> a -> b
$ Int# -> Int64
I64# Int#
p)
#endif
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Term) -> Int -> Term
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
q)])
Text
"GHC.Prim.gtFloat#" | Just Term
r <- (Float# -> Float# -> Int#) -> [Value] -> Maybe Term
liftFFI Float# -> Float# -> Int#
gtFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.geFloat#" | Just Term
r <- (Float# -> Float# -> Int#) -> [Value] -> Maybe Term
liftFFI Float# -> Float# -> Int#
geFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.eqFloat#" | Just Term
r <- (Float# -> Float# -> Int#) -> [Value] -> Maybe Term
liftFFI Float# -> Float# -> Int#
eqFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.neFloat#" | Just Term
r <- (Float# -> Float# -> Int#) -> [Value] -> Maybe Term
liftFFI Float# -> Float# -> Int#
neFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.ltFloat#" | Just Term
r <- (Float# -> Float# -> Int#) -> [Value] -> Maybe Term
liftFFI Float# -> Float# -> Int#
ltFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.leFloat#" | Just Term
r <- (Float# -> Float# -> Int#) -> [Value] -> Maybe Term
liftFFI Float# -> Float# -> Int#
leFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.plusFloat#" | Just Term
r <- (Float# -> Float# -> Float#) -> [Value] -> Maybe Term
liftFFF Float# -> Float# -> Float#
plusFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.minusFloat#" | Just Term
r <- (Float# -> Float# -> Float#) -> [Value] -> Maybe Term
liftFFF Float# -> Float# -> Float#
minusFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.timesFloat#" | Just Term
r <- (Float# -> Float# -> Float#) -> [Value] -> Maybe Term
liftFFF Float# -> Float# -> Float#
timesFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.divideFloat#" | Just Term
r <- (Float# -> Float# -> Float#) -> [Value] -> Maybe Term
liftFFF Float# -> Float# -> Float#
divideFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.negateFloat#" | Just Term
r <- (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
negateFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.fabsFloat#" | Just Term
r <- (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
fabsFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.float2Int#" | [Word32
i] <- [Value] -> [Word32]
floatLiterals' [Value]
args
-> let !(F# Float#
a) = Word32 -> Float
wordToFloat Word32
i
r :: Int#
r = Float# -> Int#
float2Int# Float#
a
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> (Int -> Term) -> Int -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Maybe Machine) -> Int -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
r
Text
"GHC.Prim.expFloat#" | Just Term
r <- (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
expFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.logFloat#" | Just Term
r <- (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
logFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.sqrtFloat#" | Just Term
r <- (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
sqrtFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.sinFloat#" | Just Term
r <- (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
sinFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.cosFloat#" | Just Term
r <- (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
cosFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.tanFloat#" | Just Term
r <- (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
tanFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.asinFloat#" | Just Term
r <- (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
asinFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.acosFloat#" | Just Term
r <- (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
acosFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.atanFloat#" | Just Term
r <- (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
atanFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.sinhFloat#" | Just Term
r <- (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
sinhFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.coshFloat#" | Just Term
r <- (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
coshFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.tanhFloat#" | Just Term
r <- (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
tanhFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.powerFloat#" | Just Term
r <- (Float# -> Float# -> Float#) -> [Value] -> Maybe Term
liftFFF Float# -> Float# -> Float#
powerFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Float.$w$casinh" | Just Term
r <- (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
go [Value]
args
-> Term -> Maybe Machine
reduce Term
r
where go :: Double# -> Double#
go Double#
f = case Double -> Double
forall a. Floating a => a -> a
asinh (Double# -> Double
D# Double#
f) of
D# Double#
f' -> Double#
f'
Text
"GHC.Float.$w$casinh1" | Just Term
r <- (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
go [Value]
args
-> Term -> Maybe Machine
reduce Term
r
where go :: Float# -> Float#
go Float#
f = case Float -> Float
forall a. Floating a => a -> a
asinh (Float# -> Float
F# Float#
f) of
F# Float#
f' -> Float#
f'
#if MIN_VERSION_ghc(8,7,0)
Text
"GHC.Prim.asinhFloat#" | Just Term
r <- (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
asinhFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.acoshFloat#" | Just Term
r <- (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
acoshFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
Text
"GHC.Prim.atanhFloat#" | Just Term
r <- (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
atanhFloat# [Value]
args
-> Term -> Maybe Machine
reduce Term
r
#endif
Text
"GHC.Prim.float2Double#" | [Word32
i] <- [Value] -> [Word32]
floatLiterals' [Value]
args
-> let !(F# Float#
a) = Word32 -> Float
wordToFloat Word32
i
r :: Double#
r = Float# -> Double#
float2Double# Float#
a
in Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Double -> Term) -> Double -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Literal -> Term
Literal (Literal -> Term) -> (Double -> Literal) -> Double -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word64 -> Literal
DoubleLiteral (Word64 -> Literal) -> (Double -> Word64) -> Double -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Double -> Word64
doubleToWord (Double -> Maybe Machine) -> Double -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Double# -> Double
D# Double#
r
Text
"GHC.Prim.newByteArray#"
| [Value
iV,PrimVal PrimInfo
rwTy [Type]
_ [Value]
_] <- [Value]
args
, [Integer
i] <- [Value] -> [Integer]
intLiterals' [Value
iV]
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
p :: Int
p = Machine -> Int
primCount Machine
mach
lit :: Term
lit = Literal -> Term
Literal (ByteArray -> Literal
ByteArrayLiteral ([Item ByteArray] -> ByteArray
forall l. IsList l => [Item l] -> l
fromList (Integer -> Word8 -> [Word8]
forall i a. Integral i => i -> a -> [a]
List.genericReplicate Integer
i Word8
0)))
mbaTy :: Type
mbaTy = Type -> Type -> Type
mkFunTy Type
intPrimTy ([Type] -> Type
forall a. [a] -> a
last [Type]
tyArgs)
newE :: Term
newE = Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[Term -> Either Term Type
forall a b. a -> Either a b
Left (PrimInfo -> Term
Prim PrimInfo
rwTy)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim (Text
-> Type -> WorkInfo -> IsMultiPrim -> PrimUnfolding -> PrimInfo
PrimInfo Text
"GHC.Prim.MutableByteArray#" Type
mbaTy WorkInfo
WorkNever IsMultiPrim
SingleResult PrimUnfolding
NoUnfolding))
[Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Integer -> Literal) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Term) -> Integer -> Term
forall a b. (a -> b) -> a -> b
$ Int -> Integer
forall a. Integral a => a -> Integer
toInteger Int
p)])
])
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Machine -> Machine
setTerm Term
newE (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Int -> Term -> Machine -> Machine
primInsert Int
p Term
lit Machine
mach
Text
"GHC.Prim.setByteArray#"
| [PrimVal PrimInfo
_mbaTy [Type]
_ [Value
baV]
,Value
offV,Value
lenV,Value
cV
,PrimVal PrimInfo
rwTy [Type]
_ [Value]
_
] <- [Value]
args
, [Integer
ba,Integer
off,Integer
len,Integer
c] <- [Value] -> [Integer]
intLiterals' [Value
baV,Value
offV,Value
lenV,Value
cV]
-> let Just (Literal (ByteArrayLiteral ByteArray
ba1)) =
Int -> Machine -> Maybe Term
primLookup (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
ba) Machine
mach
!(I# Int#
off') = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
off
!(I# Int#
len') = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
len
!(I# Int#
c') = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
c
ba2 :: ByteArray
ba2 = IO ByteArray -> ByteArray
forall a. IO a -> a
unsafeDupablePerformIO (IO ByteArray -> ByteArray) -> IO ByteArray -> ByteArray
forall a b. (a -> b) -> a -> b
$ do
BA.MutableByteArray MutableByteArray# RealWorld
mba <- ByteArray -> IO (MutableByteArray (PrimState IO))
forall (m :: Type -> Type).
PrimMonad m =>
ByteArray -> m (MutableByteArray (PrimState m))
BA.unsafeThawByteArray ByteArray
ba1
(State# RealWorld -> State# RealWorld) -> IO ()
svoid (MutableByteArray# RealWorld
-> Int# -> Int# -> Int# -> State# RealWorld -> State# RealWorld
forall d.
MutableByteArray# d -> Int# -> Int# -> Int# -> State# d -> State# d
setByteArray# MutableByteArray# RealWorld
mba Int#
off' Int#
len' Int#
c')
MutableByteArray (PrimState IO) -> IO ByteArray
forall (m :: Type -> Type).
PrimMonad m =>
MutableByteArray (PrimState m) -> m ByteArray
BA.unsafeFreezeByteArray (MutableByteArray# RealWorld -> MutableByteArray RealWorld
forall s. MutableByteArray# s -> MutableByteArray s
BA.MutableByteArray MutableByteArray# RealWorld
mba)
ba3 :: Term
ba3 = Literal -> Term
Literal (ByteArray -> Literal
ByteArrayLiteral ByteArray
ba2)
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Machine -> Machine
setTerm (PrimInfo -> Term
Prim PrimInfo
rwTy) (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Int -> Term -> Machine -> Machine
primUpdate (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
ba) Term
ba3 Machine
mach
Text
"GHC.Prim.writeWordArray#"
| [PrimVal PrimInfo
_mbaTy [Type]
_ [Value
baV]
,Value
iV,Value
wV
,PrimVal PrimInfo
rwTy [Type]
_ [Value]
_
] <- [Value]
args
, [Integer
ba,Integer
i] <- [Value] -> [Integer]
intLiterals' [Value
baV,Value
iV]
, [Integer
w] <- [Value] -> [Integer]
wordLiterals' [Value
wV]
-> let Just (Literal (ByteArrayLiteral ByteArray
ba1)) =
Int -> Machine -> Maybe Term
primLookup (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
ba) Machine
mach
!(I# Int#
i') = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
i
!(W# Word#
w') = Integer -> Word
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
w
ba2 :: ByteArray
ba2 = IO ByteArray -> ByteArray
forall a. IO a -> a
unsafeDupablePerformIO (IO ByteArray -> ByteArray) -> IO ByteArray -> ByteArray
forall a b. (a -> b) -> a -> b
$ do
BA.MutableByteArray MutableByteArray# RealWorld
mba <- ByteArray -> IO (MutableByteArray (PrimState IO))
forall (m :: Type -> Type).
PrimMonad m =>
ByteArray -> m (MutableByteArray (PrimState m))
BA.unsafeThawByteArray ByteArray
ba1
(State# RealWorld -> State# RealWorld) -> IO ()
svoid (MutableByteArray# RealWorld
-> Int# -> Word# -> State# RealWorld -> State# RealWorld
forall d.
MutableByteArray# d -> Int# -> Word# -> State# d -> State# d
writeWordArray# MutableByteArray# RealWorld
mba Int#
i' Word#
w')
MutableByteArray (PrimState IO) -> IO ByteArray
forall (m :: Type -> Type).
PrimMonad m =>
MutableByteArray (PrimState m) -> m ByteArray
BA.unsafeFreezeByteArray (MutableByteArray# RealWorld -> MutableByteArray RealWorld
forall s. MutableByteArray# s -> MutableByteArray s
BA.MutableByteArray MutableByteArray# RealWorld
mba)
ba3 :: Term
ba3 = Literal -> Term
Literal (ByteArray -> Literal
ByteArrayLiteral ByteArray
ba2)
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Machine -> Machine
setTerm (PrimInfo -> Term
Prim PrimInfo
rwTy) (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Int -> Term -> Machine -> Machine
primUpdate (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
ba) Term
ba3 Machine
mach
Text
"GHC.Prim.unsafeFreezeByteArray#"
| [PrimVal PrimInfo
_mbaTy [Type]
_ [Value
baV]
,PrimVal PrimInfo
rwTy [Type]
_ [Value]
_
] <- [Value]
args
, [Integer
ba] <- [Value] -> [Integer]
intLiterals' [Value
baV]
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
Just Term
ba' = Int -> Machine -> Maybe Term
primLookup (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
ba) Machine
mach
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[Term -> Either Term Type
forall a b. a -> Either a b
Left (PrimInfo -> Term
Prim PrimInfo
rwTy)
,Term -> Either Term Type
forall a b. a -> Either a b
Left Term
ba'])
Text
"GHC.Prim.sizeofByteArray#"
| [Lit (ByteArrayLiteral ByteArray
ba)] <- [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
IntLiteral (Int -> Integer
forall a. Integral a => a -> Integer
toInteger (ByteArray -> Int
BA.sizeofByteArray ByteArray
ba))))
Text
"GHC.Prim.indexWordArray#"
| [Lit (ByteArrayLiteral (BA.ByteArray ByteArray#
ba)),Value
iV] <- [Value]
args
, [Integer
i] <- [Value] -> [Integer]
intLiterals' [Value
iV]
-> let !(I# Int#
i') = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
i
!w :: Word#
w = ByteArray# -> Int# -> Word#
indexWordArray# ByteArray#
ba Int#
i'
in Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
WordLiteral (Word -> Integer
forall a. Integral a => a -> Integer
toInteger (Word# -> Word
W# Word#
w))))
Text
"GHC.Prim.getSizeofMutBigNat#"
| [PrimVal PrimInfo
_mbaTy [Type]
_ [Value
baV]
,PrimVal PrimInfo
rwTy [Type]
_ [Value]
_
] <- [Value]
args
, [Integer
ba] <- [Value] -> [Integer]
intLiterals' [Value
baV]
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
Just (Literal (ByteArrayLiteral ByteArray
ba')) = Int -> Machine -> Maybe Term
primLookup (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
ba) Machine
mach
lit :: Term
lit = Literal -> Term
Literal (Integer -> Literal
IntLiteral (Int -> Integer
forall a. Integral a => a -> Integer
toInteger (ByteArray -> Int
BA.sizeofByteArray ByteArray
ba')))
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[Term -> Either Term Type
forall a b. a -> Either a b
Left (PrimInfo -> Term
Prim PrimInfo
rwTy)
,Term -> Either Term Type
forall a b. a -> Either a b
Left Term
lit])
Text
"GHC.Prim.resizeMutableByteArray#"
| [PrimVal PrimInfo
mbaTy [Type]
_ [Value
baV]
,Value
iV
,PrimVal PrimInfo
rwTy [Type]
_ [Value]
_
] <- [Value]
args
, [Integer
ba,Integer
i] <- [Value] -> [Integer]
intLiterals' [Value
baV,Value
iV]
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
p :: Int
p = Machine -> Int
primCount Machine
mach
Just (Literal (ByteArrayLiteral ByteArray
ba1))
= Int -> Machine -> Maybe Term
primLookup (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
ba) Machine
mach
!(I# Int#
i') = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
i
ba2 :: ByteArray
ba2 = IO ByteArray -> ByteArray
forall a. IO a -> a
unsafeDupablePerformIO (IO ByteArray -> ByteArray) -> IO ByteArray -> ByteArray
forall a b. (a -> b) -> a -> b
$ do
BA.MutableByteArray MutableByteArray# RealWorld
mba <- ByteArray -> IO (MutableByteArray (PrimState IO))
forall (m :: Type -> Type).
PrimMonad m =>
ByteArray -> m (MutableByteArray (PrimState m))
BA.unsafeThawByteArray ByteArray
ba1
MutableByteArray RealWorld
mba' <- (State# RealWorld
-> (# State# RealWorld, MutableByteArray RealWorld #))
-> IO (MutableByteArray RealWorld)
forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO (\State# RealWorld
s -> case MutableByteArray# RealWorld
-> Int#
-> State# RealWorld
-> (# State# RealWorld, MutableByteArray# RealWorld #)
forall d.
MutableByteArray# d
-> Int# -> State# d -> (# State# d, MutableByteArray# d #)
resizeMutableByteArray# MutableByteArray# RealWorld
mba Int#
i' State# RealWorld
s of
(# State# RealWorld
s', MutableByteArray# RealWorld
mba' #) -> (# State# RealWorld
s', MutableByteArray# RealWorld -> MutableByteArray RealWorld
forall s. MutableByteArray# s -> MutableByteArray s
BA.MutableByteArray MutableByteArray# RealWorld
mba' #))
MutableByteArray (PrimState IO) -> IO ByteArray
forall (m :: Type -> Type).
PrimMonad m =>
MutableByteArray (PrimState m) -> m ByteArray
BA.unsafeFreezeByteArray MutableByteArray RealWorld
MutableByteArray (PrimState IO)
mba'
ba3 :: Term
ba3 = Literal -> Term
Literal (ByteArray -> Literal
ByteArrayLiteral ByteArray
ba2)
newE :: Term
newE = Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[Term -> Either Term Type
forall a b. a -> Either a b
Left (PrimInfo -> Term
Prim PrimInfo
rwTy)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
mbaTy)
[Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Integer -> Literal) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Term) -> Integer -> Term
forall a b. (a -> b) -> a -> b
$ Int -> Integer
forall a. Integral a => a -> Integer
toInteger Int
p)])
])
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Machine -> Machine
setTerm Term
newE (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Int -> Term -> Machine -> Machine
primInsert Int
p Term
ba3 Machine
mach
Text
"GHC.Prim.shrinkMutableByteArray#"
| [PrimVal PrimInfo
_mbaTy [Type]
_ [Value
baV]
,Value
lenV
,PrimVal PrimInfo
rwTy [Type]
_ [Value]
_
] <- [Value]
args
, [Integer
ba,Integer
len] <- [Value] -> [Integer]
intLiterals' [Value
baV,Value
lenV]
-> let Just (Literal (ByteArrayLiteral ByteArray
ba1)) =
Int -> Machine -> Maybe Term
primLookup (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
ba) Machine
mach
!(I# Int#
len') = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
len
ba2 :: ByteArray
ba2 = IO ByteArray -> ByteArray
forall a. IO a -> a
unsafeDupablePerformIO (IO ByteArray -> ByteArray) -> IO ByteArray -> ByteArray
forall a b. (a -> b) -> a -> b
$ do
BA.MutableByteArray MutableByteArray# RealWorld
mba <- ByteArray -> IO (MutableByteArray (PrimState IO))
forall (m :: Type -> Type).
PrimMonad m =>
ByteArray -> m (MutableByteArray (PrimState m))
BA.unsafeThawByteArray ByteArray
ba1
(State# RealWorld -> State# RealWorld) -> IO ()
svoid (MutableByteArray# RealWorld
-> Int# -> State# RealWorld -> State# RealWorld
forall d. MutableByteArray# d -> Int# -> State# d -> State# d
shrinkMutableByteArray# MutableByteArray# RealWorld
mba Int#
len')
MutableByteArray (PrimState IO) -> IO ByteArray
forall (m :: Type -> Type).
PrimMonad m =>
MutableByteArray (PrimState m) -> m ByteArray
BA.unsafeFreezeByteArray (MutableByteArray# RealWorld -> MutableByteArray RealWorld
forall s. MutableByteArray# s -> MutableByteArray s
BA.MutableByteArray MutableByteArray# RealWorld
mba)
ba3 :: Term
ba3 = Literal -> Term
Literal (ByteArray -> Literal
ByteArrayLiteral ByteArray
ba2)
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Machine -> Machine
setTerm (PrimInfo -> Term
Prim PrimInfo
rwTy) (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Int -> Term -> Machine -> Machine
primUpdate (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
ba) Term
ba3 Machine
mach
Text
"GHC.Prim.copyByteArray#"
| [Lit (ByteArrayLiteral (BA.ByteArray ByteArray#
src_ba))
,Value
src_offV
,PrimVal PrimInfo
_mbaTy [Type]
_ [Value
dst_mbaV]
,Value
dst_offV, Value
nV
,PrimVal PrimInfo
rwTy [Type]
_ [Value]
_
] <- [Value]
args
, [Integer
src_off,Integer
dst_mba,Integer
dst_off,Integer
n] <- [Value] -> [Integer]
intLiterals' [Value
src_offV,Value
dst_mbaV,Value
dst_offV,Value
nV]
-> let Just (Literal (ByteArrayLiteral ByteArray
dst_ba)) =
Int -> Machine -> Maybe Term
primLookup (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
dst_mba) Machine
mach
!(I# Int#
src_off') = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
src_off
!(I# Int#
dst_off') = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
dst_off
!(I# Int#
n') = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
n
ba2 :: ByteArray
ba2 = IO ByteArray -> ByteArray
forall a. IO a -> a
unsafeDupablePerformIO (IO ByteArray -> ByteArray) -> IO ByteArray -> ByteArray
forall a b. (a -> b) -> a -> b
$ do
BA.MutableByteArray MutableByteArray# RealWorld
dst_mba1 <- ByteArray -> IO (MutableByteArray (PrimState IO))
forall (m :: Type -> Type).
PrimMonad m =>
ByteArray -> m (MutableByteArray (PrimState m))
BA.unsafeThawByteArray ByteArray
dst_ba
(State# RealWorld -> State# RealWorld) -> IO ()
svoid (ByteArray#
-> Int#
-> MutableByteArray# RealWorld
-> Int#
-> Int#
-> State# RealWorld
-> State# RealWorld
forall d.
ByteArray#
-> Int#
-> MutableByteArray# d
-> Int#
-> Int#
-> State# d
-> State# d
copyByteArray# ByteArray#
src_ba Int#
src_off' MutableByteArray# RealWorld
dst_mba1 Int#
dst_off' Int#
n')
MutableByteArray (PrimState IO) -> IO ByteArray
forall (m :: Type -> Type).
PrimMonad m =>
MutableByteArray (PrimState m) -> m ByteArray
BA.unsafeFreezeByteArray (MutableByteArray# RealWorld -> MutableByteArray RealWorld
forall s. MutableByteArray# s -> MutableByteArray s
BA.MutableByteArray MutableByteArray# RealWorld
dst_mba1)
ba3 :: Term
ba3 = Literal -> Term
Literal (ByteArray -> Literal
ByteArrayLiteral ByteArray
ba2)
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Machine -> Machine
setTerm (PrimInfo -> Term
Prim PrimInfo
rwTy) (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Int -> Term -> Machine -> Machine
primUpdate (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
dst_mba) Term
ba3 Machine
mach
Text
"GHC.Prim.readWordArray#"
| [PrimVal PrimInfo
_mbaTy [Type]
_ [Value
baV]
,Value
offV
,PrimVal PrimInfo
rwTy [Type]
_ [Value]
_
] <- [Value]
args
, [Integer
ba,Integer
off] <- [Value] -> [Integer]
intLiterals' [Value
baV,Value
offV]
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
Just (Literal (ByteArrayLiteral ByteArray
ba1)) =
Int -> Machine -> Maybe Term
primLookup (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
ba) Machine
mach
!(I# Int#
off') = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
off
w :: Word
w = IO Word -> Word
forall a. IO a -> a
unsafeDupablePerformIO (IO Word -> Word) -> IO Word -> Word
forall a b. (a -> b) -> a -> b
$ do
BA.MutableByteArray MutableByteArray# RealWorld
mba <- ByteArray -> IO (MutableByteArray (PrimState IO))
forall (m :: Type -> Type).
PrimMonad m =>
ByteArray -> m (MutableByteArray (PrimState m))
BA.unsafeThawByteArray ByteArray
ba1
(State# RealWorld -> (# State# RealWorld, Word #)) -> IO Word
forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO (\State# RealWorld
s -> case MutableByteArray# RealWorld
-> Int# -> State# RealWorld -> (# State# RealWorld, Word# #)
forall d.
MutableByteArray# d -> Int# -> State# d -> (# State# d, Word# #)
readWordArray# MutableByteArray# RealWorld
mba Int#
off' State# RealWorld
s of
(# State# RealWorld
s', Word#
w' #) -> (# State# RealWorld
s', Word# -> Word
W# Word#
w' #))
newE :: Term
newE = Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[Term -> Either Term Type
forall a b. a -> Either a b
Left (PrimInfo -> Term
Prim PrimInfo
rwTy)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
WordLiteral (Word -> Integer
forall a. Integral a => a -> Integer
toInteger Word
w)))
])
in Term -> Maybe Machine
reduce Term
newE
Text
"GHC.Prim.copyAddrToByteArray#"
| [ Lit (StringLiteral String
addr)
, PrimVal PrimInfo
_mbaTy [Type]
_ [Value
dst_mbaV]
, Value
offV, Value
lenV
, PrimVal PrimInfo
rwTy [Type]
_ [Value]
_
] <- [Value]
args
, [Integer
off,Integer
len,Integer
dst_mba] <- [Value] -> [Integer]
intLiterals' [Value
offV, Value
lenV, Value
dst_mbaV]
-> let Just (Literal (ByteArrayLiteral ByteArray
dst_ba)) =
Int -> Machine -> Maybe Term
primLookup (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
dst_mba) Machine
mach
!(I# Int#
off') = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
off
!(I# Int#
len') = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
len
!(BS.PS (ForeignPtr Addr#
addr' ForeignPtrContents
_) Int
_ Int
_) = String -> ByteString
BS.packChars String
addr
ba2 :: ByteArray
ba2 = IO ByteArray -> ByteArray
forall a. IO a -> a
unsafeDupablePerformIO (IO ByteArray -> ByteArray) -> IO ByteArray -> ByteArray
forall a b. (a -> b) -> a -> b
$ do
BA.MutableByteArray MutableByteArray# RealWorld
dst_mba1 <- ByteArray -> IO (MutableByteArray (PrimState IO))
forall (m :: Type -> Type).
PrimMonad m =>
ByteArray -> m (MutableByteArray (PrimState m))
BA.unsafeThawByteArray ByteArray
dst_ba
(State# RealWorld -> State# RealWorld) -> IO ()
svoid (Addr#
-> MutableByteArray# RealWorld
-> Int#
-> Int#
-> State# RealWorld
-> State# RealWorld
forall d.
Addr#
-> MutableByteArray# d -> Int# -> Int# -> State# d -> State# d
copyAddrToByteArray# Addr#
addr' MutableByteArray# RealWorld
dst_mba1 Int#
off' Int#
len')
MutableByteArray (PrimState IO) -> IO ByteArray
forall (m :: Type -> Type).
PrimMonad m =>
MutableByteArray (PrimState m) -> m ByteArray
BA.unsafeFreezeByteArray (MutableByteArray# RealWorld -> MutableByteArray RealWorld
forall s. MutableByteArray# s -> MutableByteArray s
BA.MutableByteArray MutableByteArray# RealWorld
dst_mba1)
ba3 :: Term
ba3 = Literal -> Term
Literal (ByteArray -> Literal
ByteArrayLiteral ByteArray
ba2)
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Machine -> Machine
setTerm (PrimInfo -> Term
Prim PrimInfo
rwTy) (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Int -> Term -> Machine -> Machine
primUpdate (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
dst_mba) Term
ba3 Machine
mach
Text
"GHC.Prim.decodeFloat_Int#" | [Word32
i] <- [Value] -> [Word32]
floatLiterals' [Value]
args
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
!(F# Float#
a) = Word32 -> Float
wordToFloat Word32
i
!(# Int#
p, Int#
q #) = Float# -> (# Int#, Int# #)
decodeFloat_Int# Float#
a
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[ Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Term) -> Int -> Term
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
p)
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Term) -> Int -> Term
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
q)])
Text
"GHC.Prim.tagToEnum#"
| [ConstTy (TyCon TyConName
tcN)] <- [Type]
tys
, [Lit (IntLiteral Integer
i)] <- [Value]
args
-> let dc :: Maybe DataCon
dc = do { TyCon
tc <- TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tcN TyConMap
tcm
; let dcs :: [DataCon]
dcs = TyCon -> [DataCon]
tyConDataCons TyCon
tc
; (DataCon -> Bool) -> [DataCon] -> Maybe DataCon
forall (t :: Type -> Type) a.
Foldable t =>
(a -> Bool) -> t a -> Maybe a
List.find ((Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== (Integer
iInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
+Integer
1)) (Integer -> Bool) -> (DataCon -> Integer) -> DataCon -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> (DataCon -> Int) -> DataCon -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DataCon -> Int
dcTag) [DataCon]
dcs
}
in (\DataCon
e -> Term -> Machine -> Machine
setTerm (DataCon -> Term
Data DataCon
e) Machine
mach) (DataCon -> Machine) -> Maybe DataCon -> Maybe Machine
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe DataCon
dc
Text
"GHC.Prim.dataToTag#"
| [DC DataCon
dc [Either Term Type]
_] <- [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
IntLiteral (Int -> Integer
forall a. Integral a => a -> Integer
toInteger (DataCon -> Int
dcTag DataCon
dc Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1))))
Text
"GHC.Classes.eqInt" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intCLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
j))
Text
"GHC.Classes.neInt" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intCLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
/= Integer
j))
Text
"GHC.Classes.leInt" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intCLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
j))
Text
"GHC.Classes.ltInt" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intCLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
j))
Text
"GHC.Classes.geInt" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intCLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
j))
Text
"GHC.Classes.gtInt" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intCLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
j))
Text
"GHC.Classes.&&"
| [ Value
lArg , Value
rArg ] <- [Value]
args
, Evaluator
eval <- Step -> Unwind -> PrimStep -> PrimUnwind -> Evaluator
Evaluator Step
ghcStep Unwind
ghcUnwind PrimStep
ghcPrimStep PrimUnwind
ghcPrimUnwind
, mach1 :: Machine
mach1@Machine{mStack :: Machine -> Stack
mStack=[],mTerm :: Machine -> Term
mTerm=Term
lArgWHNF} <- Evaluator -> TyConMap -> Bool -> Machine -> Machine
whnf Evaluator
eval TyConMap
tcm Bool
True (Term -> Machine -> Machine
setTerm (Value -> Term
valToTerm Value
lArg) (Machine -> Machine) -> Machine -> Machine
forall a b. (a -> b) -> a -> b
$ Machine -> Machine
stackClear Machine
mach)
, mach2 :: Machine
mach2@Machine{mStack :: Machine -> Stack
mStack=[],mTerm :: Machine -> Term
mTerm=Term
rArgWHNF} <- Evaluator -> TyConMap -> Bool -> Machine -> Machine
whnf Evaluator
eval TyConMap
tcm Bool
True (Term -> Machine -> Machine
setTerm (Value -> Term
valToTerm Value
rArg) (Machine -> Machine) -> Machine -> Machine
forall a b. (a -> b) -> a -> b
$ Machine -> Machine
stackClear Machine
mach1)
-> case [ Term
lArgWHNF, Term
rArgWHNF ] of
[ Data DataCon
lCon, Data DataCon
rCon ] ->
Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Machine
mach2
{ mStack :: Stack
mStack = Machine -> Stack
mStack Machine
mach
, mTerm :: Term
mTerm = TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (DataCon -> Bool
isTrueDC DataCon
lCon Bool -> Bool -> Bool
&& DataCon -> Bool
isTrueDC DataCon
rCon)
}
[ Data DataCon
lCon, Term
_ ]
| DataCon -> Bool
isTrueDC DataCon
lCon -> Term -> Maybe Machine
reduce Term
rArgWHNF
| Bool
otherwise -> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty Bool
False)
[ Term
_, Data DataCon
rCon ]
| DataCon -> Bool
isTrueDC DataCon
rCon -> Term -> Maybe Machine
reduce Term
lArgWHNF
| Bool
otherwise -> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty Bool
False)
[Term]
_ -> Maybe Machine
forall a. Maybe a
Nothing
Text
"GHC.Classes.||"
| [ Value
lArg , Value
rArg ] <- [Value]
args
, Evaluator
eval <- Step -> Unwind -> PrimStep -> PrimUnwind -> Evaluator
Evaluator Step
ghcStep Unwind
ghcUnwind PrimStep
ghcPrimStep PrimUnwind
ghcPrimUnwind
, mach1 :: Machine
mach1@Machine{mStack :: Machine -> Stack
mStack=[],mTerm :: Machine -> Term
mTerm=Term
lArgWHNF} <- Evaluator -> TyConMap -> Bool -> Machine -> Machine
whnf Evaluator
eval TyConMap
tcm Bool
True (Term -> Machine -> Machine
setTerm (Value -> Term
valToTerm Value
lArg) (Machine -> Machine) -> Machine -> Machine
forall a b. (a -> b) -> a -> b
$ Machine -> Machine
stackClear Machine
mach)
, mach2 :: Machine
mach2@Machine{mStack :: Machine -> Stack
mStack=[],mTerm :: Machine -> Term
mTerm=Term
rArgWHNF} <- Evaluator -> TyConMap -> Bool -> Machine -> Machine
whnf Evaluator
eval TyConMap
tcm Bool
True (Term -> Machine -> Machine
setTerm (Value -> Term
valToTerm Value
rArg) (Machine -> Machine) -> Machine -> Machine
forall a b. (a -> b) -> a -> b
$ Machine -> Machine
stackClear Machine
mach1)
-> case [ Term
lArgWHNF, Term
rArgWHNF ] of
[ Data DataCon
lCon, Data DataCon
rCon ] ->
Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Machine
mach2
{ mStack :: Stack
mStack = Machine -> Stack
mStack Machine
mach
, mTerm :: Term
mTerm = TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (DataCon -> Bool
isTrueDC DataCon
lCon Bool -> Bool -> Bool
|| DataCon -> Bool
isTrueDC DataCon
rCon)
}
[ Data DataCon
lCon, Term
_ ]
| DataCon -> Bool
isFalseDC DataCon
lCon -> Term -> Maybe Machine
reduce Term
rArgWHNF
| Bool
otherwise -> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty Bool
True)
[ Term
_, Data DataCon
rCon ]
| DataCon -> Bool
isFalseDC DataCon
rCon -> Term -> Maybe Machine
reduce Term
lArgWHNF
| Bool
otherwise -> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty Bool
True)
[Term]
_ -> Maybe Machine
forall a. Maybe a
Nothing
Text
"GHC.Classes.divInt#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
intLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntLiteral (Integer
i Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`div` Integer
j))
Text
"GHC.Classes.modInt#"
| [Integer
dividend, Integer
divisor] <- [Value] -> [Integer]
intLiterals' [Value]
args
->
if Integer
divisor Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
0 then
let iTy :: Type
iTy = ([Either TyVar Type], Type) -> Type
forall a b. (a, b) -> b
snd (Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty) in
Term -> Maybe Machine
reduce (Term -> Type -> Term
TyApp (PrimInfo -> Term
Prim PrimInfo
NP.undefined) Type
iTy)
else
Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
IntLiteral (Integer
dividend Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`mod` Integer
divisor)))
Text
"GHC.Classes.not"
| [DC DataCon
bCon [Either Term Type]
_] <- [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Name DataCon -> Text
forall a. Name a -> Text
nameOcc (DataCon -> Name DataCon
dcName DataCon
bCon) Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== Text
"GHC.Types.False"))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerLogBase#"
| Just (a,b) <- integerLiterals args
, Just c <- flogBase a b
-> (reduce . Literal . WordLiteral . toInteger) c
"GHC.Num.Integer.integerToFloat#"
| [v] <- args
, Just i <- integerLiteral v
-> reduce . Literal . FloatLiteral . floatToWord $ F# (integerToFloat# i)
"GHC.Num.Integer.integerToDouble#"
| [v] <- args
, Just i <- integerLiteral v
-> reduce . Literal . DoubleLiteral . doubleToWord $ D# (integerToDouble# i)
"GHC.Float.integerToFloat#"
| [v] <- args
, Just i <- integerLiteral v
-> reduce . Literal . FloatLiteral . floatToWord $ F# (integerToFloat# i)
"GHC.Float.integerToDouble#"
| [v] <- args
, Just i <- integerLiteral v
-> reduce . Literal . DoubleLiteral . doubleToWord $ D# (integerToDouble# i)
"GHC.Num.Natural.naturalLogBase#"
| Just (a,b) <- naturalLiterals args
, Just c <- flogBase a b
-> (reduce . Literal . WordLiteral . toInteger) c
#else
Text
"GHC.Integer.Logarithms.integerLogBase#"
| Just (Integer
a,Integer
b) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
, Just Int
c <- Integer -> Integer -> Maybe Int
flogBase Integer
a Integer
b
-> (Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> (Int -> Term) -> Int -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger) Int
c
#endif
#if !MIN_VERSION_base(4,15,0)
Text
"GHC.Integer.Type.smallInteger"
| [Lit (IntLiteral Integer
i)] <- [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral Integer
i))
#endif
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerToInt#"
#else
Text
"GHC.Integer.Type.integerToInt"
#endif
| [Integer
i] <- [Value] -> [Integer]
integerLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntLiteral Integer
i)
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerDecodeDouble#"
#else
Text
"GHC.Integer.Type.decodeDoubleInteger"
#endif
| [Lit (DoubleLiteral Word64
i)] <- [Value]
args
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
!(D# Double#
a) = Word64 -> Double
wordToDouble Word64
i
!(# Integer
b, Int#
c #) = Double# -> (# Integer, Int# #)
decodeDoubleInteger Double#
a
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[ Term -> Either Term Type
forall a b. a -> Either a b
Left (Integer -> Term
integerToIntegerLiteral Integer
b)
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Integer -> Term
integerToIntLiteral (Integer -> Term) -> (Int -> Integer) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Term) -> Int -> Term
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
c)])
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerEncodeDouble#"
#else
Text
"GHC.Integer.Type.encodeDoubleInteger"
#endif
| [Value
iV, Lit (IntLiteral Integer
j)] <- [Value]
args
, [Integer
i] <- [Value] -> [Integer]
integerLiterals' [Value
iV]
-> let !(I# Int#
k') = Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j
r :: Double#
r = Integer -> Int# -> Double#
encodeDoubleInteger Integer
i Int#
k'
in Term -> Maybe Machine
reduce (Term -> Maybe Machine)
-> (Double -> Term) -> Double -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Literal -> Term
Literal (Literal -> Term) -> (Double -> Literal) -> Double -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word64 -> Literal
DoubleLiteral (Word64 -> Literal) -> (Double -> Word64) -> Double -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Double -> Word64
doubleToWord (Double -> Maybe Machine) -> Double -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Double# -> Double
D# Double#
r
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerEncodeFloat#"
| [iV, Lit (IntLiteral j)] <- args
, [i] <- integerLiterals' [iV]
-> let !(I# k') = fromInteger j
r = integerEncodeFloat# i k'
in reduce . Literal . FloatLiteral . floatToWord $ F# r
#endif
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerQuotRem#"
#else
Text
"GHC.Integer.Type.quotRemInteger"
#endif
| [Integer
i, Integer
j] <- [Value] -> [Integer]
integerLiterals' [Value]
args
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
(Integer
q,Integer
r) = Integer -> Integer -> (Integer, Integer)
forall a. Integral a => a -> a -> (a, a)
quotRem Integer
i Integer
j
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[ Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Either Term Type) -> Term -> Either Term Type
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Integer -> Term
integerToIntegerLiteral Integer
q)
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Either Term Type) -> Term -> Either Term Type
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Integer -> Term
integerToIntegerLiteral Integer
r)])
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerAdd"
#else
Text
"GHC.Integer.Type.plusInteger"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntegerLiteral (Integer
iInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
+Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerSub"
#else
Text
"GHC.Integer.Type.minusInteger"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntegerLiteral (Integer
iInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerMul"
#else
Text
"GHC.Integer.Type.timesInteger"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntegerLiteral (Integer
iInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerNegate"
#else
Text
"GHC.Integer.Type.negateInteger"
#endif
| [Integer
i] <- [Value] -> [Integer]
integerLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntegerLiteral (Integer -> Integer
forall a. Num a => a -> a
negate Integer
i))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerDiv"
#else
Text
"GHC.Integer.Type.divInteger"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Integer -> Term
integerToIntegerLiteral (Integer
i Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`div` Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerMod"
#else
Text
"GHC.Integer.Type.modInteger"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Integer -> Term
integerToIntegerLiteral (Integer
i Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`mod` Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerQuot"
#else
Text
"GHC.Integer.Type.quotInteger"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Integer -> Term
integerToIntegerLiteral (Integer
i Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`quot` Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerRem"
#else
Text
"GHC.Integer.Type.remInteger"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Integer -> Term
integerToIntegerLiteral (Integer
i Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`rem` Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerDivMod#"
#else
Text
"GHC.Integer.Type.divModInteger"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
ubTupTcNm [Type
liftedKi,Type
_,Type
intTy,Type
_]) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
ubTupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
ubTupTcNm TyConMap
tcm
[DataCon
ubTupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
ubTupTc
(Integer
d,Integer
m) = Integer -> Integer -> (Integer, Integer)
forall a. Integral a => a -> a -> (a, a)
divMod Integer
i Integer
j
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
ubTupDc) [ Type -> Either Term Type
forall a b. b -> Either a b
Right Type
liftedKi, Type -> Either Term Type
forall a b. b -> Either a b
Right Type
liftedKi
, Type -> Either Term Type
forall a b. b -> Either a b
Right Type
intTy, Type -> Either Term Type
forall a b. b -> Either a b
Right Type
intTy
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Either Term Type) -> Term -> Either Term Type
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral Integer
d))
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Either Term Type) -> Term -> Either Term Type
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral Integer
m))
]
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerGt"
#else
Text
"GHC.Integer.Type.gtInteger"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerGe"
#else
Text
"GHC.Integer.Type.geInteger"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerEq"
#else
Text
"GHC.Integer.Type.eqInteger"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerNe"
#else
Text
"GHC.Integer.Type.neqInteger"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
/= Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerLt"
#else
Text
"GHC.Integer.Type.ltInteger"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerLe"
#else
Text
"GHC.Integer.Type.leInteger"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerGt#"
#else
Text
"GHC.Integer.Type.gtInteger#"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerGe#"
#else
Text
"GHC.Integer.Type.geInteger#"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerEq#"
#else
Text
"GHC.Integer.Type.eqInteger#"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerNe#"
#else
Text
"GHC.Integer.Type.neqInteger#"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
/= Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerLt#"
#else
Text
"GHC.Integer.Type.ltInteger#"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerLe#"
#else
Text
"GHC.Integer.Type.leInteger#"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Bool -> Term
boolToIntLiteral (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerCompare"
#else
Text
"GHC.Integer.Type.compareInteger"
#endif
| [Integer
i, Integer
j] <- [Value] -> [Integer]
integerLiterals' [Value]
args
-> let
([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
ltDc, DataCon
eqDc, DataCon
gtDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
ordVal :: Ordering
ordVal = Integer -> Integer -> Ordering
compareInteger Integer
i Integer
j
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ case Ordering
ordVal of
Ordering
LT -> DataCon -> Term
Data DataCon
ltDc
Ordering
EQ -> DataCon -> Term
Data DataCon
eqDc
Ordering
GT -> DataCon -> Term
Data DataCon
gtDc
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerShiftR#"
| [iV, Lit (WordLiteral j)] <- args
#else
Text
"GHC.Integer.Type.shiftRInteger"
| [Value
iV, Lit (IntLiteral Integer
j)] <- [Value]
args
#endif
, [Integer
i] <- [Value] -> [Integer]
integerLiterals' [Value
iV]
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntegerLiteral (Integer
i Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftR` Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerShiftL#"
| [iV, Lit (WordLiteral j)] <- args
#else
Text
"GHC.Integer.Type.shiftLInteger"
| [Value
iV, Lit (IntLiteral Integer
j)] <- [Value]
args
#endif
, [Integer
i] <- [Value] -> [Integer]
integerLiterals' [Value
iV]
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntegerLiteral (Integer
i Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerFromWord#"
#else
Text
"GHC.Integer.Type.wordToInteger"
#endif
| [Lit (WordLiteral Integer
w)] <- [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral Integer
w))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerToWord#"
#else
Text
"GHC.Integer.Type.integerToWord"
#endif
| [Integer
i] <- [Value] -> [Integer]
integerLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToWordLiteral Integer
i)
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerTestBit#"
| [Lit (IntegerLiteral i), Lit (WordLiteral j)] <- args
-> reduce (boolToIntLiteral (testBit i (fromInteger j)))
#else
Text
"GHC.Integer.Type.testBitInteger"
| [Lit (IntegerLiteral Integer
i), Lit (IntLiteral Integer
j)] <- [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer -> Int -> Bool
forall a. Bits a => a -> Int -> Bool
testBit Integer
i (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j)))
#endif
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Natural.NS"
| [Lit (WordLiteral w)] <- args
-> reduce (Literal (NaturalLiteral w))
"GHC.Num.Natural.NB"
| [Lit (ByteArrayLiteral (BA.ByteArray ba))] <- args
-> reduce (Literal (NaturalLiteral (IP ba)))
| [Lit l] <- args
-> error ("NB: " <> show l)
"GHC.Num.Integer.IS"
| [Lit (IntLiteral i)] <- args
-> reduce (Literal (IntegerLiteral i))
"GHC.Num.Integer.IP"
| [Lit (ByteArrayLiteral (BA.ByteArray ba))] <- args
-> reduce (Literal (IntegerLiteral (IP ba)))
| [Lit l] <- args
-> error ("IP: " <> show l)
"GHC.Num.Integer.IN"
| [Lit l] <- args
-> error ("IN: " <> show l)
#else
Text
"GHC.Natural.NatS#"
| [Lit (WordLiteral Integer
w)] <- [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral Integer
w))
#endif
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerFromNatural"
#else
Text
"GHC.Natural.naturalToInteger"
#endif
| [Integer
i] <- [Value] -> [Integer]
naturalLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral (Integer -> Integer
forall a. Integral a => a -> Integer
toInteger Integer
i)))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerToNatural"
#else
Text
"GHC.Natural.naturalFromInteger"
#endif
| [Integer
i] <- [Value] -> [Integer]
integerLiterals' [Value]
args
->
let nTy :: Type
nTy = ([Either TyVar Type], Type) -> Type
forall a b. (a, b) -> b
snd (Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty) in
Term -> Maybe Machine
reduce (Type -> Integer -> (Natural -> Natural) -> Term
checkNaturalRange1 Type
nTy Integer
i Natural -> Natural
forall a. a -> a
id)
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerToNaturalClamp"
| [i] <- integerLiterals' args
-> if i < 0 then
reduce (naturalToNaturalLiteral 0)
else
reduce (naturalToNaturalLiteral (fromInteger i))
"GHC.Num.Integer.integerToNaturalThrow"
| [i] <- integerLiterals' args
-> let nTy = snd (splitFunForallTy ty) in
reduce (checkNaturalRange1 nTy i id)
#endif
Text
"GHC.Num.Integer.integerToInt64#"
| [Integer
i] <- [Value] -> [Integer]
integerLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToInt64Literal Integer
i)
Text
"GHC.Num.Integer.integerToWord64#"
| [Integer
i] <- [Value] -> [Integer]
integerLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToWord64Literal Integer
i)
#if MIN_VERSION_base(4,17,0)
"GHC.Num.Integer.integerFromWord64#"
| [w] <- word64Literals' args
-> reduce (Literal (IntegerLiteral w))
#endif
#if !MIN_VERSION_base(4,15,0)
Text
"GHC.Natural.$wshiftLNatural"
| [Value
nV,Value
iV] <- [Value]
args
, [Integer
n] <- [Value] -> [Integer]
naturalLiterals' [Value
nV]
, [Int
i] <- Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Integer -> Int) -> [Integer] -> [Int]
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> [Value] -> [Integer]
intLiterals' [Value
iV]
->
let nTy :: Type
nTy = ([Either TyVar Type], Type) -> Type
forall a b. (a, b) -> b
snd (Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty) in
Term -> Maybe Machine
reduce (Type -> Integer -> (Natural -> Natural) -> Term
checkNaturalRange1 Type
nTy Integer
n (((Natural -> Int -> Natural) -> Int -> Natural -> Natural
forall a b c. (a -> b -> c) -> b -> a -> c
flip Natural -> Int -> Natural
forall a. Bits a => a -> Int -> a
shiftL) Int
i))
#endif
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Natural.naturalAdd"
#else
Text
"GHC.Natural.plusNatural"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
naturalLiterals [Value]
args
->
let nTy :: Type
nTy = ([Either TyVar Type], Type) -> Type
forall a b. (a, b) -> b
snd (Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty) in
Term -> Maybe Machine
reduce (Type
-> Integer -> Integer -> (Natural -> Natural -> Natural) -> Term
checkNaturalRange2 Type
nTy Integer
i Integer
j Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
(+))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Natural.naturalMul"
#else
Text
"GHC.Natural.timesNatural"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
naturalLiterals [Value]
args
->
let nTy :: Type
nTy = ([Either TyVar Type], Type) -> Type
forall a b. (a, b) -> b
snd (Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty) in
Term -> Maybe Machine
reduce (Type
-> Integer -> Integer -> (Natural -> Natural -> Natural) -> Term
checkNaturalRange2 Type
nTy Integer
i Integer
j Natural -> Natural -> Natural
forall a. Num a => a -> a -> a
(*))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Natural.naturalSubUnsafe"
| Just (i,j) <- naturalLiterals args
->
let nTy = snd (splitFunForallTy ty) in
reduce (checkNaturalRange nTy [i, j] (\[i', j'] ->
naturalToNaturalLiteral (naturalSubUnsafe i' j')))
"GHC.Num.Natural.naturalSubThrow"
| Just (i,j) <- naturalLiterals args
->
let nTy = snd (splitFunForallTy ty) in
reduce (checkNaturalRange nTy [i, j] (\[i', j'] ->
case minusNaturalMaybe i' j' of
Nothing -> checkNaturalRange1 nTy (-1) id
Just n -> naturalToNaturalLiteral n))
#else
Text
"GHC.Natural.minusNatural"
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
naturalLiterals [Value]
args
->
let nTy :: Type
nTy = ([Either TyVar Type], Type) -> Type
forall a b. (a, b) -> b
snd (Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty) in
Term -> Maybe Machine
reduce (Type -> [Integer] -> ([Natural] -> Term) -> Term
checkNaturalRange Type
nTy [Integer
i, Integer
j] (\[Natural
i', Natural
j'] ->
case Natural -> Natural -> Maybe Natural
minusNaturalMaybe Natural
i' Natural
j' of
Maybe Natural
Nothing -> Type -> Integer -> (Natural -> Natural) -> Term
checkNaturalRange1 Type
nTy (-Integer
1) Natural -> Natural
forall a. a -> a
id
Just Natural
n -> Natural -> Term
naturalToNaturalLiteral Natural
n))
#endif
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Natural.naturalFromWord#"
#else
Text
"GHC.Natural.wordToNatural#"
#endif
| [Lit (WordLiteral Integer
w)] <- [Value]
args
->
let nTy :: Type
nTy = ([Either TyVar Type], Type) -> Type
forall a b. (a, b) -> b
snd (Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty) in
Term -> Maybe Machine
reduce (Type -> Integer -> (Natural -> Natural) -> Term
checkNaturalRange1 Type
nTy Integer
w Natural -> Natural
forall a. a -> a
id)
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Natural.naturalToWord#"
| [i] <- naturalLiterals' args
-> reduce (integerToWordLiteral i)
"GHC.Num.Natural.naturalQuot"
| Just (i,j) <- naturalLiterals args
->
let nTy = snd (splitFunForallTy ty) in
reduce (checkNaturalRange2 nTy i j quot)
"GHC.Num.Natural.naturalRem"
| Just (i,j) <- naturalLiterals args
->
let nTy = snd (splitFunForallTy ty) in
reduce (checkNaturalRange2 nTy i j rem)
#endif
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Natural.naturalQuotRem#"
| [i, j] <- naturalLiterals' args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = UniqMap.lookup tupTcNm tcm
[tupDc] = tyConDataCons tupTc
(q,r) = quotRem (fromInteger i) (fromInteger j)
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left $ catchDivByZero (naturalToNaturalLiteral q)
, Left $ catchDivByZero (naturalToNaturalLiteral r)])
#endif
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Natural.naturalGcd"
#else
Text
"GHC.Natural.gcdNatural"
#endif
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
naturalLiterals [Value]
args
->
let nTy :: Type
nTy = ([Either TyVar Type], Type) -> Type
forall a b. (a, b) -> b
snd (Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty) in
Term -> Maybe Machine
reduce (Type
-> Integer -> Integer -> (Natural -> Natural -> Natural) -> Term
checkNaturalRange2 Type
nTy Integer
i Integer
j Natural -> Natural -> Natural
forall a. Integral a => a -> a -> a
gcd)
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Natural.naturalLcm"
| Just (i,j) <- naturalLiterals args
->
let nTy = snd (splitFunForallTy ty) in
reduce (checkNaturalRange2 nTy i j lcm)
#endif
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Natural.naturalGt#"
| Just (i,j) <- naturalLiterals args
-> reduce (boolToIntLiteral (i > j))
"GHC.Num.Natural.naturalGe#"
| Just (i,j) <- naturalLiterals args
-> reduce (boolToIntLiteral (i >= j))
"GHC.Num.Natural.naturalEq#"
| Just (i,j) <- naturalLiterals args
-> reduce (boolToIntLiteral (i == j))
"GHC.Num.Natural.naturalNe#"
| Just (i,j) <- naturalLiterals args
-> reduce (boolToIntLiteral (i /= j))
"GHC.Num.Natural.naturalLt#"
| Just (i,j) <- naturalLiterals args
-> reduce (boolToIntLiteral (i < j))
"GHC.Num.Natural.naturalLe#"
| Just (i,j) <- naturalLiterals args
-> reduce (boolToIntLiteral (i <= j))
"GHC.Num.Natural.naturalShiftL#"
| [iV, Lit (WordLiteral j)] <- args
, [i] <- naturalLiterals' [iV]
-> reduce (naturalToNaturalLiteral (fromInteger (i `shiftL` fromInteger j)))
"GHC.Num.Natural.naturalShiftR#"
| [iV, Lit (WordLiteral j)] <- args
, [i] <- naturalLiterals' [iV]
-> reduce (naturalToNaturalLiteral (fromInteger (i `shiftR` fromInteger j)))
"GHC.Num.Natural.naturalCompare"
| [i, j] <- naturalLiterals' args
-> let
(_,tyView -> TyConApp tupTcNm []) = splitFunForallTy ty
(Just tupTc) = UniqMap.lookup tupTcNm tcm
[ltDc, eqDc, gtDc] = tyConDataCons tupTc
ordVal = compareInteger i j
in reduce $ case ordVal of
LT -> Data ltDc
EQ -> Data eqDc
GT -> Data gtDc
"GHC.Num.Natural.naturalSignum"
| [i] <- naturalLiterals' args
-> reduce (Literal (NaturalLiteral (signum i)))
"GHC.Num.Natural.$wnaturalSignum"
| [i] <- naturalLiterals' args
-> reduce (Literal (WordLiteral (signum i)))
#endif
Text
"GHC.Real.^_f"
| [Integer
i,Integer
j] <- [Value] -> [Integer]
integerLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntegerLiteral (Integer -> Term) -> Integer -> Term
forall a b. (a -> b) -> a -> b
$ Integer
i Integer -> Integer -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^ Integer
j)
Text
"GHC.Real.$wf"
| [Value
iV, Lit (IntLiteral Integer
j)] <- [Value]
args
, [Integer
i] <- [Value] -> [Integer]
integerLiterals' [Value
iV]
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntegerLiteral (Integer -> Term) -> Integer -> Term
forall a b. (a -> b) -> a -> b
$ Integer
i Integer -> Integer -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^ Integer
j)
Text
"GHC.Real.$wf1"
| [Lit (IntLiteral Integer
i), Lit (IntLiteral Integer
j)] <- [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntLiteral (Integer -> Term) -> Integer -> Term
forall a b. (a -> b) -> a -> b
$ Integer
i Integer -> Integer -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^ Integer
j)
Text
"Data.Singletons.TypeLits.Internal.$fSingI->^@#@$_f"
| [Integer
i,Integer
j] <- [Value] -> [Integer]
naturalLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
i Integer -> Integer -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^ Integer
j)))
Text
"Data.Singletons.TypeLits.Internal.%^_f"
| [Integer
i,Integer
j] <- [Value] -> [Integer]
naturalLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
i Integer -> Integer -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^ Integer
j)))
Text
"GHC.TypeLits.natVal"
| [Lit (NaturalLiteral Integer
n), Value
_] <- [Value]
args
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntegerLiteral Integer
n)
Text
"GHC.TypeNats.natVal"
| [Lit (NaturalLiteral Integer
n), Value
_] <- [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral Integer
n))
Text
"GHC.TypeNats.someNatVal"
| [Lit (NaturalLiteral Integer
n)] <- [Value]
args
-> let resTy :: Type
resTy = TyConMap -> Type -> [Type] -> Type
getResultTy TyConMap
tcm Type
ty [Type]
tys
in Term -> Maybe Machine
reduce (TyConMap -> Integer -> Type -> Term
mkSomeNat TyConMap
tcm Integer
n Type
resTy)
Text
"GHC.Types.I#"
| Bool
isSubj
, [Lit (IntLiteral Integer
i)] <- [Value]
args
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
intTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
intTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
intTcNm TyConMap
tcm
[DataCon
intDc] = TyCon -> [DataCon]
tyConDataCons TyCon
intTc
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
intDc) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
IntLiteral Integer
i))])
Text
"GHC.Int.I8#"
| Bool
isSubj
#if MIN_VERSION_base(4,16,0)
, [Lit (Int8Literal i)] <- args
#else
, [Lit (IntLiteral Integer
i)] <- [Value]
args
#endif
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
intTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
intTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
intTcNm TyConMap
tcm
[DataCon
intDc] = TyCon -> [DataCon]
tyConDataCons TyCon
intTc
#if MIN_VERSION_base(4,16,0)
in reduce (mkApps (Data intDc) [Left (Literal (Int8Literal i))])
#else
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
intDc) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
IntLiteral Integer
i))])
#endif
Text
"GHC.Int.I16#"
| Bool
isSubj
#if MIN_VERSION_base(4,16,0)
, [Lit (Int16Literal i)] <- args
#else
, [Lit (IntLiteral Integer
i)] <- [Value]
args
#endif
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
intTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
intTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
intTcNm TyConMap
tcm
[DataCon
intDc] = TyCon -> [DataCon]
tyConDataCons TyCon
intTc
#if MIN_VERSION_base(4,16,0)
in reduce (mkApps (Data intDc) [Left (Literal (Int16Literal i))])
#else
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
intDc) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
IntLiteral Integer
i))])
#endif
Text
"GHC.Int.I32#"
| Bool
isSubj
#if MIN_VERSION_base(4,16,0)
, [Lit (Int32Literal i)] <- args
#else
, [Lit (IntLiteral Integer
i)] <- [Value]
args
#endif
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
intTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
intTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
intTcNm TyConMap
tcm
[DataCon
intDc] = TyCon -> [DataCon]
tyConDataCons TyCon
intTc
#if MIN_VERSION_base(4,16,0)
in reduce (mkApps (Data intDc) [Left (Literal (Int32Literal i))])
#else
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
intDc) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
IntLiteral Integer
i))])
#endif
Text
"GHC.Int.I64#"
| Bool
isSubj
#if MIN_VERSION_base(4,16,0)
, [Lit (Int64Literal i)] <- args
#else
, [Lit (IntLiteral Integer
i)] <- [Value]
args
#endif
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
intTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
intTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
intTcNm TyConMap
tcm
[DataCon
intDc] = TyCon -> [DataCon]
tyConDataCons TyCon
intTc
#if MIN_VERSION_base(4,16,0)
in reduce (mkApps (Data intDc) [Left (Literal (Int64Literal i))])
#else
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
intDc) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
IntLiteral Integer
i))])
#endif
Text
"GHC.Word.W8#"
| Bool
isSubj
#if MIN_VERSION_base(4,16,0)
, [Lit (Word8Literal c)] <- args
#else
, [Lit (WordLiteral Integer
c)] <- [Value]
args
#endif
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
wordTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
wordTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
wordTcNm TyConMap
tcm
[DataCon
wordDc] = TyCon -> [DataCon]
tyConDataCons TyCon
wordTc
#if MIN_VERSION_base(4,16,0)
in reduce (mkApps (Data wordDc) [Left (Literal (Word8Literal c))])
#else
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
wordDc) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
WordLiteral Integer
c))])
#endif
Text
"GHC.Word.W16#"
| Bool
isSubj
#if MIN_VERSION_base(4,16,0)
, [Lit (Word16Literal c)] <- args
#else
, [Lit (WordLiteral Integer
c)] <- [Value]
args
#endif
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
wordTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
wordTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
wordTcNm TyConMap
tcm
[DataCon
wordDc] = TyCon -> [DataCon]
tyConDataCons TyCon
wordTc
#if MIN_VERSION_base(4,16,0)
in reduce (mkApps (Data wordDc) [Left (Literal (Word16Literal c))])
#else
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
wordDc) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
WordLiteral Integer
c))])
#endif
Text
"GHC.Word.W32#"
| Bool
isSubj
#if MIN_VERSION_base(4,16,0)
, [Lit (Word32Literal c)] <- args
#else
, [Lit (WordLiteral Integer
c)] <- [Value]
args
#endif
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
wordTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
wordTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
wordTcNm TyConMap
tcm
[DataCon
wordDc] = TyCon -> [DataCon]
tyConDataCons TyCon
wordTc
#if MIN_VERSION_base(4,16,0)
in reduce (mkApps (Data wordDc) [Left (Literal (Word32Literal c))])
#else
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
wordDc) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
WordLiteral Integer
c))])
#endif
Text
"GHC.Word.W64#"
| Bool
isSubj
#if MIN_VERSION_base(4,16,0)
, [Lit (Word64Literal c)] <- args
#else
, [Lit (WordLiteral Integer
c)] <- [Value]
args
#endif
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
wordTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
wordTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
wordTcNm TyConMap
tcm
[DataCon
wordDc] = TyCon -> [DataCon]
tyConDataCons TyCon
wordTc
#if MIN_VERSION_base(4,16,0)
in reduce (mkApps (Data wordDc) [Left (Literal (Word64Literal c))])
#else
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
wordDc) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
WordLiteral Integer
c))])
#endif
Text
"GHC.Types.W#"
| Bool
isSubj
, [Lit (WordLiteral Integer
i)] <- [Value]
args
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
intTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
intTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
intTcNm TyConMap
tcm
[DataCon
intDc] = TyCon -> [DataCon]
tyConDataCons TyCon
intTc
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
intDc) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
WordLiteral Integer
i))])
Text
"GHC.Float.$w$sfromRat''"
| [Lit (IntLiteral Integer
_minEx)
,Lit (IntLiteral Integer
matDigs)
,Value
nV
,Value
dV] <- [Value]
args
, [Integer
n,Integer
d] <- [Value] -> [Integer]
integerLiterals' [Value
nV,Value
dV]
-> case Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
matDigs of
Int
matDigs'
| Int
matDigs' Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Float -> Int
forall a. RealFloat a => a -> Int
floatDigits (Float
forall a. HasCallStack => a
undefined :: Float)
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Word32 -> Literal
FloatLiteral (Float -> Word32
floatToWord (Rational -> Float
forall a. Fractional a => Rational -> a
fromRational (Integer
n Integer -> Integer -> Rational
forall a. a -> a -> Ratio a
:% Integer
d)))))
| Int
matDigs' Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Double -> Int
forall a. RealFloat a => a -> Int
floatDigits (Double
forall a. HasCallStack => a
undefined :: Double)
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Word64 -> Literal
DoubleLiteral (Double -> Word64
doubleToWord (Rational -> Double
forall a. Fractional a => Rational -> a
fromRational (Integer
n Integer -> Integer -> Rational
forall a. a -> a -> Ratio a
:% Integer
d)))))
Int
_ -> String -> Maybe Machine
forall a. HasCallStack => String -> a
error (String -> Maybe Machine) -> String -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ $(String
curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"GHC.Float.$w$sfromRat'': Not a Float or Double"
Text
"GHC.Float.$w$sfromRat''1"
| [Lit (IntLiteral Integer
_minEx)
,Lit (IntLiteral Integer
matDigs)
,Value
nV
,Value
dV] <- [Value]
args
, [Integer
n,Integer
d] <- [Value] -> [Integer]
integerLiterals' [Value
nV,Value
dV]
-> case Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
matDigs of
Int
matDigs'
| Int
matDigs' Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Float -> Int
forall a. RealFloat a => a -> Int
floatDigits (Float
forall a. HasCallStack => a
undefined :: Float)
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Word32 -> Literal
FloatLiteral (Float -> Word32
floatToWord (Rational -> Float
forall a. Fractional a => Rational -> a
fromRational (Integer
n Integer -> Integer -> Rational
forall a. a -> a -> Ratio a
:% Integer
d)))))
| Int
matDigs' Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Double -> Int
forall a. RealFloat a => a -> Int
floatDigits (Double
forall a. HasCallStack => a
undefined :: Double)
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Word64 -> Literal
DoubleLiteral (Double -> Word64
doubleToWord (Rational -> Double
forall a. Fractional a => Rational -> a
fromRational (Integer
n Integer -> Integer -> Rational
forall a. a -> a -> Ratio a
:% Integer
d)))))
Int
_ -> String -> Maybe Machine
forall a. HasCallStack => String -> a
error (String -> Maybe Machine) -> String -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ $(String
curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"GHC.Float.$w$sfromRat'': Not a Float or Double"
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerSignum#"
#else
Text
"GHC.Integer.Type.$wsignumInteger"
#endif
| [Integer
i] <- [Value] -> [Integer]
integerLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
IntLiteral (Integer -> Integer
forall a. Num a => a -> a
signum Integer
i)))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerSignum"
#else
Text
"GHC.Integer.Type.signumInteger"
#endif
| [Integer
i] <- [Value] -> [Integer]
integerLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral (Integer -> Integer
signumInteger Integer
i)))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.$wintegerSignum"
| [i] <- integerLiterals' args
-> reduce (Literal (IntLiteral (signum i)))
#endif
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerAbs"
#else
Text
"GHC.Integer.Type.absInteger"
#endif
| [Integer
i] <- [Value] -> [Integer]
integerLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral (Integer -> Integer
absInteger Integer
i)))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerBit#"
| [i] <- wordLiterals' args
#else
Text
"GHC.Integer.Type.bitInteger"
| [Integer
i] <- [Value] -> [Integer]
intLiterals' [Value]
args
#endif
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral (Int -> Integer
forall a. Bits a => Int -> a
bit (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
i))))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerComplement"
#else
Text
"GHC.Integer.Type.complementInteger"
#endif
| [Integer
i] <- [Value] -> [Integer]
integerLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral (Integer -> Integer
complementInteger Integer
i)))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerOr"
#else
Text
"GHC.Integer.Type.orInteger"
#endif
| [Integer
i, Integer
j] <- [Value] -> [Integer]
integerLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral (Integer -> Integer -> Integer
orInteger Integer
i Integer
j)))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerXor"
#else
Text
"GHC.Integer.Type.xorInteger"
#endif
| [Integer
i, Integer
j] <- [Value] -> [Integer]
integerLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral (Integer -> Integer -> Integer
xorInteger Integer
i Integer
j)))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerAnd"
#else
Text
"GHC.Integer.Type.andInteger"
#endif
| [Integer
i, Integer
j] <- [Value] -> [Integer]
integerLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral (Integer -> Integer -> Integer
andInteger Integer
i Integer
j)))
#if MIN_VERSION_base(4,15,0)
"GHC.Num.Integer.integerToDouble#"
#else
Text
"GHC.Integer.Type.doubleFromInteger"
#endif
| [Integer
i] <- [Value] -> [Integer]
integerLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Literal -> Term
Literal (Word64 -> Literal
DoubleLiteral (Double -> Word64
doubleToWord (Integer -> Double
forall a. Num a => Integer -> a
fromInteger Integer
i))))
#if MIN_VERSION_base(4,17,0)
"GHC.Num.Integer.$wintegerFromInt64#"
| [i] <- int64Literals' args
-> reduce . Literal $ IntLiteral i
#endif
Text
"GHC.Base.eqString"
| [PrimVal PrimInfo
_ [Type]
_ [Lit (StringLiteral String
s1)]
,PrimVal PrimInfo
_ [Type]
_ [Lit (StringLiteral String
s2)]
] <- [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (String
s1 String -> String -> Bool
forall a. Eq a => a -> a -> Bool
== String
s2))
| Bool
otherwise -> String -> Maybe Machine
forall a. HasCallStack => String -> a
error ([Value] -> String
forall a. Show a => a -> String
show [Value]
args)
Text
"GHC.Base.quotInt"
| [ DC DataCon
intDc [Left (Literal (IntLiteral Integer
i))]
, DC DataCon
_ [Left (Literal (IntLiteral Integer
j))]
] <- [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Term -> Term
App (DataCon -> Term
Data DataCon
intDc) (Literal -> Term
Literal (Integer -> Literal
IntLiteral (Integer
i Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`quot` Integer
j))))
Text
"GHC.Base.remInt"
| [ DC DataCon
intDc [Left (Literal (IntLiteral Integer
i))]
, DC DataCon
_ [Left (Literal (IntLiteral Integer
j))]
] <- [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Term -> Term
App (DataCon -> Term
Data DataCon
intDc) (Literal -> Term
Literal (Integer -> Literal
IntLiteral (Integer
i Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`rem` Integer
j))))
Text
"GHC.Base.divInt"
| [ DC DataCon
intDc [Left (Literal (IntLiteral Integer
i))]
, DC DataCon
_ [Left (Literal (IntLiteral Integer
j))]
] <- [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Term -> Term
App (DataCon -> Term
Data DataCon
intDc) (Literal -> Term
Literal (Integer -> Literal
IntLiteral (Integer
i Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`div` Integer
j))))
Text
"GHC.Base.modInt"
| [ DC DataCon
intDc [Left (Literal (IntLiteral Integer
i))]
, DC DataCon
_ [Left (Literal (IntLiteral Integer
j))]
] <- [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Term -> Term
App (DataCon -> Term
Data DataCon
intDc) (Literal -> Term
Literal (Integer -> Literal
IntLiteral (Integer
i Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`mod` Integer
j))))
Text
"Clash.Class.BitPack.Internal.packDouble#"
| [DC DataCon
_ [Left Term
arg]] <- [Value]
args
, Evaluator
eval <- Step -> Unwind -> PrimStep -> PrimUnwind -> Evaluator
Evaluator Step
ghcStep Unwind
ghcUnwind PrimStep
ghcPrimStep PrimUnwind
ghcPrimUnwind
, mach2 :: Machine
mach2@Machine{mStack :: Machine -> Stack
mStack=[],mTerm :: Machine -> Term
mTerm=Literal (DoubleLiteral Word64
i)} <- Evaluator -> TyConMap -> Bool -> Machine -> Machine
whnf Evaluator
eval TyConMap
tcm Bool
True (Term -> Machine -> Machine
setTerm Term
arg (Machine -> Machine) -> Machine -> Machine
forall a b. (a -> b) -> a -> b
$ Machine -> Machine
stackClear Machine
mach)
-> let resTyInfo :: (Type, Type, Integer)
resTyInfo = TyConMap -> Type -> [Type] -> (Type, Type, Integer)
extractTySizeInfo TyConMap
tcm Type
ty [Type]
tys
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Machine
mach2
{ mStack :: Stack
mStack = Machine -> Stack
mStack Machine
mach
, mTerm :: Term
mTerm = (Type, Type, Integer) -> Integer -> Integer -> Term
mkBitVectorLit' (Type, Type, Integer)
resTyInfo Integer
0 (BitVector 64 -> Integer
forall a. Integral a => a -> Integer
toInteger (BitVector 64 -> Integer) -> BitVector 64 -> Integer
forall a b. (a -> b) -> a -> b
$ (Word64 -> BitVector 64
forall a. BitPack a => a -> BitVector (BitSize a)
pack :: Word64 -> BitVector 64) Word64
i)
}
Text
"Clash.Class.BitPack.Internal.packFloat#"
| [DC DataCon
_ [Left Term
arg]] <- [Value]
args
, Evaluator
eval <- Step -> Unwind -> PrimStep -> PrimUnwind -> Evaluator
Evaluator Step
ghcStep Unwind
ghcUnwind PrimStep
ghcPrimStep PrimUnwind
ghcPrimUnwind
, mach2 :: Machine
mach2@Machine{mStack :: Machine -> Stack
mStack=[],mTerm :: Machine -> Term
mTerm=Literal (FloatLiteral Word32
i)} <- Evaluator -> TyConMap -> Bool -> Machine -> Machine
whnf Evaluator
eval TyConMap
tcm Bool
True (Term -> Machine -> Machine
setTerm Term
arg (Machine -> Machine) -> Machine -> Machine
forall a b. (a -> b) -> a -> b
$ Machine -> Machine
stackClear Machine
mach)
-> let resTyInfo :: (Type, Type, Integer)
resTyInfo = TyConMap -> Type -> [Type] -> (Type, Type, Integer)
extractTySizeInfo TyConMap
tcm Type
ty [Type]
tys
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Machine
mach2
{ mStack :: Stack
mStack = Machine -> Stack
mStack Machine
mach
, mTerm :: Term
mTerm = (Type, Type, Integer) -> Integer -> Integer -> Term
mkBitVectorLit' (Type, Type, Integer)
resTyInfo Integer
0 (BitVector 32 -> Integer
forall a. Integral a => a -> Integer
toInteger (BitVector 32 -> Integer) -> BitVector 32 -> Integer
forall a b. (a -> b) -> a -> b
$ (Word32 -> BitVector 32
forall a. BitPack a => a -> BitVector (BitSize a)
pack :: Word32 -> BitVector 32) Word32
i)
}
Text
"Clash.Class.BitPack.Internal.unpackFloat#"
| [(Integer, Integer)
i] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
-> let resTy :: Type
resTy = TyConMap -> Type -> [Type] -> Type
getResultTy TyConMap
tcm Type
ty [Type]
tys
val :: Word32
val = BitVector (BitSize Word32) -> Word32
forall a. BitPack a => BitVector (BitSize a) -> a
unpack ((Integer, Integer) -> BitVector 32
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i :: BitVector 32)
in Term -> Maybe Machine
reduce (TyConMap -> Word32 -> Type -> Term
mkFloatCLit TyConMap
tcm Word32
val Type
resTy)
Text
"Clash.Class.BitPack.Internal.unpackDouble#"
| [(Integer, Integer)
i] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
-> let resTy :: Type
resTy = TyConMap -> Type -> [Type] -> Type
getResultTy TyConMap
tcm Type
ty [Type]
tys
val :: Word64
val = BitVector (BitSize Word64) -> Word64
forall a. BitPack a => BitVector (BitSize a) -> a
unpack ((Integer, Integer) -> BitVector 64
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i :: BitVector 64)
in Term -> Maybe Machine
reduce (TyConMap -> Word64 -> Type -> Term
mkDoubleCLit TyConMap
tcm Word64
val Type
resTy)
Text
"Clash.Class.BitPack.Internal.xToBV"
| Bool
isSubj
, Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [ Value
_, (Suspend Term
arg) ] <- [Value]
args
, Evaluator
eval <- Step -> Unwind -> PrimStep -> PrimUnwind -> Evaluator
Evaluator Step
ghcStep Unwind
ghcUnwind PrimStep
ghcPrimStep PrimUnwind
ghcPrimUnwind
, mach1 :: Machine
mach1@Machine{mStack :: Machine -> Stack
mStack=[],mTerm :: Machine -> Term
mTerm=Term
argWHNF} <-
Evaluator -> TyConMap -> Bool -> Machine -> Machine
whnf Evaluator
eval TyConMap
tcm Bool
True (Term -> Machine -> Machine
setTerm Term
arg (Machine -> Machine
stackClear Machine
mach))
, let undefBitVector :: Maybe Machine
undefBitVector =
Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Machine
mach1
{ mStack :: Stack
mStack = Machine -> Stack
mStack Machine
mach
, mTerm :: Term
mTerm = Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
ty Type
nTy Integer
kn (Int -> Integer
forall a. Bits a => Int -> a
bit (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
kn)Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1) Integer
0
}
-> case Term -> Either String Term
forall a. a -> Either String a
isX Term
argWHNF of
Left String
_ -> Maybe Machine
undefBitVector
Either String Term
_ -> case Term -> (Term, [Either Term Type])
collectArgs Term
argWHNF of
(Prim PrimInfo
p,[Either Term Type]
_) | PrimInfo -> Text
primName PrimInfo
p Text -> [Text] -> Bool
forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`elem` [Text]
undefinedXPrims -> Maybe Machine
undefBitVector
(Term, [Either Term Type])
_ -> Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Machine
mach1
{ mStack :: Stack
mStack = Machine -> Stack
mStack Machine
mach
, mTerm :: Term
mTerm = Term
argWHNF
}
Text
"Clash.Class.Exp.expIndex#"
| [Integer
b] <- [Value] -> [Integer]
indexLiterals' [Value]
args
, [(Type
_mTy, Integer
km), (Type
_, Integer
e)] <- TyConMap -> [Type] -> [(Type, Integer)]
extractKnownNats TyConMap
tcm [Type]
tys
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkIndexLit Type
ty (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
kmInteger -> Integer -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^Integer
e))) (Integer
kmInteger -> Integer -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^Integer
e) (Integer
bInteger -> Integer -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^Integer
e))
Text
"Clash.Class.Exp.expSigned#"
| [Integer
b] <- [Value] -> [Integer]
signedLiterals' [Value]
args
, [(Type
_mTy, Integer
km), (Type
_, Integer
e)] <- TyConMap -> [Type] -> [(Type, Integer)]
extractKnownNats TyConMap
tcm [Type]
tys
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
ty (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
kmInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
e))) (Integer
kmInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
e) (Integer
bInteger -> Integer -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^Integer
e))
Text
"Clash.Class.Exp.expUnsigned#"
| [Integer
b] <- [Value] -> [Integer]
unsignedLiterals' [Value]
args
, [(Type
_mTy, Integer
km), (Type
_, Integer
e)] <- TyConMap -> [Type] -> [(Type, Integer)]
extractKnownNats TyConMap
tcm [Type]
tys
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit Type
ty (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
kmInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
e))) (Integer
kmInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
e) (Integer
bInteger -> Integer -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^Integer
e))
Text
"Clash.Promoted.Nat.powSNat"
| [Right Integer
a, Right Integer
b] <- (Type -> Either String Integer)
-> [Type] -> [Either String Integer]
forall a b. (a -> b) -> [a] -> [b]
map (Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (Except String Integer -> Either String Integer)
-> (Type -> Except String Integer) -> Type -> Either String Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm) [Type]
tys
-> let c :: Integer
c = case Integer
a of
Integer
2 -> Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
b)
Integer
_ -> Integer
a Integer -> Integer -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^ Integer
b
([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
snatTcNm [Type]
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
snatTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
snatTcNm TyConMap
tcm
[DataCon
snatDc] = TyCon -> [DataCon]
tyConDataCons TyCon
snatTc
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
snatDc) [ Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
c))
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral Integer
c))]
Text
"Clash.Promoted.Nat.flogBaseSNat"
| [Right Integer
a, Right Integer
b] <- (Type -> Either String Integer)
-> [Type] -> [Either String Integer]
forall a b. (a -> b) -> [a] -> [b]
map (Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (Except String Integer -> Either String Integer)
-> (Type -> Except String Integer) -> Type -> Either String Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm) [Type]
tys
, Just Int
c <- Integer -> Integer -> Maybe Int
flogBase Integer
a Integer
b
, let c' :: Integer
c' = Int -> Integer
forall a. Integral a => a -> Integer
toInteger Int
c
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
snatTcNm [Type]
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
snatTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
snatTcNm TyConMap
tcm
[DataCon
snatDc] = TyCon -> [DataCon]
tyConDataCons TyCon
snatTc
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
snatDc) [ Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
c'))
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral Integer
c'))]
Text
"Clash.Promoted.Nat.clogBaseSNat"
| [Right Integer
a, Right Integer
b] <- (Type -> Either String Integer)
-> [Type] -> [Either String Integer]
forall a b. (a -> b) -> [a] -> [b]
map (Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (Except String Integer -> Either String Integer)
-> (Type -> Except String Integer) -> Type -> Either String Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm) [Type]
tys
, Just Int
c <- Integer -> Integer -> Maybe Int
clogBase Integer
a Integer
b
, let c' :: Integer
c' = Int -> Integer
forall a. Integral a => a -> Integer
toInteger Int
c
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
snatTcNm [Type]
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
snatTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
snatTcNm TyConMap
tcm
[DataCon
snatDc] = TyCon -> [DataCon]
tyConDataCons TyCon
snatTc
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
snatDc) [ Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
c'))
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral Integer
c'))]
| Bool
otherwise
-> String -> Maybe Machine
forall a. HasCallStack => String -> a
error (String
"clogBaseSNat: args = " String -> String -> String
forall a. Semigroup a => a -> a -> a
<> [Value] -> String
forall a. Show a => a -> String
show [Value]
args String -> String -> String
forall a. Semigroup a => a -> a -> a
<> String
", tys = " String -> String -> String
forall a. Semigroup a => a -> a -> a
<> [Type] -> String
forall a. Show a => a -> String
show [Type]
tys)
Text
"Clash.Promoted.Nat.logBaseSNat"
| [Right Integer
a, Right Integer
b] <- (Type -> Either String Integer)
-> [Type] -> [Either String Integer]
forall a b. (a -> b) -> [a] -> [b]
map (Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (Except String Integer -> Either String Integer)
-> (Type -> Except String Integer) -> Type -> Either String Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm) [Type]
tys
, Just Int
c <- Integer -> Integer -> Maybe Int
flogBase Integer
a Integer
b
, let c' :: Integer
c' = Int -> Integer
forall a. Integral a => a -> Integer
toInteger Int
c
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
snatTcNm [Type]
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
snatTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
snatTcNm TyConMap
tcm
[DataCon
snatDc] = TyCon -> [DataCon]
tyConDataCons TyCon
snatTc
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
snatDc) [ Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
c'))
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral Integer
c'))]
Text
"Clash.Sized.Internal.BitVector.BV"
| [Right Integer
_] <- (Type -> Either String Integer)
-> [Type] -> [Either String Integer]
forall a b. (a -> b) -> [a] -> [b]
map (Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (Except String Integer -> Either String Integer)
-> (Type -> Except String Integer) -> Type -> Either String Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm) [Type]
tys
, Just (Integer
m,Integer
i) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> let resTyInfo :: (Type, Type, Integer)
resTyInfo = TyConMap -> Type -> [Type] -> (Type, Type, Integer)
extractTySizeInfo TyConMap
tcm Type
ty [Type]
tys
in Term -> Maybe Machine
reduce ((Type, Type, Integer) -> Integer -> Integer -> Term
mkBitVectorLit' (Type, Type, Integer)
resTyInfo Integer
m Integer
i)
Text
"Clash.Sized.Internal.BitVector.Bit"
| Just (Integer
m,Integer
i) <- [Value] -> Maybe (Integer, Integer)
integerLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Type -> Integer -> Integer -> Term
mkBitLit Type
ty Integer
m Integer
i)
Text
"Clash.Sized.Internal.BitVector.size#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
intTcNm [Type]
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
intTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
intTcNm TyConMap
tcm
[DataCon
intCon] = TyCon -> [DataCon]
tyConDataCons TyCon
intTc
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
intCon) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
IntLiteral Integer
kn))])
Text
"Clash.Sized.Internal.BitVector.maxIndex#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
intTcNm [Type]
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
intTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
intTcNm TyConMap
tcm
[DataCon
intCon] = TyCon -> [DataCon]
tyConDataCons TyCon
intTc
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
intCon) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
IntLiteral (Integer
knInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))])
Text
"Clash.Sized.Internal.BitVector.high"
-> Term -> Maybe Machine
reduce (Type -> Integer -> Integer -> Term
mkBitLit Type
ty Integer
0 Integer
1)
Text
"Clash.Sized.Internal.BitVector.low"
-> Term -> Maybe Machine
reduce (Type -> Integer -> Integer -> Term
mkBitLit Type
ty Integer
0 Integer
0)
Text
"Clash.Sized.Internal.BitVector.undefined#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> let resTyInfo :: (Type, Type, Integer)
resTyInfo = TyConMap -> Type -> [Type] -> (Type, Type, Integer)
extractTySizeInfo TyConMap
tcm Type
ty [Type]
tys
mask :: Integer
mask = Int -> Integer
forall a. Bits a => Int -> a
bit (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
kn) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
in Term -> Maybe Machine
reduce ((Type, Type, Integer) -> Integer -> Integer -> Term
mkBitVectorLit' (Type, Type, Integer)
resTyInfo Integer
mask Integer
0)
Text
"Clash.Sized.Internal.BitVector.eq##" | [(Integer
0,Integer
i),(Integer
0,Integer
j)] <- [Value] -> [(Integer, Integer)]
bitLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
j))
Text
"Clash.Sized.Internal.BitVector.neq##" | [(Integer
0,Integer
i),(Integer
0,Integer
j)] <- [Value] -> [(Integer, Integer)]
bitLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
/= Integer
j))
Text
"Clash.Sized.Internal.BitVector.lt##" | [(Integer
0,Integer
i),(Integer
0,Integer
j)] <- [Value] -> [(Integer, Integer)]
bitLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
j))
Text
"Clash.Sized.Internal.BitVector.ge##" | [(Integer
0,Integer
i),(Integer
0,Integer
j)] <- [Value] -> [(Integer, Integer)]
bitLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
j))
Text
"Clash.Sized.Internal.BitVector.gt##" | [(Integer
0,Integer
i),(Integer
0,Integer
j)] <- [Value] -> [(Integer, Integer)]
bitLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
j))
Text
"Clash.Sized.Internal.BitVector.le##" | [(Integer
0,Integer
i),(Integer
0,Integer
j)] <- [Value] -> [(Integer, Integer)]
bitLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
j))
Text
"Clash.Sized.Internal.BitVector.toEnum##"
| [Integer
i] <- [Value] -> [Integer]
intCLiterals' [Value]
args
-> let Bit Word
msk Word
val = Int -> Bit
BitVector.toEnum## (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
i)
in Term -> Maybe Machine
reduce (Type -> Integer -> Integer -> Term
mkBitLit Type
ty (Word -> Integer
forall a. Integral a => a -> Integer
toInteger Word
msk) (Word -> Integer
forall a. Integral a => a -> Integer
toInteger Word
val))
Text
"Clash.Sized.Internal.BitVector.and##"
| [(Integer, Integer)
i,(Integer, Integer)
j] <- [Value] -> [(Integer, Integer)]
bitLiterals [Value]
args
-> let Bit Word
msk Word
val = Bit -> Bit -> Bit
BitVector.and## ((Integer, Integer) -> Bit
toBit (Integer, Integer)
i) ((Integer, Integer) -> Bit
toBit (Integer, Integer)
j)
in Term -> Maybe Machine
reduce (Type -> Integer -> Integer -> Term
mkBitLit Type
ty (Word -> Integer
forall a. Integral a => a -> Integer
toInteger Word
msk) (Word -> Integer
forall a. Integral a => a -> Integer
toInteger Word
val))
Text
"Clash.Sized.Internal.BitVector.or##"
| [(Integer, Integer)
i,(Integer, Integer)
j] <- [Value] -> [(Integer, Integer)]
bitLiterals [Value]
args
-> let Bit Word
msk Word
val = Bit -> Bit -> Bit
BitVector.or## ((Integer, Integer) -> Bit
toBit (Integer, Integer)
i) ((Integer, Integer) -> Bit
toBit (Integer, Integer)
j)
in Term -> Maybe Machine
reduce (Type -> Integer -> Integer -> Term
mkBitLit Type
ty (Word -> Integer
forall a. Integral a => a -> Integer
toInteger Word
msk) (Word -> Integer
forall a. Integral a => a -> Integer
toInteger Word
val))
Text
"Clash.Sized.Internal.BitVector.xor##"
| [(Integer, Integer)
i,(Integer, Integer)
j] <- [Value] -> [(Integer, Integer)]
bitLiterals [Value]
args
-> let Bit Word
msk Word
val = Bit -> Bit -> Bit
BitVector.xor## ((Integer, Integer) -> Bit
toBit (Integer, Integer)
i) ((Integer, Integer) -> Bit
toBit (Integer, Integer)
j)
in Term -> Maybe Machine
reduce (Type -> Integer -> Integer -> Term
mkBitLit Type
ty (Word -> Integer
forall a. Integral a => a -> Integer
toInteger Word
msk) (Word -> Integer
forall a. Integral a => a -> Integer
toInteger Word
val))
Text
"Clash.Sized.Internal.BitVector.complement##"
| [(Integer, Integer)
i] <- [Value] -> [(Integer, Integer)]
bitLiterals [Value]
args
-> let Bit Word
msk Word
val = Bit -> Bit
BitVector.complement## ((Integer, Integer) -> Bit
toBit (Integer, Integer)
i)
in Term -> Maybe Machine
reduce (Type -> Integer -> Integer -> Term
mkBitLit Type
ty (Word -> Integer
forall a. Integral a => a -> Integer
toInteger Word
msk) (Word -> Integer
forall a. Integral a => a -> Integer
toInteger Word
val))
Text
"Clash.Sized.Internal.BitVector.pack#"
| [(Integer
msk,Integer
i)] <- [Value] -> [(Integer, Integer)]
bitLiterals [Value]
args
-> let resTyInfo :: (Type, Type, Integer)
resTyInfo = TyConMap -> Type -> [Type] -> (Type, Type, Integer)
extractTySizeInfo TyConMap
tcm Type
ty [Type]
tys
in Term -> Maybe Machine
reduce ((Type, Type, Integer) -> Integer -> Integer -> Term
mkBitVectorLit' (Type, Type, Integer)
resTyInfo Integer
msk Integer
i)
Text
"Clash.Sized.Internal.BitVector.unpack#"
| [(Integer
msk,Integer
i)] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Type -> Integer -> Integer -> Term
mkBitLit Type
ty Integer
msk Integer
i)
Text
"Clash.Sized.Internal.BitVector.++#"
| Just (Type
_,Integer
m) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [(Integer
mski,Integer
i),(Integer
mskj,Integer
j)] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
-> let val :: Integer
val = Integer
i Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
m Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.|. Integer
j
msk :: Integer
msk = Integer
mski Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
m Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.|. Integer
mskj
resTyInfo :: (Type, Type, Integer)
resTyInfo = TyConMap -> Type -> [Type] -> (Type, Type, Integer)
extractTySizeInfo TyConMap
tcm Type
ty [Type]
tys
in Term -> Maybe Machine
reduce ((Type, Type, Integer) -> Integer -> Integer -> Term
mkBitVectorLit' (Type, Type, Integer)
resTyInfo Integer
msk Integer
val)
Text
"Clash.Sized.Internal.BitVector.reduceAnd#"
| [(Integer, Integer)
i] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
, Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> let resTy :: Type
resTy = TyConMap -> Type -> [Type] -> Type
getResultTy TyConMap
tcm Type
ty [Type]
tys
val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (BitVector n -> Proxy n -> Integer
forall (n :: Nat). KnownNat n => BitVector n -> Proxy n -> Integer
op ((Integer, Integer) -> BitVector n
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i))
in Term -> Maybe Machine
reduce (Type -> Integer -> Integer -> Term
mkBitLit Type
resTy Integer
0 Integer
val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op :: BitVector n -> Proxy n -> Integer
op BitVector n
u Proxy n
_ = Bit -> Integer
forall a. Integral a => a -> Integer
toInteger (BitVector n -> Bit
forall (n :: Nat). KnownNat n => BitVector n -> Bit
BitVector.reduceAnd# BitVector n
u)
Text
"Clash.Sized.Internal.BitVector.reduceOr#"
| [(Integer, Integer)
i] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
, Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> let resTy :: Type
resTy = TyConMap -> Type -> [Type] -> Type
getResultTy TyConMap
tcm Type
ty [Type]
tys
val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (BitVector n -> Proxy n -> Integer
forall (n :: Nat). KnownNat n => BitVector n -> Proxy n -> Integer
op ((Integer, Integer) -> BitVector n
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i))
in Term -> Maybe Machine
reduce (Type -> Integer -> Integer -> Term
mkBitLit Type
resTy Integer
0 Integer
val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op :: BitVector n -> Proxy n -> Integer
op BitVector n
u Proxy n
_ = Bit -> Integer
forall a. Integral a => a -> Integer
toInteger (BitVector n -> Bit
forall (n :: Nat). KnownNat n => BitVector n -> Bit
BitVector.reduceOr# BitVector n
u)
Text
"Clash.Sized.Internal.BitVector.reduceXor#"
| [(Integer, Integer)
i] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
, Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> let resTy :: Type
resTy = TyConMap -> Type -> [Type] -> Type
getResultTy TyConMap
tcm Type
ty [Type]
tys
val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (BitVector n -> Proxy n -> Integer
forall (n :: Nat). KnownNat n => BitVector n -> Proxy n -> Integer
op ((Integer, Integer) -> BitVector n
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i))
in Term -> Maybe Machine
reduce (Type -> Integer -> Integer -> Term
mkBitLit Type
resTy Integer
0 Integer
val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op :: BitVector n -> Proxy n -> Integer
op BitVector n
u Proxy n
_ = Bit -> Integer
forall a. Integral a => a -> Integer
toInteger (BitVector n -> Bit
forall (n :: Nat). KnownNat n => BitVector n -> Bit
BitVector.reduceXor# BitVector n
u)
Text
"Clash.Sized.Internal.BitVector.index#"
| Just (Type
_,Integer
kn,(Integer, Integer)
i,Integer
j) <- TyConMap
-> [Type]
-> [Value]
-> Maybe (Type, Integer, (Integer, Integer), Integer)
bitVectorLitIntLit TyConMap
tcm [Type]
tys [Value]
args
-> let resTy :: Type
resTy = TyConMap -> Type -> [Type] -> Type
getResultTy TyConMap
tcm Type
ty [Type]
tys
(Integer
msk,Integer
val) = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> (Integer, Integer))
-> (Integer, Integer)
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (BitVector n -> Int -> Proxy n -> (Integer, Integer)
forall (n :: Nat).
KnownNat n =>
BitVector n -> Int -> Proxy n -> (Integer, Integer)
op ((Integer, Integer) -> BitVector n
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i) (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j))
in Term -> Maybe Machine
reduce (Type -> Integer -> Integer -> Term
mkBitLit Type
resTy Integer
msk Integer
val)
where
op :: KnownNat n => BitVector n -> Int -> Proxy n -> (Integer,Integer)
op :: BitVector n -> Int -> Proxy n -> (Integer, Integer)
op BitVector n
u Int
i Proxy n
_ = (Word -> Integer
forall a. Integral a => a -> Integer
toInteger Word
m, Word -> Integer
forall a. Integral a => a -> Integer
toInteger Word
v)
where Bit Word
m Word
v = (BitVector n -> Int -> Bit
forall (n :: Nat). KnownNat n => BitVector n -> Int -> Bit
BitVector.index# BitVector n
u Int
i)
Text
"Clash.Sized.Internal.BitVector.replaceBit#"
| Just (Type
_, Integer
n) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [ Value
_
, PrimVal PrimInfo
bvP [Type]
_ [Value
_, Lit (NaturalLiteral Integer
mskBv), Lit (IntegerLiteral Integer
bv)]
, Value -> Maybe [Term]
valArgs -> Just [Literal (IntLiteral Integer
i)]
, PrimVal PrimInfo
bP [Type]
_ [Lit (WordLiteral Integer
mskB), Lit (IntegerLiteral Integer
b)]
] <- [Value]
args
, PrimInfo -> Text
primName PrimInfo
bvP Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== Text
"Clash.Sized.Internal.BitVector.fromInteger#"
, PrimInfo -> Text
primName PrimInfo
bP Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== Text
"Clash.Sized.Internal.BitVector.fromInteger##"
-> let resTyInfo :: (Type, Type, Integer)
resTyInfo = TyConMap -> Type -> [Type] -> (Type, Type, Integer)
extractTySizeInfo TyConMap
tcm Type
ty [Type]
tys
(Integer
mskVal,Integer
val) = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> (Integer, Integer))
-> (Integer, Integer)
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
n (BitVector n -> Int -> Bit -> Proxy n -> (Integer, Integer)
forall (n :: Nat).
KnownNat n =>
BitVector n -> Int -> Bit -> Proxy n -> (Integer, Integer)
op (Natural -> Natural -> BitVector n
forall (n :: Nat). Natural -> Natural -> BitVector n
BV (Integer -> Natural
forall a. Num a => Integer -> a
fromInteger Integer
mskBv) (Integer -> Natural
forall a. Num a => Integer -> a
fromInteger Integer
bv))
(Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
i)
(Word -> Word -> Bit
Bit (Integer -> Word
forall a. Num a => Integer -> a
fromInteger Integer
mskB) (Integer -> Word
forall a. Num a => Integer -> a
fromInteger Integer
b)))
in Term -> Maybe Machine
reduce ((Type, Type, Integer) -> Integer -> Integer -> Term
mkBitVectorLit' (Type, Type, Integer)
resTyInfo Integer
mskVal Integer
val)
where
op :: KnownNat n => BitVector n -> Int -> Bit -> Proxy n -> (Integer,Integer)
op :: BitVector n -> Int -> Bit -> Proxy n -> (Integer, Integer)
op BitVector n
bv Int
i Bit
b Proxy n
_ = BitVector n -> (Integer, Integer)
forall (n :: Nat). BitVector n -> (Integer, Integer)
splitBV (BitVector n -> Int -> Bit -> BitVector n
forall (n :: Nat).
KnownNat n =>
BitVector n -> Int -> Bit -> BitVector n
BitVector.replaceBit# BitVector n
bv Int
i Bit
b)
Text
"Clash.Sized.Internal.BitVector.setSlice#"
| Type
mTy : Type
iTy : Type
nTy : [Type]
_ <- [Type]
tys
, Right Integer
m <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
mTy)
, Right Integer
iN <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
iTy)
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
, [(Integer, Integer)
i,(Integer, Integer)
j] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
-> let BV Natural
msk Natural
val = SNat ((Any + 1) + Any)
-> BitVector ((Any + 1) + Any)
-> SNat Any
-> SNat Any
-> BitVector ((Any + 1) - Any)
-> BitVector ((Any + 1) + Any)
forall (m :: Nat) (i :: Nat) (n :: Nat).
SNat ((m + 1) + i)
-> BitVector ((m + 1) + i)
-> SNat m
-> SNat n
-> BitVector ((m + 1) - n)
-> BitVector ((m + 1) + i)
BitVector.setSlice# (Integer -> SNat ((Any + 1) + Any)
forall (k :: Nat). Integer -> SNat k
unsafeSNat (Integer
mInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
+Integer
1Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+Integer
iN)) ((Integer, Integer) -> BitVector ((Any + 1) + Any)
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i) (Integer -> SNat Any
forall (k :: Nat). Integer -> SNat k
unsafeSNat Integer
m) (Integer -> SNat Any
forall (k :: Nat). Integer -> SNat k
unsafeSNat Integer
n) ((Integer, Integer) -> BitVector ((Any + 1) - Any)
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
j)
resTyInfo :: (Type, Type, Integer)
resTyInfo = TyConMap -> Type -> [Type] -> (Type, Type, Integer)
extractTySizeInfo TyConMap
tcm Type
ty [Type]
tys
in Term -> Maybe Machine
reduce ((Type, Type, Integer) -> Integer -> Integer -> Term
mkBitVectorLit' (Type, Type, Integer)
resTyInfo (Natural -> Integer
forall a. Integral a => a -> Integer
toInteger Natural
msk) (Natural -> Integer
forall a. Integral a => a -> Integer
toInteger Natural
val))
Text
"Clash.Sized.Internal.BitVector.slice#"
| Type
mTy : Type
_ : Type
nTy : [Type]
_ <- [Type]
tys
, Right Integer
m <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
mTy)
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
, [(Integer, Integer)
i] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
-> let BV Natural
msk Natural
val = BitVector ((Any + 1) + Any)
-> SNat Any -> SNat Any -> BitVector ((Any + 1) - Any)
forall (m :: Nat) (i :: Nat) (n :: Nat).
BitVector ((m + 1) + i)
-> SNat m -> SNat n -> BitVector ((m + 1) - n)
BitVector.slice# ((Integer, Integer) -> BitVector ((Any + 1) + Any)
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i) (Integer -> SNat Any
forall (k :: Nat). Integer -> SNat k
unsafeSNat Integer
m) (Integer -> SNat Any
forall (k :: Nat). Integer -> SNat k
unsafeSNat Integer
n)
resTyInfo :: (Type, Type, Integer)
resTyInfo = TyConMap -> Type -> [Type] -> (Type, Type, Integer)
extractTySizeInfo TyConMap
tcm Type
ty [Type]
tys
in Term -> Maybe Machine
reduce ((Type, Type, Integer) -> Integer -> Integer -> Term
mkBitVectorLit' (Type, Type, Integer)
resTyInfo (Natural -> Integer
forall a. Integral a => a -> Integer
toInteger Natural
msk) (Natural -> Integer
forall a. Integral a => a -> Integer
toInteger Natural
val))
Text
"Clash.Sized.Internal.BitVector.split#"
| Type
nTy : Type
mTy : [Type]
_ <- [Type]
tys
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
, Right Integer
m <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
mTy)
, [(Integer
mski,Integer
i)] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
-> let ty' :: Type
ty' = HasCallStack => TyConMap -> Type -> [Type] -> Type
TyConMap -> Type -> [Type] -> Type
piResultTys TyConMap
tcm Type
ty [Type]
tys
([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
tyArgs) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty'
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
Type
bvTy : [Type]
_ = [Type]
tyArgs
valM :: Integer
valM = Integer
i Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftR` Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
n
mskM :: Integer
mskM = Integer
mski Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftR` Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
n
valN :: Integer
valN = Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. Integer
mask
mskN :: Integer
mskN = Integer
mski Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. Integer
mask
mask :: Integer
mask = Int -> Integer
forall a. Bits a => Int -> a
bit (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
n) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[ Term -> Either Term Type
forall a b. a -> Either a b
Left (Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
bvTy Type
mTy Integer
m Integer
mskM Integer
valM)
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
bvTy Type
nTy Integer
n Integer
mskN Integer
valN)])
Text
"Clash.Sized.Internal.BitVector.msb#"
| [(Integer, Integer)
i] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
, Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> let resTy :: Type
resTy = TyConMap -> Type -> [Type] -> Type
getResultTy TyConMap
tcm Type
ty [Type]
tys
(Word
msk,Word
val) = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> (Word, Word))
-> (Word, Word)
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (BitVector n -> Proxy n -> (Word, Word)
forall (n :: Nat).
KnownNat n =>
BitVector n -> Proxy n -> (Word, Word)
op ((Integer, Integer) -> BitVector n
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i))
in Term -> Maybe Machine
reduce (Type -> Integer -> Integer -> Term
mkBitLit Type
resTy (Word -> Integer
forall a. Integral a => a -> Integer
toInteger Word
msk) (Word -> Integer
forall a. Integral a => a -> Integer
toInteger Word
val))
where
op :: KnownNat n => BitVector n -> Proxy n -> (Word,Word)
op :: BitVector n -> Proxy n -> (Word, Word)
op BitVector n
u Proxy n
_ = (Bit -> Word
unsafeMask# Bit
res, Bit -> Word
BitVector.unsafeToInteger# Bit
res)
where
res :: Bit
res = BitVector n -> Bit
forall (n :: Nat). KnownNat n => BitVector n -> Bit
BitVector.msb# BitVector n
u
Text
"Clash.Sized.Internal.BitVector.lsb#"
| [(Integer, Integer)
i] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
-> let resTy :: Type
resTy = TyConMap -> Type -> [Type] -> Type
getResultTy TyConMap
tcm Type
ty [Type]
tys
Bit Word
msk Word
val = BitVector Any -> Bit
forall (n :: Nat). BitVector n -> Bit
BitVector.lsb# ((Integer, Integer) -> BitVector Any
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i)
in Term -> Maybe Machine
reduce (Type -> Integer -> Integer -> Term
mkBitLit Type
resTy (Word -> Integer
forall a. Integral a => a -> Integer
toInteger Word
msk) (Word -> Integer
forall a. Integral a => a -> Integer
toInteger Word
val))
Text
"Clash.Sized.Internal.BitVector.eq#"
| Type
nTy : [Type]
_ <- [Type]
tys
, Right Integer
0 <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty Bool
True)
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((BitVector n -> BitVector n -> Bool)
-> Type -> TyConMap -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(BitVector n -> BitVector n -> Bool)
-> Type -> TyConMap -> [Value] -> Proxy n -> Maybe Term
liftBitVector2Bool BitVector n -> BitVector n -> Bool
forall (n :: Nat). KnownNat n => BitVector n -> BitVector n -> Bool
BitVector.eq# Type
ty TyConMap
tcm [Value]
args)
-> Term -> Maybe Machine
reduce Term
val
Text
"Clash.Sized.Internal.BitVector.neq#"
| Type
nTy : [Type]
_ <- [Type]
tys
, Right Integer
0 <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty Bool
False)
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((BitVector n -> BitVector n -> Bool)
-> Type -> TyConMap -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(BitVector n -> BitVector n -> Bool)
-> Type -> TyConMap -> [Value] -> Proxy n -> Maybe Term
liftBitVector2Bool BitVector n -> BitVector n -> Bool
forall (n :: Nat). KnownNat n => BitVector n -> BitVector n -> Bool
BitVector.neq# Type
ty TyConMap
tcm [Value]
args)
-> Term -> Maybe Machine
reduce Term
val
Text
"Clash.Sized.Internal.BitVector.lt#"
| Type
nTy : [Type]
_ <- [Type]
tys
, Right Integer
0 <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty Bool
False)
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((BitVector n -> BitVector n -> Bool)
-> Type -> TyConMap -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(BitVector n -> BitVector n -> Bool)
-> Type -> TyConMap -> [Value] -> Proxy n -> Maybe Term
liftBitVector2Bool BitVector n -> BitVector n -> Bool
forall (n :: Nat). KnownNat n => BitVector n -> BitVector n -> Bool
BitVector.lt# Type
ty TyConMap
tcm [Value]
args)
-> Term -> Maybe Machine
reduce Term
val
Text
"Clash.Sized.Internal.BitVector.ge#"
| Type
nTy : [Type]
_ <- [Type]
tys
, Right Integer
0 <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty Bool
True)
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((BitVector n -> BitVector n -> Bool)
-> Type -> TyConMap -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(BitVector n -> BitVector n -> Bool)
-> Type -> TyConMap -> [Value] -> Proxy n -> Maybe Term
liftBitVector2Bool BitVector n -> BitVector n -> Bool
forall (n :: Nat). KnownNat n => BitVector n -> BitVector n -> Bool
BitVector.ge# Type
ty TyConMap
tcm [Value]
args)
-> Term -> Maybe Machine
reduce Term
val
Text
"Clash.Sized.Internal.BitVector.gt#"
| Type
nTy : [Type]
_ <- [Type]
tys
, Right Integer
0 <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty Bool
False)
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((BitVector n -> BitVector n -> Bool)
-> Type -> TyConMap -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(BitVector n -> BitVector n -> Bool)
-> Type -> TyConMap -> [Value] -> Proxy n -> Maybe Term
liftBitVector2Bool BitVector n -> BitVector n -> Bool
forall (n :: Nat). KnownNat n => BitVector n -> BitVector n -> Bool
BitVector.gt# Type
ty TyConMap
tcm [Value]
args)
-> Term -> Maybe Machine
reduce Term
val
Text
"Clash.Sized.Internal.BitVector.le#"
| Type
nTy : [Type]
_ <- [Type]
tys
, Right Integer
0 <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty Bool
True)
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((BitVector n -> BitVector n -> Bool)
-> Type -> TyConMap -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(BitVector n -> BitVector n -> Bool)
-> Type -> TyConMap -> [Value] -> Proxy n -> Maybe Term
liftBitVector2Bool BitVector n -> BitVector n -> Bool
forall (n :: Nat). KnownNat n => BitVector n -> BitVector n -> Bool
BitVector.le# Type
ty TyConMap
tcm [Value]
args)
-> Term -> Maybe Machine
reduce Term
val
Text
"Clash.Sized.Internal.BitVector.toEnum#"
| let resTyInfo :: (Type, Type, Integer)
resTyInfo@(Type
_,Type
_,Integer
kn) = TyConMap -> Type -> [Type] -> (Type, Type, Integer)
extractTySizeInfo TyConMap
tcm Type
ty [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((Integer -> BitVector n)
-> (Type, Type, Integer) -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(Integer -> BitVector n)
-> (Type, Type, Integer) -> [Value] -> Proxy n -> Maybe Term
liftInteger2BitVector (Int -> BitVector n
forall (n :: Nat). KnownNat n => Int -> BitVector n
BitVector.toEnum# (Int -> BitVector n) -> (Integer -> Int) -> Integer -> BitVector n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Int
forall a. Num a => Integer -> a
fromInteger) (Type, Type, Integer)
resTyInfo [Value]
args)
-> Term -> Maybe Machine
reduce Term
val
Text
"Clash.Sized.Internal.BitVector.fromEnum#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, let resTy :: Type
resTy = TyConMap -> Type -> [Type] -> Type
getResultTy TyConMap
tcm Type
ty [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (TyConMap
-> Type
-> (BitVector n -> Integer)
-> [Value]
-> Proxy n
-> Maybe Term
forall (n :: Nat).
KnownNat n =>
TyConMap
-> Type
-> (BitVector n -> Integer)
-> [Value]
-> Proxy n
-> Maybe Term
liftBitVector2CInt TyConMap
tcm Type
resTy (Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> (BitVector n -> Int) -> BitVector n -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. BitVector n -> Int
forall (n :: Nat). KnownNat n => BitVector n -> Int
BitVector.fromEnum#) [Value]
args)
-> Term -> Maybe Machine
reduce Term
val
Text
"Clash.Sized.Internal.BitVector.minBound#"
| Just (Type
nTy,Integer
len) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
ty Type
nTy Integer
len Integer
0 Integer
0)
Text
"Clash.Sized.Internal.BitVector.maxBound#"
| Just (Type
litTy,Integer
mb) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> let maxB :: Integer
maxB = (Integer
2 Integer -> Integer -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^ Integer
mb) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
ty Type
litTy Integer
mb Integer
0 Integer
maxB)
Text
"Clash.Sized.Internal.BitVector.+#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((BitVector n -> BitVector n -> BitVector n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(BitVector n -> BitVector n -> BitVector n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftBitVector2 BitVector n -> BitVector n -> BitVector n
forall (n :: Nat).
KnownNat n =>
BitVector n -> BitVector n -> BitVector n
(BitVector.+#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce Term
val
Text
"Clash.Sized.Internal.BitVector.-#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((BitVector n -> BitVector n -> BitVector n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(BitVector n -> BitVector n -> BitVector n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftBitVector2 BitVector n -> BitVector n -> BitVector n
forall (n :: Nat).
KnownNat n =>
BitVector n -> BitVector n -> BitVector n
(BitVector.-#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce Term
val
Text
"Clash.Sized.Internal.BitVector.*#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((BitVector n -> BitVector n -> BitVector n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(BitVector n -> BitVector n -> BitVector n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftBitVector2 BitVector n -> BitVector n -> BitVector n
forall (n :: Nat).
KnownNat n =>
BitVector n -> BitVector n -> BitVector n
(BitVector.*#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce Term
val
Text
"Clash.Sized.Internal.BitVector.negate#"
| Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [(Integer, Integer)
i] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
-> let (Integer
msk,Integer
val) = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> (Integer, Integer))
-> (Integer, Integer)
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (BitVector n -> Proxy n -> (Integer, Integer)
forall (n :: Nat).
KnownNat n =>
BitVector n -> Proxy n -> (Integer, Integer)
op ((Integer, Integer) -> BitVector n
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
ty Type
nTy Integer
kn Integer
msk Integer
val)
where
op :: KnownNat n => BitVector n -> Proxy n -> (Integer,Integer)
op :: BitVector n -> Proxy n -> (Integer, Integer)
op BitVector n
u Proxy n
_ = BitVector n -> (Integer, Integer)
forall (n :: Nat). BitVector n -> (Integer, Integer)
splitBV (BitVector n -> BitVector n
forall (n :: Nat). KnownNat n => BitVector n -> BitVector n
BitVector.negate# BitVector n
u)
Text
"Clash.Sized.Internal.BitVector.plus#"
| [(Integer
0,Integer
i),(Integer
0,Integer
j)] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
-> let ty' :: Type
ty' = HasCallStack => TyConMap -> Type -> [Type] -> Type
TyConMap -> Type -> [Type] -> Type
piResultTys TyConMap
tcm Type
ty [Type]
tys
([Either TyVar Type]
_,Type
resTy) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty'
(TyConApp TyConName
_ [Type
resSizeTy]) = Type -> TypeView
tyView Type
resTy
Right Integer
resSizeInt = Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
resSizeTy)
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
resTy Type
resSizeTy Integer
resSizeInt Integer
0 (Integer
iInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
+Integer
j))
Text
"Clash.Sized.Internal.BitVector.minus#"
| [(Integer
0,Integer
i),(Integer
0,Integer
j)] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
-> let ty' :: Type
ty' = HasCallStack => TyConMap -> Type -> [Type] -> Type
TyConMap -> Type -> [Type] -> Type
piResultTys TyConMap
tcm Type
ty [Type]
tys
([Either TyVar Type]
_,Type
resTy) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty'
(TyConApp TyConName
_ [Type
resSizeTy]) = Type -> TypeView
tyView Type
resTy
Right Integer
resSizeInt = Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
resSizeTy)
val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
resSizeInt ((BitVector n -> BitVector n -> BitVector n)
-> Integer -> Integer -> Proxy n -> Integer
forall (n :: Nat) (sized :: Nat -> Type).
(KnownNat n, Integral (sized n)) =>
(sized n -> sized n -> sized n)
-> Integer -> Integer -> Proxy n -> Integer
runSizedF BitVector n -> BitVector n -> BitVector n
forall (n :: Nat).
KnownNat n =>
BitVector n -> BitVector n -> BitVector n
(BitVector.-#) Integer
i Integer
j)
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
resTy Type
resSizeTy Integer
resSizeInt Integer
0 Integer
val)
Text
"Clash.Sized.Internal.BitVector.times#"
| [(Integer
0,Integer
i),(Integer
0,Integer
j)] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
-> let ty' :: Type
ty' = HasCallStack => TyConMap -> Type -> [Type] -> Type
TyConMap -> Type -> [Type] -> Type
piResultTys TyConMap
tcm Type
ty [Type]
tys
([Either TyVar Type]
_,Type
resTy) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty'
(TyConApp TyConName
_ [Type
resSizeTy]) = Type -> TypeView
tyView Type
resTy
Right Integer
resSizeInt = Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
resSizeTy)
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
resTy Type
resSizeTy Integer
resSizeInt Integer
0 (Integer
iInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
j))
Text
"Clash.Sized.Internal.BitVector.quot#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((BitVector n -> BitVector n -> BitVector n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(BitVector n -> BitVector n -> BitVector n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftBitVector2 (BitVector n -> BitVector n -> BitVector n
forall (n :: Nat).
KnownNat n =>
BitVector n -> BitVector n -> BitVector n
BitVector.quot#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero Term
val
Text
"Clash.Sized.Internal.BitVector.rem#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((BitVector n -> BitVector n -> BitVector n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(BitVector n -> BitVector n -> BitVector n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftBitVector2 (BitVector n -> BitVector n -> BitVector n
forall (n :: Nat).
KnownNat n =>
BitVector n -> BitVector n -> BitVector n
BitVector.rem#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero Term
val
Text
"Clash.Sized.Internal.BitVector.toInteger#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [(Integer, Integer)
i] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
-> let val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (BitVector n -> Proxy n -> Integer
forall (n :: Nat). KnownNat n => BitVector n -> Proxy n -> Integer
op ((Integer, Integer) -> BitVector n
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i))
in Term -> Maybe Machine
reduce (Integer -> Term
integerToIntegerLiteral Integer
val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op :: BitVector n -> Proxy n -> Integer
op BitVector n
u Proxy n
_ = BitVector n -> Integer
forall (n :: Nat). KnownNat n => BitVector n -> Integer
BitVector.toInteger# BitVector n
u
Text
"Clash.Sized.Internal.BitVector.and#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((BitVector n -> BitVector n -> BitVector n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(BitVector n -> BitVector n -> BitVector n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftBitVector2 (BitVector n -> BitVector n -> BitVector n
forall (n :: Nat).
KnownNat n =>
BitVector n -> BitVector n -> BitVector n
BitVector.and#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce Term
val
Text
"Clash.Sized.Internal.BitVector.or#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((BitVector n -> BitVector n -> BitVector n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(BitVector n -> BitVector n -> BitVector n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftBitVector2 (BitVector n -> BitVector n -> BitVector n
forall (n :: Nat).
KnownNat n =>
BitVector n -> BitVector n -> BitVector n
BitVector.or#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce Term
val
Text
"Clash.Sized.Internal.BitVector.xor#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((BitVector n -> BitVector n -> BitVector n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(BitVector n -> BitVector n -> BitVector n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftBitVector2 (BitVector n -> BitVector n -> BitVector n
forall (n :: Nat).
KnownNat n =>
BitVector n -> BitVector n -> BitVector n
BitVector.xor#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce Term
val
Text
"Clash.Sized.Internal.BitVector.complement#"
| [(Integer, Integer)
i] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
, Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> let (Integer
msk,Integer
val) = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> (Integer, Integer))
-> (Integer, Integer)
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (BitVector n -> Proxy n -> (Integer, Integer)
forall (n :: Nat).
KnownNat n =>
BitVector n -> Proxy n -> (Integer, Integer)
op ((Integer, Integer) -> BitVector n
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
ty Type
nTy Integer
kn Integer
msk Integer
val)
where
op :: KnownNat n => BitVector n -> Proxy n -> (Integer,Integer)
op :: BitVector n -> Proxy n -> (Integer, Integer)
op BitVector n
u Proxy n
_ = BitVector n -> (Integer, Integer)
forall (n :: Nat). BitVector n -> (Integer, Integer)
splitBV (BitVector n -> (Integer, Integer))
-> BitVector n -> (Integer, Integer)
forall a b. (a -> b) -> a -> b
$ BitVector n -> BitVector n
forall (n :: Nat). KnownNat n => BitVector n -> BitVector n
BitVector.complement# BitVector n
u
Text
"Clash.Sized.Internal.BitVector.shiftL#"
| Just (Type
nTy,Integer
kn,(Integer, Integer)
i,Integer
j) <- TyConMap
-> [Type]
-> [Value]
-> Maybe (Type, Integer, (Integer, Integer), Integer)
bitVectorLitIntLit TyConMap
tcm [Type]
tys [Value]
args
-> let (Integer
msk,Integer
val) = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> (Integer, Integer))
-> (Integer, Integer)
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (BitVector n -> Int -> Proxy n -> (Integer, Integer)
forall (n :: Nat).
KnownNat n =>
BitVector n -> Int -> Proxy n -> (Integer, Integer)
op ((Integer, Integer) -> BitVector n
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i) (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
ty Type
nTy Integer
kn Integer
msk Integer
val)
where
op :: KnownNat n => BitVector n -> Int -> Proxy n -> (Integer,Integer)
op :: BitVector n -> Int -> Proxy n -> (Integer, Integer)
op BitVector n
u Int
i Proxy n
_ = BitVector n -> (Integer, Integer)
forall (n :: Nat). BitVector n -> (Integer, Integer)
splitBV (BitVector n -> Int -> BitVector n
forall (n :: Nat). KnownNat n => BitVector n -> Int -> BitVector n
BitVector.shiftL# BitVector n
u Int
i)
Text
"Clash.Sized.Internal.BitVector.shiftR#"
| Just (Type
nTy,Integer
kn,(Integer, Integer)
i,Integer
j) <- TyConMap
-> [Type]
-> [Value]
-> Maybe (Type, Integer, (Integer, Integer), Integer)
bitVectorLitIntLit TyConMap
tcm [Type]
tys [Value]
args
-> let (Integer
msk,Integer
val) = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> (Integer, Integer))
-> (Integer, Integer)
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (BitVector n -> Int -> Proxy n -> (Integer, Integer)
forall (n :: Nat).
KnownNat n =>
BitVector n -> Int -> Proxy n -> (Integer, Integer)
op ((Integer, Integer) -> BitVector n
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i) (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
ty Type
nTy Integer
kn Integer
msk Integer
val)
where
op :: KnownNat n => BitVector n -> Int -> Proxy n -> (Integer,Integer)
op :: BitVector n -> Int -> Proxy n -> (Integer, Integer)
op BitVector n
u Int
i Proxy n
_ = BitVector n -> (Integer, Integer)
forall (n :: Nat). BitVector n -> (Integer, Integer)
splitBV (BitVector n -> Int -> BitVector n
forall (n :: Nat). KnownNat n => BitVector n -> Int -> BitVector n
BitVector.shiftR# BitVector n
u Int
i)
Text
"Clash.Sized.Internal.BitVector.rotateL#"
| Just (Type
nTy,Integer
kn,(Integer, Integer)
i,Integer
j) <- TyConMap
-> [Type]
-> [Value]
-> Maybe (Type, Integer, (Integer, Integer), Integer)
bitVectorLitIntLit TyConMap
tcm [Type]
tys [Value]
args
-> let (Integer
msk,Integer
val) = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> (Integer, Integer))
-> (Integer, Integer)
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (BitVector n -> Int -> Proxy n -> (Integer, Integer)
forall (n :: Nat).
KnownNat n =>
BitVector n -> Int -> Proxy n -> (Integer, Integer)
op ((Integer, Integer) -> BitVector n
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i) (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
ty Type
nTy Integer
kn Integer
msk Integer
val)
where
op :: KnownNat n => BitVector n -> Int -> Proxy n -> (Integer,Integer)
op :: BitVector n -> Int -> Proxy n -> (Integer, Integer)
op BitVector n
u Int
i Proxy n
_ = BitVector n -> (Integer, Integer)
forall (n :: Nat). BitVector n -> (Integer, Integer)
splitBV (BitVector n -> Int -> BitVector n
forall (n :: Nat). KnownNat n => BitVector n -> Int -> BitVector n
BitVector.rotateL# BitVector n
u Int
i)
Text
"Clash.Sized.Internal.BitVector.rotateR#"
| Just (Type
nTy,Integer
kn,(Integer, Integer)
i,Integer
j) <- TyConMap
-> [Type]
-> [Value]
-> Maybe (Type, Integer, (Integer, Integer), Integer)
bitVectorLitIntLit TyConMap
tcm [Type]
tys [Value]
args
-> let (Integer
msk,Integer
val) = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> (Integer, Integer))
-> (Integer, Integer)
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (BitVector n -> Int -> Proxy n -> (Integer, Integer)
forall (n :: Nat).
KnownNat n =>
BitVector n -> Int -> Proxy n -> (Integer, Integer)
op ((Integer, Integer) -> BitVector n
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i) (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
ty Type
nTy Integer
kn Integer
msk Integer
val)
where
op :: KnownNat n => BitVector n -> Int -> Proxy n -> (Integer,Integer)
op :: BitVector n -> Int -> Proxy n -> (Integer, Integer)
op BitVector n
u Int
i Proxy n
_ = BitVector n -> (Integer, Integer)
forall (n :: Nat). BitVector n -> (Integer, Integer)
splitBV (BitVector n -> Int -> BitVector n
forall (n :: Nat). KnownNat n => BitVector n -> Int -> BitVector n
BitVector.rotateR# BitVector n
u Int
i)
Text
"Clash.Sized.Internal.BitVector.truncateB#"
| Type
aTy : [Type]
_ <- [Type]
tys
, Right Integer
ka <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
aTy)
, [(Integer
mski,Integer
i)] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
-> let bitsKeep :: Integer
bitsKeep = (Int -> Integer
forall a. Bits a => Int -> a
bit (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
ka)) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
val :: Integer
val = Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. Integer
bitsKeep
msk :: Integer
msk = Integer
mski Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. Integer
bitsKeep
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
ty Type
aTy Integer
ka Integer
msk Integer
val)
Text
"Clash.Sized.Internal.Index.pack#"
| Type
nTy : [Type]
_ <- [Type]
tys
, Right Integer
_ <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
, [Integer
i] <- [Value] -> [Integer]
indexLiterals' [Value]
args
-> let resTyInfo :: (Type, Type, Integer)
resTyInfo = TyConMap -> Type -> [Type] -> (Type, Type, Integer)
extractTySizeInfo TyConMap
tcm Type
ty [Type]
tys
in Term -> Maybe Machine
reduce ((Type, Type, Integer) -> Integer -> Integer -> Term
mkBitVectorLit' (Type, Type, Integer)
resTyInfo Integer
0 Integer
i)
Text
"Clash.Sized.Internal.Index.unpack#"
| Just (Type
nTy,Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [(Integer
0,Integer
i)] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkIndexLit Type
ty Type
nTy Integer
kn Integer
i)
Text
"Clash.Sized.Internal.Index.eq#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
indexLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
j))
Text
"Clash.Sized.Internal.Index.neq#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
indexLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
/= Integer
j))
Text
"Clash.Sized.Internal.Index.lt#"
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
indexLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
j))
Text
"Clash.Sized.Internal.Index.ge#"
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
indexLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
j))
Text
"Clash.Sized.Internal.Index.gt#"
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
indexLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
j))
Text
"Clash.Sized.Internal.Index.le#"
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
indexLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
j))
Text
"Clash.Sized.Internal.Index.toEnum#"
| [Integer
i] <- [Value] -> [Integer]
intCLiterals' [Value]
args
, Just (Type
nTy, Integer
mb) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkIndexLit Type
ty Type
nTy Integer
mb Integer
i)
Text
"Clash.Sized.Internal.Index.fromEnum#"
| [Integer
i] <- [Value] -> [Integer]
indexLiterals' [Value]
args
-> let resTy :: Type
resTy = TyConMap -> Type -> [Type] -> Type
getResultTy TyConMap
tcm Type
ty [Type]
tys
in Term -> Maybe Machine
reduce (TyConMap -> Integer -> Type -> Term
mkIntCLit TyConMap
tcm Integer
i Type
resTy)
Text
"Clash.Sized.Internal.Index.maxBound#"
| Just (Type
nTy,Integer
mb) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkIndexLit Type
ty Type
nTy Integer
mb (Integer
mb Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1))
Text
"Clash.Sized.Internal.Index.+#"
| Just (Type
nTy,Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [Integer
i,Integer
j] <- [Value] -> [Integer]
indexLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkIndexLit Type
ty Type
nTy Integer
kn (Integer
i Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
j))
Text
"Clash.Sized.Internal.Index.-#"
| Just (Type
nTy,Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [Integer
i,Integer
j] <- [Value] -> [Integer]
indexLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkIndexLit Type
ty Type
nTy Integer
kn (Integer
i Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
j))
Text
"Clash.Sized.Internal.Index.*#"
| Just (Type
nTy,Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [Integer
i,Integer
j] <- [Value] -> [Integer]
indexLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkIndexLit Type
ty Type
nTy Integer
kn (Integer
i Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* Integer
j))
Text
"Clash.Sized.Internal.Index.plus#"
| Type
mTy : Type
nTy : [Type]
_ <- [Type]
tys
, Right Integer
_ <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
mTy)
, Right Integer
_ <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
, Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
indexLiterals [Value]
args
-> let resTyInfo :: (Type, Type, Integer)
resTyInfo = TyConMap -> Type -> [Type] -> (Type, Type, Integer)
extractTySizeInfo TyConMap
tcm Type
ty [Type]
tys
in Term -> Maybe Machine
reduce ((Type, Type, Integer) -> Integer -> Term
mkIndexLit' (Type, Type, Integer)
resTyInfo (Integer
i Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
j))
Text
"Clash.Sized.Internal.Index.minus#"
| Type
mTy : Type
nTy : [Type]
_ <- [Type]
tys
, Right Integer
_ <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
mTy)
, Right Integer
_ <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
, Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
indexLiterals [Value]
args
-> let resTyInfo :: (Type, Type, Integer)
resTyInfo = TyConMap -> Type -> [Type] -> (Type, Type, Integer)
extractTySizeInfo TyConMap
tcm Type
ty [Type]
tys
in Term -> Maybe Machine
reduce ((Type, Type, Integer) -> Integer -> Term
mkIndexLit' (Type, Type, Integer)
resTyInfo (Integer
i Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
j))
Text
"Clash.Sized.Internal.Index.times#"
| Type
mTy : Type
nTy : [Type]
_ <- [Type]
tys
, Right Integer
_ <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
mTy)
, Right Integer
_ <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
, Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
indexLiterals [Value]
args
-> let resTyInfo :: (Type, Type, Integer)
resTyInfo = TyConMap -> Type -> [Type] -> (Type, Type, Integer)
extractTySizeInfo TyConMap
tcm Type
ty [Type]
tys
in Term -> Maybe Machine
reduce ((Type, Type, Integer) -> Integer -> Term
mkIndexLit' (Type, Type, Integer)
resTyInfo (Integer
i Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
* Integer
j))
Text
"Clash.Sized.Internal.Index.quot#"
| Just (Type
nTy,Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
indexLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Type -> Type -> Integer -> Integer -> Term
mkIndexLit Type
ty Type
nTy Integer
kn (Integer
i Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`quot` Integer
j))
Text
"Clash.Sized.Internal.Index.rem#"
| Just (Type
nTy,Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
indexLiterals [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero (Type -> Type -> Integer -> Integer -> Term
mkIndexLit Type
ty Type
nTy Integer
kn (Integer
i Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`rem` Integer
j))
Text
"Clash.Sized.Internal.Index.toInteger#"
| [PrimVal PrimInfo
p [Type]
_ [Value
_, Lit (IntegerLiteral Integer
i)]] <- [Value]
args
, PrimInfo -> Text
primName PrimInfo
p Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== Text
"Clash.Sized.Internal.Index.fromInteger#"
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntegerLiteral Integer
i)
Text
"Clash.Sized.Internal.Index.resize#"
| Just (Type
mTy,Integer
m) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [Integer
i] <- [Value] -> [Integer]
indexLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkIndexLit Type
ty Type
mTy Integer
m Integer
i)
Text
"Clash.Sized.Internal.Signed.size#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
intTcNm [Type]
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
intTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
intTcNm TyConMap
tcm
[DataCon
intCon] = TyCon -> [DataCon]
tyConDataCons TyCon
intTc
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
intCon) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
IntLiteral Integer
kn))])
Text
"Clash.Sized.Internal.Signed.pack#"
| Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [Integer
i] <- [Value] -> [Integer]
signedLiterals' [Value]
args
-> let val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (Signed n -> Proxy n -> Integer
forall (n :: Nat). KnownNat n => Signed n -> Proxy n -> Integer
op (Integer -> Signed n
forall a. Num a => Integer -> a
fromInteger Integer
i))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
ty Type
nTy Integer
kn Integer
0 Integer
val)
where
op :: KnownNat n => Signed n -> Proxy n -> Integer
op :: Signed n -> Proxy n -> Integer
op Signed n
s Proxy n
_ = BitVector n -> Integer
forall a. Integral a => a -> Integer
toInteger (Signed n -> BitVector n
forall (n :: Nat). KnownNat n => Signed n -> BitVector n
Signed.pack# Signed n
s)
Text
"Clash.Sized.Internal.Signed.unpack#"
| Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [(Integer
0,Integer
i)] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
-> let val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (BitVector n -> Proxy n -> Integer
forall (n :: Nat). KnownNat n => BitVector n -> Proxy n -> Integer
op (Integer -> BitVector n
forall a. Num a => Integer -> a
fromInteger Integer
i))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
ty Type
nTy Integer
kn Integer
val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op :: BitVector n -> Proxy n -> Integer
op BitVector n
s Proxy n
_ = Signed n -> Integer
forall a. Integral a => a -> Integer
toInteger (BitVector n -> Signed n
forall (n :: Nat). KnownNat n => BitVector n -> Signed n
Signed.unpack# BitVector n
s)
Text
"Clash.Sized.Internal.Signed.eq#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
signedLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
j))
Text
"Clash.Sized.Internal.Signed.neq#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
signedLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
/= Integer
j))
Text
"Clash.Sized.Internal.Signed.lt#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
signedLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
j))
Text
"Clash.Sized.Internal.Signed.ge#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
signedLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
j))
Text
"Clash.Sized.Internal.Signed.gt#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
signedLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
j))
Text
"Clash.Sized.Internal.Signed.le#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
signedLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
j))
Text
"Clash.Sized.Internal.Signed.toEnum#"
| [Integer
i] <- [Value] -> [Integer]
intCLiterals' [Value]
args
, Just (Type
litTy, Integer
mb) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
ty Type
litTy Integer
mb Integer
i)
Text
"Clash.Sized.Internal.Signed.fromEnum#"
| [Integer
i] <- [Value] -> [Integer]
signedLiterals' [Value]
args
-> let resTy :: Type
resTy = TyConMap -> Type -> [Type] -> Type
getResultTy TyConMap
tcm Type
ty [Type]
tys
in Term -> Maybe Machine
reduce (TyConMap -> Integer -> Type -> Term
mkIntCLit TyConMap
tcm Integer
i Type
resTy)
Text
"Clash.Sized.Internal.Signed.minBound#"
| Just (Type
litTy,Integer
mb) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> let minB :: Integer
minB = Integer -> Integer
forall a. Num a => a -> a
negate (Integer
2 Integer -> Integer -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^ (Integer
mb Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
ty Type
litTy Integer
mb Integer
minB)
Text
"Clash.Sized.Internal.Signed.maxBound#"
| Just (Type
litTy,Integer
mb) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> let maxB :: Integer
maxB = (Integer
2 Integer -> Integer -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^ (Integer
mb Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
ty Type
litTy Integer
mb Integer
maxB)
Text
"Clash.Sized.Internal.Signed.+#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((Signed n -> Signed n -> Signed n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(Signed n -> Signed n -> Signed n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftSigned2 Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
(Signed.+#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce (Term
val)
Text
"Clash.Sized.Internal.Signed.-#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((Signed n -> Signed n -> Signed n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(Signed n -> Signed n -> Signed n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftSigned2 Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
(Signed.-#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce (Term
val)
Text
"Clash.Sized.Internal.Signed.*#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((Signed n -> Signed n -> Signed n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(Signed n -> Signed n -> Signed n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftSigned2 Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
(Signed.*#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce (Term
val)
Text
"Clash.Sized.Internal.Signed.negate#"
| Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [Integer
i] <- [Value] -> [Integer]
signedLiterals' [Value]
args
-> let val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (Signed n -> Proxy n -> Integer
forall (n :: Nat). KnownNat n => Signed n -> Proxy n -> Integer
op (Integer -> Signed n
forall a. Num a => Integer -> a
fromInteger Integer
i))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
ty Type
nTy Integer
kn Integer
val)
where
op :: KnownNat n => Signed n -> Proxy n -> Integer
op :: Signed n -> Proxy n -> Integer
op Signed n
s Proxy n
_ = Signed n -> Integer
forall a. Integral a => a -> Integer
toInteger (Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n
Signed.negate# Signed n
s)
Text
"Clash.Sized.Internal.Signed.abs#"
| Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [Integer
i] <- [Value] -> [Integer]
signedLiterals' [Value]
args
-> let val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (Signed n -> Proxy n -> Integer
forall (n :: Nat). KnownNat n => Signed n -> Proxy n -> Integer
op (Integer -> Signed n
forall a. Num a => Integer -> a
fromInteger Integer
i))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
ty Type
nTy Integer
kn Integer
val)
where
op :: KnownNat n => Signed n -> Proxy n -> Integer
op :: Signed n -> Proxy n -> Integer
op Signed n
s Proxy n
_ = Signed n -> Integer
forall a. Integral a => a -> Integer
toInteger (Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n
Signed.abs# Signed n
s)
Text
"Clash.Sized.Internal.Signed.plus#"
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
signedLiterals [Value]
args
-> let ty' :: Type
ty' = HasCallStack => TyConMap -> Type -> [Type] -> Type
TyConMap -> Type -> [Type] -> Type
piResultTys TyConMap
tcm Type
ty [Type]
tys
([Either TyVar Type]
_,Type
resTy) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty'
(TyConApp TyConName
_ [Type
resSizeTy]) = Type -> TypeView
tyView Type
resTy
Right Integer
resSizeInt = Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
resSizeTy)
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
resTy Type
resSizeTy Integer
resSizeInt (Integer
iInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
+Integer
j))
Text
"Clash.Sized.Internal.Signed.minus#"
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
signedLiterals [Value]
args
-> let ty' :: Type
ty' = HasCallStack => TyConMap -> Type -> [Type] -> Type
TyConMap -> Type -> [Type] -> Type
piResultTys TyConMap
tcm Type
ty [Type]
tys
([Either TyVar Type]
_,Type
resTy) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty'
(TyConApp TyConName
_ [Type
resSizeTy]) = Type -> TypeView
tyView Type
resTy
Right Integer
resSizeInt = Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
resSizeTy)
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
resTy Type
resSizeTy Integer
resSizeInt (Integer
iInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
j))
Text
"Clash.Sized.Internal.Signed.times#"
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
signedLiterals [Value]
args
-> let ty' :: Type
ty' = HasCallStack => TyConMap -> Type -> [Type] -> Type
TyConMap -> Type -> [Type] -> Type
piResultTys TyConMap
tcm Type
ty [Type]
tys
([Either TyVar Type]
_,Type
resTy) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty'
(TyConApp TyConName
_ [Type
resSizeTy]) = Type -> TypeView
tyView Type
resTy
Right Integer
resSizeInt = Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
resSizeTy)
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
resTy Type
resSizeTy Integer
resSizeInt (Integer
iInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
j))
Text
"Clash.Sized.Internal.Signed.quot#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((Signed n -> Signed n -> Signed n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(Signed n -> Signed n -> Signed n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftSigned2 (Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
Signed.quot#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero Term
val
Text
"Clash.Sized.Internal.Signed.rem#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((Signed n -> Signed n -> Signed n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(Signed n -> Signed n -> Signed n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftSigned2 (Signed n -> Signed n -> Signed n
forall (n :: Nat). Signed n -> Signed n -> Signed n
Signed.rem#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero Term
val
Text
"Clash.Sized.Internal.Signed.div#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((Signed n -> Signed n -> Signed n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(Signed n -> Signed n -> Signed n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftSigned2 (Signed n -> Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n -> Signed n
Signed.div#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero Term
val
Text
"Clash.Sized.Internal.Signed.mod#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((Signed n -> Signed n -> Signed n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(Signed n -> Signed n -> Signed n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftSigned2 (Signed n -> Signed n -> Signed n
forall (n :: Nat). Signed n -> Signed n -> Signed n
Signed.mod#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero Term
val
Text
"Clash.Sized.Internal.Signed.toInteger#"
| [PrimVal PrimInfo
p [Type]
_ [Value
_, Lit (IntegerLiteral Integer
i)]] <- [Value]
args
, PrimInfo -> Text
primName PrimInfo
p Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== Text
"Clash.Sized.Internal.Signed.fromInteger#"
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntegerLiteral Integer
i)
Text
"Clash.Sized.Internal.Signed.and#"
| [Integer
i,Integer
j] <- [Value] -> [Integer]
signedLiterals' [Value]
args
, Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
ty Type
nTy Integer
kn (Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. Integer
j))
Text
"Clash.Sized.Internal.Signed.or#"
| [Integer
i,Integer
j] <- [Value] -> [Integer]
signedLiterals' [Value]
args
, Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
ty Type
nTy Integer
kn (Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.|. Integer
j))
Text
"Clash.Sized.Internal.Signed.xor#"
| [Integer
i,Integer
j] <- [Value] -> [Integer]
signedLiterals' [Value]
args
, Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
ty Type
nTy Integer
kn (Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
`xor` Integer
j))
Text
"Clash.Sized.Internal.Signed.complement#"
| [Integer
i] <- [Value] -> [Integer]
signedLiterals' [Value]
args
, Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> let val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (Signed n -> Proxy n -> Integer
forall (n :: Nat). KnownNat n => Signed n -> Proxy n -> Integer
op (Integer -> Signed n
forall a. Num a => Integer -> a
fromInteger Integer
i))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
ty Type
nTy Integer
kn Integer
val)
where
op :: KnownNat n => Signed n -> Proxy n -> Integer
op :: Signed n -> Proxy n -> Integer
op Signed n
u Proxy n
_ = Signed n -> Integer
forall a. Integral a => a -> Integer
toInteger (Signed n -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Signed n
Signed.complement# Signed n
u)
Text
"Clash.Sized.Internal.Signed.shiftL#"
| Just (Type
nTy,Integer
kn,Integer
i,Integer
j) <- TyConMap
-> [Type] -> [Value] -> Maybe (Type, Integer, Integer, Integer)
signedLitIntLit TyConMap
tcm [Type]
tys [Value]
args
-> let val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (Signed n -> Int -> Proxy n -> Integer
forall (n :: Nat).
KnownNat n =>
Signed n -> Int -> Proxy n -> Integer
op (Integer -> Signed n
forall a. Num a => Integer -> a
fromInteger Integer
i) (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
ty Type
nTy Integer
kn Integer
val)
where
op :: KnownNat n => Signed n -> Int -> Proxy n -> Integer
op :: Signed n -> Int -> Proxy n -> Integer
op Signed n
u Int
i Proxy n
_ = Signed n -> Integer
forall a. Integral a => a -> Integer
toInteger (Signed n -> Int -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Int -> Signed n
Signed.shiftL# Signed n
u Int
i)
Text
"Clash.Sized.Internal.Signed.shiftR#"
| Just (Type
nTy,Integer
kn,Integer
i,Integer
j) <- TyConMap
-> [Type] -> [Value] -> Maybe (Type, Integer, Integer, Integer)
signedLitIntLit TyConMap
tcm [Type]
tys [Value]
args
-> let val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (Signed n -> Int -> Proxy n -> Integer
forall (n :: Nat).
KnownNat n =>
Signed n -> Int -> Proxy n -> Integer
op (Integer -> Signed n
forall a. Num a => Integer -> a
fromInteger Integer
i) (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
ty Type
nTy Integer
kn Integer
val)
where
op :: KnownNat n => Signed n -> Int -> Proxy n -> Integer
op :: Signed n -> Int -> Proxy n -> Integer
op Signed n
u Int
i Proxy n
_ = Signed n -> Integer
forall a. Integral a => a -> Integer
toInteger (Signed n -> Int -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Int -> Signed n
Signed.shiftR# Signed n
u Int
i)
Text
"Clash.Sized.Internal.Signed.rotateL#"
| Just (Type
nTy,Integer
kn,Integer
i,Integer
j) <- TyConMap
-> [Type] -> [Value] -> Maybe (Type, Integer, Integer, Integer)
signedLitIntLit TyConMap
tcm [Type]
tys [Value]
args
-> let val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (Signed n -> Int -> Proxy n -> Integer
forall (n :: Nat).
KnownNat n =>
Signed n -> Int -> Proxy n -> Integer
op (Integer -> Signed n
forall a. Num a => Integer -> a
fromInteger Integer
i) (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
ty Type
nTy Integer
kn Integer
val)
where
op :: KnownNat n => Signed n -> Int -> Proxy n -> Integer
op :: Signed n -> Int -> Proxy n -> Integer
op Signed n
u Int
i Proxy n
_ = Signed n -> Integer
forall a. Integral a => a -> Integer
toInteger (Signed n -> Int -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Int -> Signed n
Signed.rotateL# Signed n
u Int
i)
Text
"Clash.Sized.Internal.Signed.rotateR#"
| Just (Type
nTy,Integer
kn,Integer
i,Integer
j) <- TyConMap
-> [Type] -> [Value] -> Maybe (Type, Integer, Integer, Integer)
signedLitIntLit TyConMap
tcm [Type]
tys [Value]
args
-> let val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (Signed n -> Int -> Proxy n -> Integer
forall (n :: Nat).
KnownNat n =>
Signed n -> Int -> Proxy n -> Integer
op (Integer -> Signed n
forall a. Num a => Integer -> a
fromInteger Integer
i) (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
ty Type
nTy Integer
kn Integer
val)
where
op :: KnownNat n => Signed n -> Int -> Proxy n -> Integer
op :: Signed n -> Int -> Proxy n -> Integer
op Signed n
u Int
i Proxy n
_ = Signed n -> Integer
forall a. Integral a => a -> Integer
toInteger (Signed n -> Int -> Signed n
forall (n :: Nat). KnownNat n => Signed n -> Int -> Signed n
Signed.rotateR# Signed n
u Int
i)
Text
"Clash.Sized.Internal.Signed.resize#"
| Type
mTy : Type
nTy : [Type]
_ <- [Type]
tys
, Right Integer
mInt <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
mTy)
, Right Integer
nInt <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
, [Integer
i] <- [Value] -> [Integer]
signedLiterals' [Value]
args
-> let val :: Integer
val | Integer
nInt Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
mInt = Integer
extended
| Bool
otherwise = Integer
truncated
extended :: Integer
extended = Integer
i
mask :: Integer
mask = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Integer
mInt Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)
i' :: Integer
i' = Integer
i Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`mod` Integer
mask
truncated :: Integer
truncated = if Integer -> Int -> Bool
forall a. Bits a => a -> Int -> Bool
testBit Integer
i (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
nInt Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)
then (Integer
i' Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
mask)
else Integer
i'
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
ty Type
mTy Integer
mInt Integer
val)
Text
"Clash.Sized.Internal.Signed.truncateB#"
| Just (Type
mTy, Integer
km) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [Integer
i] <- [Value] -> [Integer]
signedLiterals' [Value]
args
-> let bitsKeep :: Integer
bitsKeep = (Int -> Integer
forall a. Bits a => Int -> a
bit (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
km)) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
val :: Integer
val = Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. Integer
bitsKeep
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkSignedLit Type
ty Type
mTy Integer
km Integer
val)
Text
"Clash.Sized.Internal.Unsigned.size#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> let ([Either TyVar Type]
_,Type
ty') = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(TyConApp TyConName
intTcNm [Type]
_) = Type -> TypeView
tyView Type
ty'
(Just TyCon
intTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
intTcNm TyConMap
tcm
[DataCon
intCon] = TyCon -> [DataCon]
tyConDataCons TyCon
intTc
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
intCon) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
IntLiteral Integer
kn))])
Text
"Clash.Sized.Internal.Unsigned.pack#"
| Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [Integer
i] <- [Value] -> [Integer]
unsignedLiterals' [Value]
args
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
ty Type
nTy Integer
kn Integer
0 Integer
i)
Text
"Clash.Sized.Internal.Unsigned.unpack#"
| Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [(Integer, Integer)
i] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
-> let val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (BitVector n -> Proxy n -> Integer
forall (n :: Nat). KnownNat n => BitVector n -> Proxy n -> Integer
op ((Integer, Integer) -> BitVector n
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit Type
ty Type
nTy Integer
kn Integer
val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op :: BitVector n -> Proxy n -> Integer
op BitVector n
u Proxy n
_ = Unsigned n -> Integer
forall a. Integral a => a -> Integer
toInteger (BitVector n -> Unsigned n
forall (n :: Nat). KnownNat n => BitVector n -> Unsigned n
Unsigned.unpack# BitVector n
u)
Text
"Clash.Sized.Internal.Unsigned.eq#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
unsignedLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
j))
Text
"Clash.Sized.Internal.Unsigned.neq#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
unsignedLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
/= Integer
j))
Text
"Clash.Sized.Internal.Unsigned.lt#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
unsignedLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
j))
Text
"Clash.Sized.Internal.Unsigned.ge#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
unsignedLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
j))
Text
"Clash.Sized.Internal.Unsigned.gt#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
unsignedLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
j))
Text
"Clash.Sized.Internal.Unsigned.le#" | Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
unsignedLiterals [Value]
args
-> Term -> Maybe Machine
reduce (TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty (Integer
i Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
j))
Text
"Clash.Sized.Internal.Unsigned.toEnum#"
| [Integer
i] <- [Value] -> [Integer]
intCLiterals' [Value]
args
, Just (Type
litTy, Integer
mb) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit Type
ty Type
litTy Integer
mb Integer
i)
Text
"Clash.Sized.Internal.Unsigned.fromEnum#"
| [Integer
i] <- [Value] -> [Integer]
unsignedLiterals' [Value]
args
-> let resTy :: Type
resTy = TyConMap -> Type -> [Type] -> Type
getResultTy TyConMap
tcm Type
ty [Type]
tys
in Term -> Maybe Machine
reduce (TyConMap -> Integer -> Type -> Term
mkIntCLit TyConMap
tcm Integer
i Type
resTy)
Text
"Clash.Sized.Internal.Unsigned.minBound#"
| Just (Type
nTy,Integer
len) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit Type
ty Type
nTy Integer
len Integer
0)
Text
"Clash.Sized.Internal.Unsigned.maxBound#"
| Just (Type
litTy,Integer
mb) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> let maxB :: Integer
maxB = (Integer
2 Integer -> Integer -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^ Integer
mb) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit Type
ty Type
litTy Integer
mb Integer
maxB)
Text
"Clash.Sized.Internal.Unsigned.+#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((Unsigned n -> Unsigned n -> Unsigned n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(Unsigned n -> Unsigned n -> Unsigned n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftUnsigned2 Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Unsigned n -> Unsigned n
(Unsigned.+#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce Term
val
Text
"Clash.Sized.Internal.Unsigned.-#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((Unsigned n -> Unsigned n -> Unsigned n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(Unsigned n -> Unsigned n -> Unsigned n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftUnsigned2 Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Unsigned n -> Unsigned n
(Unsigned.-#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce Term
val
Text
"Clash.Sized.Internal.Unsigned.*#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((Unsigned n -> Unsigned n -> Unsigned n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(Unsigned n -> Unsigned n -> Unsigned n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftUnsigned2 Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Unsigned n -> Unsigned n
(Unsigned.*#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce Term
val
Text
"Clash.Sized.Internal.Unsigned.negate#"
| Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [Integer
i] <- [Value] -> [Integer]
unsignedLiterals' [Value]
args
-> let val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (Unsigned n -> Proxy n -> Integer
forall (n :: Nat). KnownNat n => Unsigned n -> Proxy n -> Integer
op (Integer -> Unsigned n
forall a. Num a => Integer -> a
fromInteger Integer
i))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit Type
ty Type
nTy Integer
kn Integer
val)
where
op :: KnownNat n => Unsigned n -> Proxy n -> Integer
op :: Unsigned n -> Proxy n -> Integer
op Unsigned n
u Proxy n
_ = Unsigned n -> Integer
forall a. Integral a => a -> Integer
toInteger (Unsigned n -> Unsigned n
forall (n :: Nat). KnownNat n => Unsigned n -> Unsigned n
Unsigned.negate# Unsigned n
u)
Text
"Clash.Sized.Internal.Unsigned.plus#"
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
unsignedLiterals [Value]
args
-> let ty' :: Type
ty' = HasCallStack => TyConMap -> Type -> [Type] -> Type
TyConMap -> Type -> [Type] -> Type
piResultTys TyConMap
tcm Type
ty [Type]
tys
([Either TyVar Type]
_,Type
resTy) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty'
(TyConApp TyConName
_ [Type
resSizeTy]) = Type -> TypeView
tyView Type
resTy
Right Integer
resSizeInt = Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
resSizeTy)
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit Type
resTy Type
resSizeTy Integer
resSizeInt (Integer
iInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
+Integer
j))
Text
"Clash.Sized.Internal.Unsigned.minus#"
| [Integer
i,Integer
j] <- [Value] -> [Integer]
unsignedLiterals' [Value]
args
-> let ty' :: Type
ty' = HasCallStack => TyConMap -> Type -> [Type] -> Type
TyConMap -> Type -> [Type] -> Type
piResultTys TyConMap
tcm Type
ty [Type]
tys
([Either TyVar Type]
_,Type
resTy) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty'
(TyConApp TyConName
_ [Type
resSizeTy]) = Type -> TypeView
tyView Type
resTy
Right Integer
resSizeInt = Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
resSizeTy)
val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
resSizeInt ((Unsigned n -> Unsigned n -> Unsigned n)
-> Integer -> Integer -> Proxy n -> Integer
forall (n :: Nat) (sized :: Nat -> Type).
(KnownNat n, Integral (sized n)) =>
(sized n -> sized n -> sized n)
-> Integer -> Integer -> Proxy n -> Integer
runSizedF Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Unsigned n -> Unsigned n
(Unsigned.-#) Integer
i Integer
j)
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit Type
resTy Type
resSizeTy Integer
resSizeInt Integer
val)
Text
"Clash.Sized.Internal.Unsigned.times#"
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
unsignedLiterals [Value]
args
-> let ty' :: Type
ty' = HasCallStack => TyConMap -> Type -> [Type] -> Type
TyConMap -> Type -> [Type] -> Type
piResultTys TyConMap
tcm Type
ty [Type]
tys
([Either TyVar Type]
_,Type
resTy) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty'
(TyConApp TyConName
_ [Type
resSizeTy]) = Type -> TypeView
tyView Type
resTy
Right Integer
resSizeInt = Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
resSizeTy)
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit Type
resTy Type
resSizeTy Integer
resSizeInt (Integer
iInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
j))
Text
"Clash.Sized.Internal.Unsigned.quot#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((Unsigned n -> Unsigned n -> Unsigned n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(Unsigned n -> Unsigned n -> Unsigned n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftUnsigned2 (Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat). Unsigned n -> Unsigned n -> Unsigned n
Unsigned.quot#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero Term
val
Text
"Clash.Sized.Internal.Unsigned.rem#"
| Just (Type
_, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, Just Term
val <- Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Maybe Term)
-> Maybe Term
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn ((Unsigned n -> Unsigned n -> Unsigned n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
forall (n :: Nat).
KnownNat n =>
(Unsigned n -> Unsigned n -> Unsigned n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftUnsigned2 (Unsigned n -> Unsigned n -> Unsigned n
forall (n :: Nat). Unsigned n -> Unsigned n -> Unsigned n
Unsigned.rem#) Type
ty TyConMap
tcm [Type]
tys [Value]
args)
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Term -> Term
catchDivByZero Term
val
Text
"Clash.Sized.Internal.Unsigned.toInteger#"
| [PrimVal PrimInfo
p [Type]
_ [Value
_, Lit (IntegerLiteral Integer
i)]] <- [Value]
args
, PrimInfo -> Text
primName PrimInfo
p Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== Text
"Clash.Sized.Internal.Unsigned.fromInteger#"
-> Term -> Maybe Machine
reduce (Integer -> Term
integerToIntegerLiteral Integer
i)
Text
"Clash.Sized.Internal.Unsigned.and#"
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
unsignedLiterals [Value]
args
, Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit Type
ty Type
nTy Integer
kn (Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. Integer
j))
Text
"Clash.Sized.Internal.Unsigned.or#"
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
unsignedLiterals [Value]
args
, Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit Type
ty Type
nTy Integer
kn (Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.|. Integer
j))
Text
"Clash.Sized.Internal.Unsigned.xor#"
| Just (Integer
i,Integer
j) <- [Value] -> Maybe (Integer, Integer)
unsignedLiterals [Value]
args
, Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit Type
ty Type
nTy Integer
kn (Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
`xor` Integer
j))
Text
"Clash.Sized.Internal.Unsigned.complement#"
| [Integer
i] <- [Value] -> [Integer]
unsignedLiterals' [Value]
args
, Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
-> let val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (Unsigned n -> Proxy n -> Integer
forall (n :: Nat). KnownNat n => Unsigned n -> Proxy n -> Integer
op (Integer -> Unsigned n
forall a. Num a => Integer -> a
fromInteger Integer
i))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit Type
ty Type
nTy Integer
kn Integer
val)
where
op :: KnownNat n => Unsigned n -> Proxy n -> Integer
op :: Unsigned n -> Proxy n -> Integer
op Unsigned n
u Proxy n
_ = Unsigned n -> Integer
forall a. Integral a => a -> Integer
toInteger (Unsigned n -> Unsigned n
forall (n :: Nat). KnownNat n => Unsigned n -> Unsigned n
Unsigned.complement# Unsigned n
u)
Text
"Clash.Sized.Internal.Unsigned.shiftL#"
| Just (Type
nTy,Integer
kn,Integer
i,Integer
j) <- TyConMap
-> [Type] -> [Value] -> Maybe (Type, Integer, Integer, Integer)
unsignedLitIntLit TyConMap
tcm [Type]
tys [Value]
args
-> let val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (Unsigned n -> Int -> Proxy n -> Integer
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Int -> Proxy n -> Integer
op (Integer -> Unsigned n
forall a. Num a => Integer -> a
fromInteger Integer
i) (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit Type
ty Type
nTy Integer
kn Integer
val)
where
op :: KnownNat n => Unsigned n -> Int -> Proxy n -> Integer
op :: Unsigned n -> Int -> Proxy n -> Integer
op Unsigned n
u Int
i Proxy n
_ = Unsigned n -> Integer
forall a. Integral a => a -> Integer
toInteger (Unsigned n -> Int -> Unsigned n
forall (n :: Nat). KnownNat n => Unsigned n -> Int -> Unsigned n
Unsigned.shiftL# Unsigned n
u Int
i)
Text
"Clash.Sized.Internal.Unsigned.shiftR#"
| Just (Type
nTy,Integer
kn,Integer
i,Integer
j) <- TyConMap
-> [Type] -> [Value] -> Maybe (Type, Integer, Integer, Integer)
unsignedLitIntLit TyConMap
tcm [Type]
tys [Value]
args
-> let val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (Unsigned n -> Int -> Proxy n -> Integer
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Int -> Proxy n -> Integer
op (Integer -> Unsigned n
forall a. Num a => Integer -> a
fromInteger Integer
i) (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit Type
ty Type
nTy Integer
kn Integer
val)
where
op :: KnownNat n => Unsigned n -> Int -> Proxy n -> Integer
op :: Unsigned n -> Int -> Proxy n -> Integer
op Unsigned n
u Int
i Proxy n
_ = Unsigned n -> Integer
forall a. Integral a => a -> Integer
toInteger (Unsigned n -> Int -> Unsigned n
forall (n :: Nat). KnownNat n => Unsigned n -> Int -> Unsigned n
Unsigned.shiftR# Unsigned n
u Int
i)
Text
"Clash.Sized.Internal.Unsigned.rotateL#"
| Just (Type
nTy,Integer
kn,Integer
i,Integer
j) <- TyConMap
-> [Type] -> [Value] -> Maybe (Type, Integer, Integer, Integer)
unsignedLitIntLit TyConMap
tcm [Type]
tys [Value]
args
-> let val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (Unsigned n -> Int -> Proxy n -> Integer
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Int -> Proxy n -> Integer
op (Integer -> Unsigned n
forall a. Num a => Integer -> a
fromInteger Integer
i) (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit Type
ty Type
nTy Integer
kn Integer
val)
where
op :: KnownNat n => Unsigned n -> Int -> Proxy n -> Integer
op :: Unsigned n -> Int -> Proxy n -> Integer
op Unsigned n
u Int
i Proxy n
_ = Unsigned n -> Integer
forall a. Integral a => a -> Integer
toInteger (Unsigned n -> Int -> Unsigned n
forall (n :: Nat). KnownNat n => Unsigned n -> Int -> Unsigned n
Unsigned.rotateL# Unsigned n
u Int
i)
Text
"Clash.Sized.Internal.Unsigned.rotateR#"
| Just (Type
nTy,Integer
kn,Integer
i,Integer
j) <- TyConMap
-> [Type] -> [Value] -> Maybe (Type, Integer, Integer, Integer)
unsignedLitIntLit TyConMap
tcm [Type]
tys [Value]
args
-> let val :: Integer
val = Integer
-> (forall (n :: Nat). KnownNat n => Proxy n -> Integer) -> Integer
forall r.
Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r
reifyNat Integer
kn (Unsigned n -> Int -> Proxy n -> Integer
forall (n :: Nat).
KnownNat n =>
Unsigned n -> Int -> Proxy n -> Integer
op (Integer -> Unsigned n
forall a. Num a => Integer -> a
fromInteger Integer
i) (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
j))
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit Type
ty Type
nTy Integer
kn Integer
val)
where
op :: KnownNat n => Unsigned n -> Int -> Proxy n -> Integer
op :: Unsigned n -> Int -> Proxy n -> Integer
op Unsigned n
u Int
i Proxy n
_ = Unsigned n -> Integer
forall a. Integral a => a -> Integer
toInteger (Unsigned n -> Int -> Unsigned n
forall (n :: Nat). KnownNat n => Unsigned n -> Int -> Unsigned n
Unsigned.rotateR# Unsigned n
u Int
i)
Text
"Clash.Sized.Internal.Unsigned.resize#"
| Type
_ : Type
mTy : [Type]
_ <- [Type]
tys
, Right Integer
km <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
mTy)
, [Integer
i] <- [Value] -> [Integer]
unsignedLiterals' [Value]
args
-> let bitsKeep :: Integer
bitsKeep = (Int -> Integer
forall a. Bits a => Int -> a
bit (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
km)) Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1
val :: Integer
val = Integer
i Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. Integer
bitsKeep
in Term -> Maybe Machine
reduce (Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit Type
ty Type
mTy Integer
km Integer
val)
Text
"Clash.Sized.Internal.Unsigned.unsignedToWord"
| Bool
isSubj
, [Integer
a] <- [Value] -> [Integer]
unsignedLiterals' [Value]
args
-> let b :: Word
b = Unsigned 64 -> Word
Unsigned.unsignedToWord (Natural -> Unsigned 64
forall (n :: Nat). Natural -> Unsigned n
U (Integer -> Natural
forall a. Num a => Integer -> a
fromInteger Integer
a))
([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
wordTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
wordTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
wordTcNm TyConMap
tcm
[DataCon
wordDc] = TyCon -> [DataCon]
tyConDataCons TyCon
wordTc
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
wordDc) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
WordLiteral (Word -> Integer
forall a. Integral a => a -> Integer
toInteger Word
b)))])
Text
"Clash.Sized.Internal.Unsigned.unsigned8toWord8"
| Bool
isSubj
, [Integer
a] <- [Value] -> [Integer]
unsignedLiterals' [Value]
args
-> let b :: Word8
b = Unsigned 8 -> Word8
Unsigned.unsigned8toWord8 (Natural -> Unsigned 8
forall (n :: Nat). Natural -> Unsigned n
U (Integer -> Natural
forall a. Num a => Integer -> a
fromInteger Integer
a))
([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
wordTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
wordTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
wordTcNm TyConMap
tcm
[DataCon
wordDc] = TyCon -> [DataCon]
tyConDataCons TyCon
wordTc
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
wordDc) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
WordLiteral (Word8 -> Integer
forall a. Integral a => a -> Integer
toInteger Word8
b)))])
Text
"Clash.Sized.Internal.Unsigned.unsigned16toWord16"
| Bool
isSubj
, [Integer
a] <- [Value] -> [Integer]
unsignedLiterals' [Value]
args
-> let b :: Word16
b = Unsigned 16 -> Word16
Unsigned.unsigned16toWord16 (Natural -> Unsigned 16
forall (n :: Nat). Natural -> Unsigned n
U (Integer -> Natural
forall a. Num a => Integer -> a
fromInteger Integer
a))
([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
wordTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
wordTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
wordTcNm TyConMap
tcm
[DataCon
wordDc] = TyCon -> [DataCon]
tyConDataCons TyCon
wordTc
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
wordDc) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
WordLiteral (Word16 -> Integer
forall a. Integral a => a -> Integer
toInteger Word16
b)))])
Text
"Clash.Sized.Internal.Unsigned.unsigned32toWord32"
| Bool
isSubj
, [Integer
a] <- [Value] -> [Integer]
unsignedLiterals' [Value]
args
-> let b :: Word32
b = Unsigned 32 -> Word32
Unsigned.unsigned32toWord32 (Natural -> Unsigned 32
forall (n :: Nat). Natural -> Unsigned n
U (Integer -> Natural
forall a. Num a => Integer -> a
fromInteger Integer
a))
([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
wordTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
wordTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
wordTcNm TyConMap
tcm
[DataCon
wordDc] = TyCon -> [DataCon]
tyConDataCons TyCon
wordTc
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
wordDc) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
WordLiteral (Word32 -> Integer
forall a. Integral a => a -> Integer
toInteger Word32
b)))])
Text
"Clash.Annotations.BitRepresentation.Deriving.dontApplyInHDL"
| Bool
isSubj
, Value
f : Value
a : [Value]
_ <- [Value]
args
-> Term -> Maybe Machine
reduceWHNF (Term -> [Either Term Type] -> Term
mkApps (Value -> Term
valToTerm Value
f) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
a)])
Text
"Clash.Sized.RTree.textract"
| Bool
isSubj
, [DC DataCon
_ [Either Term Type]
tArgs] <- [Value]
args
-> Term -> Maybe Machine
reduceWHNF ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
tArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)
Text
"Clash.Sized.RTree.tsplit"
| Bool
isSubj
, Type
dTy : Type
aTy : [Type]
_ <- [Type]
tys
, [DC DataCon
_ [Either Term Type]
tArgs] <- [Value]
args
, ([Either TyVar Type]
tyArgs,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm [Type]
_) <- Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
, TyConApp TyConName
treeTcNm [Type]
_ <- Type -> TypeView
tyView ([Either TyVar Type] -> [Type]
forall a b. [Either a b] -> [b]
Either.rights [Either TyVar Type]
tyArgs [Type] -> Int -> Type
forall a. [a] -> Int -> a
!! Int
0)
-> let (Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (TyConName -> [Type] -> Type
mkTyConApp TyConName
treeTcNm [Type
dTy,Type
aTy])
,Type -> Either Term Type
forall a b. b -> Either a b
Right (TyConName -> [Type] -> Type
mkTyConApp TyConName
treeTcNm [Type
dTy,Type
aTy])
,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
tArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)
,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
tArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)
]
Text
"Clash.Sized.RTree.tdfold"
| Bool
isSubj
, Type
pTy : Type
kTy : Type
aTy : [Type]
_ <- [Type]
tys
, Value
_ : Value
p : Value
f : Value
g : Value
ts : [Value]
_ <- [Value]
args
, DC DataCon
_ [Either Term Type]
tArgs <- Value
ts
, Right Integer
k' <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
kTy)
-> case Integer
k' of
Integer
0 -> Term -> Maybe Machine
reduceWHNF (Term -> [Either Term Type] -> Term
mkApps (Value -> Term
valToTerm Value
f) [Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
tArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)])
Integer
_ -> let k'ty :: Type
k'ty = LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
k'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1))
([Either TyVar Type]
tyArgs,Type
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
([Either TyVar Type]
tyArgs',Type
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy ([Either TyVar Type] -> [Type]
forall a b. [Either a b] -> [b]
Either.rights [Either TyVar Type]
tyArgs [Type] -> Int -> Type
forall a. [a] -> Int -> a
!! Int
3)
TyConApp TyConName
snatTcNm [Type]
_ = Type -> TypeView
tyView ([Either TyVar Type] -> [Type]
forall a b. [Either a b] -> [b]
Either.rights [Either TyVar Type]
tyArgs' [Type] -> Int -> Type
forall a. [a] -> Int -> a
!! Int
0)
Just TyCon
snatTc = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
snatTcNm TyConMap
tcm
[DataCon
snatDc] = TyCon -> [DataCon]
tyConDataCons TyCon
snatTc
in Term -> Maybe Machine
reduceWHNF (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (Value -> Term
valToTerm Value
g)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
k'ty
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
snatDc)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
k'ty
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
k'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))])
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
pTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
k'ty
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
k'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
p)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
f)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
g)
,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
tArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)
])
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
pTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
k'ty
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
k'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
p)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
f)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
g)
,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
tArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)
])
]
Text
"Clash.Sized.RTree.treplicate"
| Bool
isSubj
, let ty' :: Type
ty' = HasCallStack => TyConMap -> Type -> [Type] -> Type
TyConMap -> Type -> [Type] -> Type
piResultTys TyConMap
tcm Type
ty [Type]
tys
, ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
treeTcNm [Type
lenTy,Type
argTy]) <- Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty'
, Right Integer
len <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
lenTy)
-> let (Just TyCon
treeTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
treeTcNm TyConMap
tcm
[DataCon
lrCon,DataCon
brCon] = TyCon -> [DataCon]
tyConDataCons TyCon
treeTc
in Term -> Maybe Machine
reduce (DataCon -> DataCon -> Type -> Integer -> [Term] -> Term
mkRTree DataCon
lrCon DataCon
brCon Type
argTy Integer
len (Int -> Term -> [Term]
forall a. Int -> a -> [a]
replicate (Int
2Int -> Integer -> Int
forall a b. (Num a, Integral b) => a -> b -> a
^Integer
len) (Value -> Term
valToTerm ([Value] -> Value
forall a. [a] -> a
last [Value]
args))))
Text
"Clash.Sized.Vector.length"
| Bool
isSubj
, [Type
nTy, Type
_] <- [Type]
tys
, Right Integer
n <-Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> let ([Either TyVar Type]
_, Type -> TypeView
tyView -> TyConApp TyConName
intTcNm [Type]
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
intTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
intTcNm TyConMap
tcm
[DataCon
intCon] = TyCon -> [DataCon]
tyConDataCons TyCon
intTc
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
intCon) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
IntLiteral (Integer -> Integer
forall a. Integral a => a -> Integer
toInteger Integer
n)))])
Text
"Clash.Sized.Vector.maxIndex"
| Bool
isSubj
, [Type
nTy, Type
_] <- [Type]
tys
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> let ([Either TyVar Type]
_, Type -> TypeView
tyView -> TyConApp TyConName
intTcNm [Type]
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
intTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
intTcNm TyConMap
tcm
[DataCon
intCon] = TyCon -> [DataCon]
tyConDataCons TyCon
intTc
in Term -> Maybe Machine
reduce (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
intCon) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
IntLiteral (Integer -> Integer
forall a. Integral a => a -> Integer
toInteger (Integer
n Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1))))])
Text
"Clash.Sized.Vector.index_int"
| Type
nTy : Type
aTy : [Type]
_ <- [Type]
tys
, Value
_ : Value
xs : Value
i : [Value]
_ <- [Value]
args
, DC DataCon
intDc [Left (Literal (IntLiteral Integer
i'))] <- Value
i
-> if Integer
i' Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
0
then Maybe Machine
forall a. Maybe a
Nothing
else case Value
xs of
DC DataCon
_ [Either Term Type]
vArgs -> case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy) of
Right Integer
0 -> Maybe Machine
forall a. Maybe a
Nothing
Right Integer
n' ->
if Integer
i' Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
0
then Term -> Maybe Machine
reduceWHNF ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)
else Term -> Maybe Machine
reduceWHNF (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
intDc)
[Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
IntLiteral (Integer
i'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))])
]
Either String Integer
_ -> Maybe Machine
forall a. Maybe a
Nothing
Value
_ -> Maybe Machine
forall a. Maybe a
Nothing
Text
"Clash.Sized.Vector.head"
| Bool
isSubj
, [DC DataCon
_ [Either Term Type]
vArgs] <- [Value]
args
-> Term -> Maybe Machine
reduceWHNF ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)
Text
"Clash.Sized.Vector.last"
| Bool
isSubj
, [DC DataCon
_ [Either Term Type]
vArgs] <- [Value]
args
, (Right Type
_ : Right Type
aTy : Right Type
nTy : [Either Term Type]
_) <- [Either Term Type]
vArgs
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> if Integer
n Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
0
then Term -> Maybe Machine
reduceWHNF ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)
else Term -> Maybe Machine
reduceWHNF
(Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)
])
Text
"Clash.Sized.Vector.tail"
| Bool
isSubj
, [DC DataCon
_ [Either Term Type]
vArgs] <- [Value]
args
-> Term -> Maybe Machine
reduceWHNF ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)
Text
"Clash.Sized.Vector.init"
| Bool
isSubj
, [DC DataCon
consCon [Either Term Type]
vArgs] <- [Value]
args
, (Right Type
_ : Right Type
aTy : Right Type
nTy : [Either Term Type]
_) <- [Either Term Type]
vArgs
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> if Integer
n Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
0
then Term -> Maybe Machine
reduceWHNF ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)
else Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
HasCallStack => DataCon -> Type -> Integer -> Term -> Term -> Term
DataCon -> Type -> Integer -> Term -> Term -> Term
mkVecCons DataCon
consCon Type
aTy Integer
n
([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)
(Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)])
Text
"Clash.Sized.Vector.select"
| Bool
isSubj
, Type
iTy : Type
sTy : Type
nTy : Type
fTy : Type
aTy : [Type]
_ <- [Type]
tys
, Value
eq : Value
f : Value
s : Value
n : Value
xs : [Value]
_ <- [Value]
args
, Right Integer
n' <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
, Right Integer
f' <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
fTy)
, Right Integer
i' <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
iTy)
, Right Integer
s' <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
sTy)
, DC DataCon
_ [Either Term Type]
vArgs <- Value
xs
-> case Integer
n' of
Integer
0 -> Term -> Maybe Machine
reduce (DataCon -> Type -> Term
mkVecNil DataCon
nilCon Type
aTy)
Integer
_ -> case Integer
f' of
Integer
0 -> let splitAtCall :: Term
splitAtCall =
Term -> [Either Term Type] -> Term
mkApps (TyConName -> TyConName -> Term
splitAtPrim TyConName
snatTcNm TyConName
vecTcNm)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
sTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
i'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
s')))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
s)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
xs)
]
fVecTy :: Type
fVecTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [Type
sTy,Type
aTy]
iVecTy :: Type
iVecTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
i'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
s')),Type
aTy]
fNm :: Name a
fNm = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"fxs" Int
0
iNm :: Name a
iNm = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"ixs" Int
1
fId :: Id
fId = Type -> TmName -> Id
mkLocalId Type
fVecTy TmName
forall a. Name a
fNm
iId :: Id
iId = Type -> TmName -> Id
mkLocalId Type
iVecTy TmName
forall a. Name a
iNm
tupPat :: Pat
tupPat = DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
tupDc [] [Id
fId,Id
iId]
iAlt :: (Pat, Term)
iAlt = (Pat
tupPat, (Id -> Term
Var Id
iId))
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
HasCallStack => DataCon -> Type -> Integer -> Term -> Term -> Term
DataCon -> Type -> Integer -> Term -> Term -> Term
mkVecCons DataCon
consCon Type
aTy Integer
n' ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1) (Term -> Term) -> Term -> Term
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
i'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
s')))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
sTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
0))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
eq)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral Integer
0))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
s)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Type -> [(Pat, Term)] -> Term
Case Term
splitAtCall Type
iVecTy [(Pat, Term)
iAlt])
]
Integer
_ -> let splitAtCall :: Term
splitAtCall =
Term -> [Either Term Type] -> Term
mkApps (TyConName -> TyConName -> Term
splitAtPrim TyConName
snatTcNm TyConName
vecTcNm)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
fTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
iTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
f)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
xs)
]
fVecTy :: Type
fVecTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [Type
fTy,Type
aTy]
iVecTy :: Type
iVecTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [Type
iTy,Type
aTy]
fNm :: Name a
fNm = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"fxs" Int
0
iNm :: Name a
iNm = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"ixs" Int
1
fId :: Id
fId = Type -> TmName -> Id
mkLocalId Type
fVecTy TmName
forall a. Name a
fNm
iId :: Id
iId = Type -> TmName -> Id
mkLocalId Type
iVecTy TmName
forall a. Name a
iNm
tupPat :: Pat
tupPat = DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
tupDc [] [Id
fId,Id
iId]
iAlt :: (Pat, Term)
iAlt = (Pat
tupPat, (Id -> Term
Var Id
iId))
in Term -> Maybe Machine
reduceWHNF (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
iTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
sTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
nTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
0))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
eq)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral Integer
0))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
s)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
n)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Type -> [(Pat, Term)] -> Term
Case Term
splitAtCall Type
iVecTy [(Pat, Term)
iAlt])
]
where
([Either TyVar Type]
tyArgs,Type -> TypeView
tyView -> TyConApp TyConName
vecTcNm [Type]
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
Just TyCon
vecTc = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
vecTcNm TyConMap
tcm
[DataCon
nilCon,DataCon
consCon] = TyCon -> [DataCon]
tyConDataCons TyCon
vecTc
TyConApp TyConName
snatTcNm [Type]
_ = Type -> TypeView
tyView ([Either TyVar Type] -> [Type]
forall a b. [Either a b] -> [b]
Either.rights [Either TyVar Type]
tyArgs [Type] -> Int -> Type
forall a. [a] -> Int -> a
!! Int
1)
tupTcNm :: TyConName
tupTcNm = TyCon -> TyConName
ghcTyconToTyConName (Boxity -> Int -> TyCon
tupleTyCon Boxity
Boxed Int
2)
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
Text
"Clash.Sized.Vector.splitAt"
| Bool
isSubj
, (DC DataCon
snatDc (Right Type
mTy:[Either Term Type]
_)):[Value]
_ <- [Value]
args
, Right Integer
m <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
mTy)
-> let Type
_:Type
nTy:Type
aTy:[Type]
_ = [Type]
tys
ty1 :: Type
ty1 = HasCallStack => TyConMap -> Type -> [Type] -> Type
TyConMap -> Type -> [Type] -> Type
piResultTys TyConMap
tcm Type
ty [Type]
tys
([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm tyArgs :: [Type]
tyArgs@(Type
tyArg:[Type]
_)) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty1
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
TyConApp TyConName
vecTcNm [Type]
_ = Type -> TypeView
tyView Type
tyArg
Just TyCon
vecTc = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
vecTcNm TyConMap
tcm
[DataCon
nilCon,DataCon
consCon] = TyCon -> [DataCon]
tyConDataCons TyCon
vecTc
splitAtRec :: Term -> Term
splitAtRec Term
v =
Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
mInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
nTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
snatDc)
[ Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
mInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
mInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))])
,Term -> Either Term Type
forall a b. a -> Either a b
Left Term
v
]
splitAtSelR :: Term -> Type -> [(Pat, Term)] -> Term
splitAtSelR Term
v = Term -> Type -> [(Pat, Term)] -> Term
Case (Term -> Term
splitAtRec Term
v)
m1VecTy :: Type
m1VecTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
mInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)),Type
aTy]
nVecTy :: Type
nVecTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [Type
nTy,Type
aTy]
lNm :: Name a
lNm = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"l" Int
0
rNm :: Name a
rNm = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"r" Int
1
lId :: Id
lId = Type -> TmName -> Id
mkLocalId Type
m1VecTy TmName
forall a. Name a
lNm
rId :: Id
rId = Type -> TmName -> Id
mkLocalId Type
nVecTy TmName
forall a. Name a
rNm
tupPat :: Pat
tupPat = DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
tupDc [] [Id
lId,Id
rId]
lAlt :: (Pat, Term)
lAlt = (Pat
tupPat, (Id -> Term
Var Id
lId))
rAlt :: (Pat, Term)
rAlt = (Pat
tupPat, (Id -> Term
Var Id
rId))
in case Integer
m of
Integer
0 -> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ([Either Term Type] -> Term) -> [Either Term Type] -> Term
forall a b. (a -> b) -> a -> b
$ ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs) [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[ Term -> Either Term Type
forall a b. a -> Either a b
Left (DataCon -> Type -> Term
mkVecNil DataCon
nilCon Type
aTy)
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm ([Value] -> Value
forall a. [a] -> a
last [Value]
args))
]
Integer
m' | DC DataCon
_ [Either Term Type]
vArgs <- [Value] -> Value
forall a. [a] -> a
last [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ([Either Term Type] -> Term) -> [Either Term Type] -> Term
forall a b. (a -> b) -> a -> b
$ ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs) [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[ Term -> Either Term Type
forall a b. a -> Either a b
Left (HasCallStack => DataCon -> Type -> Integer -> Term -> Term -> Term
DataCon -> Type -> Integer -> Term -> Term -> Term
mkVecCons DataCon
consCon Type
aTy Integer
m' ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)
(Term -> Type -> [(Pat, Term)] -> Term
splitAtSelR ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2) Type
m1VecTy [(Pat, Term)
lAlt]))
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Type -> [(Pat, Term)] -> Term
splitAtSelR ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2) Type
nVecTy [(Pat, Term)
rAlt])
]
Integer
_ -> Maybe Machine
forall a. Maybe a
Nothing
Text
"Clash.Sized.Vector.unconcat"
| Bool
isSubj
, Value
kn : Value
snat : Value
v : [Value]
_ <- [Value]
args
, Type
nTy : Type
mTy : Type
aTy :[Type]
_ <- [Type]
tys
, Lit (NaturalLiteral Integer
n) <- Value
kn
-> let ( [Either TyVar Type] -> [Type]
forall a b. [Either a b] -> [b]
Either.rights -> [Type]
argTys, Type -> TypeView
tyView -> TyConApp TyConName
vecTcNm [Type]
_) =
Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
Just TyCon
vecTc = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
vecTcNm TyConMap
tcm
[DataCon
nilCon,DataCon
consCon] = TyCon -> [DataCon]
tyConDataCons TyCon
vecTc
tupTcNm :: TyConName
tupTcNm = TyCon -> TyConName
ghcTyconToTyConName (Boxity -> Int -> TyCon
tupleTyCon Boxity
Boxed Int
2)
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
TyConApp TyConName
snatTcNm [Type]
_ = Type -> TypeView
tyView ([Type]
argTys [Type] -> Int -> Type
forall a. [a] -> Int -> a
!! Int
1)
n1mTy :: Type
n1mTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
typeNatMul
[TyConName -> [Type] -> Type
mkTyConApp TyConName
typeNatSub [Type
nTy,LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
1)]
,Type
mTy]
splitAtCall :: Term
splitAtCall =
Term -> [Either Term Type] -> Term
mkApps (TyConName -> TyConName -> Term
splitAtPrim TyConName
snatTcNm TyConName
vecTcNm)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
mTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
n1mTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
snat)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
v)
]
mVecTy :: Type
mVecTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [Type
mTy,Type
aTy]
n1mVecTy :: Type
n1mVecTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [Type
n1mTy,Type
aTy]
asNm :: Name a
asNm = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"as" Int
0
bsNm :: Name a
bsNm = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"bs" Int
1
asId :: Id
asId = Type -> TmName -> Id
mkLocalId Type
mVecTy TmName
forall a. Name a
asNm
bsId :: Id
bsId = Type -> TmName -> Id
mkLocalId Type
n1mVecTy TmName
forall a. Name a
bsNm
tupPat :: Pat
tupPat = DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
tupDc [] [Id
asId,Id
bsId]
asAlt :: (Pat, Term)
asAlt = (Pat
tupPat, (Id -> Term
Var Id
asId))
bsAlt :: (Pat, Term)
bsAlt = (Pat
tupPat, (Id -> Term
Var Id
bsId))
in case Integer
n of
Integer
0 -> Term -> Maybe Machine
reduce (DataCon -> Type -> Term
mkVecNil DataCon
nilCon Type
mVecTy)
Integer
_ -> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
HasCallStack => DataCon -> Type -> Integer -> Term -> Term -> Term
DataCon -> Type -> Integer -> Term -> Term -> Term
mkVecCons DataCon
consCon Type
mVecTy Integer
n
(Term -> Type -> [(Pat, Term)] -> Term
Case Term
splitAtCall Type
mVecTy [(Pat, Term)
asAlt])
(Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
mTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
snat)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Type -> [(Pat, Term)] -> Term
Case Term
splitAtCall Type
n1mVecTy [(Pat, Term)
bsAlt])])
Text
"Clash.Sized.Vector.replicate"
| Bool
isSubj
, let ty' :: Type
ty' = HasCallStack => TyConMap -> Type -> [Type] -> Type
TyConMap -> Type -> [Type] -> Type
piResultTys TyConMap
tcm Type
ty [Type]
tys
, let ([Either TyVar Type]
_,Type
resTy) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty'
, (TyConApp TyConName
vecTcNm [Type
lenTy,Type
argTy]) <- Type -> TypeView
tyView Type
resTy
, Right Integer
len <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
lenTy)
-> let (Just TyCon
vecTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
vecTcNm TyConMap
tcm
[DataCon
nilCon,DataCon
consCon] = TyCon -> [DataCon]
tyConDataCons TyCon
vecTc
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
DataCon -> DataCon -> Type -> Integer -> [Term] -> Term
mkVec DataCon
nilCon DataCon
consCon Type
argTy Integer
len
(Int -> Term -> [Term]
forall a. Int -> a -> [a]
replicate (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
len) (Value -> Term
valToTerm ([Value] -> Value
forall a. [a] -> a
last [Value]
args)))
Text
"Clash.Sized.Vector.++"
| Bool
isSubj
, (DC DataCon
dc [Either Term Type]
vArgs):[Value]
_ <- [Value]
args
, Right Type
nTy : Right Type
aTy : [Either Term Type]
_ <- [Either Term Type]
vArgs
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> case Integer
n of
Integer
0 -> Term -> Maybe Machine
reduce (Value -> Term
valToTerm ([Value] -> Value
forall a. [a] -> a
last [Value]
args))
Integer
n' | (Type
_ : Type
_ : Type
mTy : [Type]
_) <- [Type]
tys
, Right Integer
m <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
mTy)
->
Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
HasCallStack => DataCon -> Type -> Integer -> Term -> Term -> Term
DataCon -> Type -> Integer -> Term -> Term -> Term
mkVecCons DataCon
dc Type
aTy (Integer
n' Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
m) ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)
(Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
mTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm ([Value] -> Value
forall a. [a] -> a
last [Value]
args))
])
Integer
_ -> Maybe Machine
forall a. Maybe a
Nothing
Text
"Clash.Sized.Vector.concat"
| Bool
isSubj
, (Type
nTy : Type
mTy : Type
aTy : [Type]
_) <- [Type]
tys
, (Value
xs : [Value]
_) <- [Value]
args
, DC DataCon
dc [Either Term Type]
vArgs <- Value
xs
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> case Integer
n of
Integer
0 -> Term -> Maybe Machine
reduce (DataCon -> Type -> Term
mkVecNil DataCon
dc Type
aTy)
Integer
_ | Term
_ : Term
h' : Term
t : [Term]
_ <- [Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs
, ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
vecTcNm [Type]
_) <- Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
-> Term -> Maybe Machine
reduceWHNF (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (TyConName -> Term
vecAppendPrim TyConName
vecTcNm)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
mTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right (Type -> Either Term Type) -> Type -> Either Term Type
forall a b. (a -> b) -> a -> b
$ TyConName -> [Type] -> Type
mkTyConApp TyConName
typeNatMul
[TyConName -> [Type] -> Type
mkTyConApp TyConName
typeNatSub [Type
nTy,LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
1)], Type
mTy]
,Term -> Either Term Type
forall a b. a -> Either a b
Left Term
h'
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Either Term Type) -> Term -> Either Term Type
forall a b. (a -> b) -> a -> b
$ Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[ Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
, Type -> Either Term Type
forall a b. b -> Either a b
Right Type
mTy
, Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
, Term -> Either Term Type
forall a b. a -> Either a b
Left Term
t
]
]
Integer
_ -> Maybe Machine
forall a. Maybe a
Nothing
Text
"Clash.Sized.Vector.replace_int"
| Type
nTy : Type
aTy : [Type]
_ <- [Type]
tys
, Value
_ : Value
xs : Value
i : Value
a : [Value]
_ <- [Value]
args
, DC DataCon
intDc [Left (Literal (IntLiteral Integer
i'))] <- Value
i
-> if Integer
i' Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
0
then Maybe Machine
forall a. Maybe a
Nothing
else case Value
xs of
DC DataCon
vecTcNm [Either Term Type]
vArgs -> case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy) of
Right Integer
0 -> Maybe Machine
forall a. Maybe a
Nothing
Right Integer
n' ->
if Integer
i' Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
0
then Term -> Maybe Machine
reduce (HasCallStack => DataCon -> Type -> Integer -> Term -> Term -> Term
DataCon -> Type -> Integer -> Term -> Term -> Term
mkVecCons DataCon
vecTcNm Type
aTy Integer
n' (Value -> Term
valToTerm Value
a) ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2))
else Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
HasCallStack => DataCon -> Type -> Integer -> Term -> Term -> Term
DataCon -> Type -> Integer -> Term -> Term -> Term
mkVecCons DataCon
vecTcNm Type
aTy Integer
n' ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)
(Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
intDc)
[Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
IntLiteral (Integer
i'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))])
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
a)
])
Either String Integer
_ -> Maybe Machine
forall a. Maybe a
Nothing
Value
_ -> Maybe Machine
forall a. Maybe a
Nothing
Text
"Clash.Sized.Vector.reverse"
| Bool
isSubj
, Type
nTy : Type
aTy : [Type]
_ <- [Type]
tys
, [DC DataCon
vecDc [Either Term Type]
vArgs] <- [Value]
args
-> case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy) of
Right Integer
0 -> Term -> Maybe Machine
reduce (DataCon -> Type -> Term
mkVecNil DataCon
vecDc Type
aTy)
Right Integer
n
| ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
vecTcNm [Type]
_) <- Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
, let (Just TyCon
vecTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
vecTcNm TyConMap
tcm
, let [DataCon
nilCon,DataCon
consCon] = TyCon -> [DataCon]
tyConDataCons TyCon
vecTc
-> Term -> Maybe Machine
reduceWHNF (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (TyConName -> Term
vecAppendPrim TyConName
vecTcNm)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
1))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)
])
,Term -> Either Term Type
forall a b. a -> Either a b
Left (DataCon -> DataCon -> Type -> Integer -> [Term] -> Term
mkVec DataCon
nilCon DataCon
consCon Type
aTy Integer
1 [[Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1])
]
Either String Integer
_ -> Maybe Machine
forall a. Maybe a
Nothing
Text
"Clash.Sized.Vector.transpose"
| Bool
isSubj
, Type
nTy : Type
mTy : Type
aTy : [Type]
_ <- [Type]
tys
, Value
kn : Value
xss : [Value]
_ <- [Value]
args
, ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
vecTcNm [Type]
_) <- Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
, DC DataCon
_ [Either Term Type]
vArgs <- Value
xss
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
, Right Integer
m <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
mTy)
-> case Integer
m of
Integer
0 -> let (Just TyCon
vecTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
vecTcNm TyConMap
tcm
[DataCon
nilCon,DataCon
consCon] = TyCon -> [DataCon]
tyConDataCons TyCon
vecTc
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
DataCon -> DataCon -> Type -> Integer -> [Term] -> Term
mkVec DataCon
nilCon DataCon
consCon (TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [Type
mTy,Type
aTy]) Integer
n
(Int -> Term -> [Term]
forall a. Int -> a -> [a]
replicate (Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
n) (DataCon -> DataCon -> Type -> Integer -> [Term] -> Term
mkVec DataCon
nilCon DataCon
consCon Type
aTy Integer
0 []))
Integer
m' -> let (Just TyCon
vecTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
vecTcNm TyConMap
tcm
[DataCon
_,DataCon
consCon] = TyCon -> [DataCon]
tyConDataCons TyCon
vecTc
Just (Type
consCoTy : [Type]
_) = DataCon -> [Type] -> Maybe [Type]
dataConInstArgTys DataCon
consCon
[Type
mTy,Type
aTy,LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
m'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1))]
in Term -> Maybe Machine
reduceWHNF (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (TyConName -> Term
vecZipWithPrim TyConName
vecTcNm)
[ Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
, Type -> Either Term Type
forall a b. b -> Either a b
Right (TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
m'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)),Type
aTy])
, Type -> Either Term Type
forall a b. b -> Either a b
Right (TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [Type
mTy,Type
aTy])
, Type -> Either Term Type
forall a b. b -> Either a b
Right Type
nTy
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
consCon)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
mTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
m'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Type -> Term
primCo Type
consCoTy)
])
, Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[ Type -> Either Term Type
forall a b. b -> Either a b
Right Type
nTy
, Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
m'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
, Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
kn)
, Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)
])
]
Text
"Clash.Sized.Vector.rotateLeftS"
| Type
nTy : Type
aTy : Type
_ : [Type]
_ <- [Type]
tys
, Value
kn : Value
xs : Value
d : [Value]
_ <- [Value]
args
, DC DataCon
dc [Either Term Type]
vArgs <- Value
xs
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> case Integer
n of
Integer
0 -> Term -> Maybe Machine
reduce (DataCon -> Type -> Term
mkVecNil DataCon
dc Type
aTy)
Integer
n' | DC DataCon
snatDc [Either Term Type
_,Left Term
d'] <- Value
d
, Evaluator
eval <- Step -> Unwind -> PrimStep -> PrimUnwind -> Evaluator
Evaluator Step
ghcStep Unwind
ghcUnwind PrimStep
ghcPrimStep PrimUnwind
ghcPrimUnwind
, mach2 :: Machine
mach2@Machine{mStack :: Machine -> Stack
mStack=[],mTerm :: Machine -> Term
mTerm=Literal (NaturalLiteral Integer
d2)} <- Evaluator -> TyConMap -> Bool -> Machine -> Machine
whnf Evaluator
eval TyConMap
tcm Bool
isSubj (Term -> Machine -> Machine
setTerm Term
d' (Machine -> Machine) -> Machine -> Machine
forall a b. (a -> b) -> a -> b
$ Machine -> Machine
stackClear Machine
mach)
-> case (Integer
d2 Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`mod` Integer
n) of
Integer
0 -> Term -> Maybe Machine
reduce (Value -> Term
valToTerm Value
xs)
Integer
d3 -> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
vecTcNm [Type]
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
vecTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
vecTcNm TyConMap
tcm
[DataCon
nilCon,DataCon
consCon] = TyCon -> [DataCon]
tyConDataCons TyCon
vecTc
in Machine -> Term -> Maybe Machine
reduceWHNF' Machine
mach2 (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
nTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
d3Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
kn)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (TyConName -> Term
vecAppendPrim TyConName
vecTcNm)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
1))
,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (DataCon -> DataCon -> Type -> Integer -> [Term] -> Term
mkVec DataCon
nilCon DataCon
consCon Type
aTy Integer
1 [[Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1])])
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
snatDc)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
d3Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
d3Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))])
]
Integer
_ -> Maybe Machine
forall a. Maybe a
Nothing
Text
"Clash.Sized.Vector.rotateRightS"
| Bool
isSubj
, Type
nTy : Type
aTy : Type
_ : [Type]
_ <- [Type]
tys
, Value
kn : Value
xs : Value
d : [Value]
_ <- [Value]
args
, DC DataCon
dc [Either Term Type]
_ <- Value
xs
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> case Integer
n of
Integer
0 -> Term -> Maybe Machine
reduce (DataCon -> Type -> Term
mkVecNil DataCon
dc Type
aTy)
Integer
n' | DC DataCon
snatDc [Either Term Type
_,Left Term
d'] <- Value
d
, Evaluator
eval <- Step -> Unwind -> PrimStep -> PrimUnwind -> Evaluator
Evaluator Step
ghcStep Unwind
ghcUnwind PrimStep
ghcPrimStep PrimUnwind
ghcPrimUnwind
, mach2 :: Machine
mach2@Machine{mStack :: Machine -> Stack
mStack=[],mTerm :: Machine -> Term
mTerm=Literal (NaturalLiteral Integer
d2)} <- Evaluator -> TyConMap -> Bool -> Machine -> Machine
whnf Evaluator
eval TyConMap
tcm Bool
isSubj (Term -> Machine -> Machine
setTerm Term
d' (Machine -> Machine) -> Machine -> Machine
forall a b. (a -> b) -> a -> b
$ Machine -> Machine
stackClear Machine
mach)
-> case (Integer
d2 Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`mod` Integer
n) of
Integer
0 -> Term -> Maybe Machine
reduce (Value -> Term
valToTerm Value
xs)
Integer
d3 -> let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
vecTcNm [Type]
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
in Machine -> Term -> Maybe Machine
reduceWHNF' Machine
mach2 (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
nTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
d3Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
kn)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (HasCallStack => DataCon -> Type -> Integer -> Term -> Term -> Term
DataCon -> Type -> Integer -> Term -> Term -> Term
mkVecCons DataCon
dc Type
aTy Integer
n
(Term -> [Either Term Type] -> Term
mkApps (TyConName -> Term
vecLastPrim TyConName
vecTcNm)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
xs)])
(Term -> [Either Term Type] -> Term
mkApps (TyConName -> Term
vecInitPrim TyConName
vecTcNm)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
xs)]))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
snatDc)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
d3Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
d3Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))])
]
Integer
_ -> Maybe Machine
forall a. Maybe a
Nothing
Text
"Clash.Sized.Vector.map"
| Bool
isSubj
, DC DataCon
dc [Either Term Type]
vArgs <- [Value]
args [Value] -> Int -> Value
forall a. [a] -> Int -> a
!! Int
1
, Type
aTy : Type
bTy : Type
nTy : [Type]
_ <- [Type]
tys
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> case Integer
n of
Integer
0 -> Term -> Maybe Machine
reduce (DataCon -> Type -> Term
mkVecNil DataCon
dc Type
bTy)
Integer
n' -> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
HasCallStack => DataCon -> Type -> Integer -> Term -> Term -> Term
DataCon -> Type -> Integer -> Term -> Term -> Term
mkVecCons DataCon
dc Type
bTy Integer
n'
(Term -> [Either Term Type] -> Term
mkApps (Value -> Term
valToTerm ([Value]
args [Value] -> Int -> Value
forall a. [a] -> Int -> a
!! Int
0)) [Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)])
(Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
bTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n' Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm ([Value]
args [Value] -> Int -> Value
forall a. [a] -> Int -> a
!! Int
0))
,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)])
Text
"Clash.Sized.Vector.imap"
| Bool
isSubj
, Type
nTy : Type
aTy : Type
bTy : [Type]
_ <- [Type]
tys
, ([Either TyVar Type]
tyArgs,Type -> TypeView
tyView -> TyConApp TyConName
vecTcNm [Type]
_) <- Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
, let ([Either TyVar Type]
tyArgs',Type
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy ([Either TyVar Type] -> [Type]
forall a b. [Either a b] -> [b]
Either.rights [Either TyVar Type]
tyArgs [Type] -> Int -> Type
forall a. [a] -> Int -> a
!! Int
1)
, TyConApp TyConName
indexTcNm [Type]
_ <- Type -> TypeView
tyView ([Either TyVar Type] -> [Type]
forall a b. [Either a b] -> [b]
Either.rights [Either TyVar Type]
tyArgs' [Type] -> Int -> Type
forall a. [a] -> Int -> a
!! Int
0)
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
, let iLit :: Term
iLit = Type -> Type -> Integer -> Integer -> Term
mkIndexLit ([Either TyVar Type] -> [Type]
forall a b. [Either a b] -> [b]
Either.rights [Either TyVar Type]
tyArgs' [Type] -> Int -> Type
forall a. [a] -> Int -> a
!! Int
0) Type
nTy Integer
n Integer
0
-> Term -> Maybe Machine
reduceWHNF (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim (Text
-> Type -> WorkInfo -> IsMultiPrim -> PrimUnfolding -> PrimInfo
PrimInfo Text
"Clash.Sized.Vector.imap_go" (TyConName -> TyConName -> Type
vecImapGoTy TyConName
vecTcNm TyConName
indexTcNm) WorkInfo
WorkNever IsMultiPrim
SingleResult PrimUnfolding
NoUnfolding))
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
nTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
nTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
bTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm ([Value]
args [Value] -> Int -> Value
forall a. [a] -> Int -> a
!! Int
1))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm ([Value]
args [Value] -> Int -> Value
forall a. [a] -> Int -> a
!! Int
2))
,Term -> Either Term Type
forall a b. a -> Either a b
Left Term
iLit
]
Text
"Clash.Sized.Vector.imap_go"
| Bool
isSubj
, Type
nTy : Type
mTy : Type
aTy : Type
bTy : [Type]
_ <- [Type]
tys
, Value
f : Value
xs : (Suspend Term
nArg) : [Value]
_ <- [Value]
args
, DC DataCon
dc [Either Term Type]
vArgs <- Value
xs
, Right Integer
n' <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
, Right Integer
m <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
mTy)
-> case Integer
m of
Integer
0 -> Term -> Maybe Machine
reduce (DataCon -> Type -> Term
mkVecNil DataCon
dc Type
bTy)
Integer
m'
| Evaluator
eval <- Step -> Unwind -> PrimStep -> PrimUnwind -> Evaluator
Evaluator Step
ghcStep Unwind
ghcUnwind PrimStep
ghcPrimStep PrimUnwind
ghcPrimUnwind
, mach1 :: Machine
mach1@Machine{mStack :: Machine -> Stack
mStack=[],mTerm :: Machine -> Term
mTerm=Term
n} <-
Evaluator -> TyConMap -> Bool -> Machine -> Machine
whnf Evaluator
eval TyConMap
tcm Bool
True (Term -> Machine -> Machine
setTerm Term
nArg (Machine -> Machine
stackClear Machine
mach))
-> let ([Either TyVar Type]
tyArgs,Type
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
TyConApp TyConName
indexTcNm [Type]
_ = Type -> TypeView
tyView ([Either TyVar Type] -> [Type]
forall a b. [Either a b] -> [b]
Either.rights [Either TyVar Type]
tyArgs [Type] -> Int -> Type
forall a. [a] -> Int -> a
!! Int
2)
iLit :: Term
iLit = Type -> Type -> Integer -> Integer -> Term
mkIndexLit ([Either TyVar Type] -> [Type]
forall a b. [Either a b] -> [b]
Either.rights [Either TyVar Type]
tyArgs [Type] -> Int -> Type
forall a. [a] -> Int -> a
!! Int
2) Type
nTy Integer
n' Integer
1
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ (Term -> Machine -> Machine) -> Machine -> Term -> Machine
forall a b c. (a -> b -> c) -> b -> a -> c
flip Term -> Machine -> Machine
setTerm (Machine
mach1 {mStack :: Stack
mStack = Machine -> Stack
mStack Machine
mach}) (Term -> Machine) -> Term -> Machine
forall a b. (a -> b) -> a -> b
$ HasCallStack => DataCon -> Type -> Integer -> Term -> Term -> Term
DataCon -> Type -> Integer -> Term -> Term -> Term
mkVecCons DataCon
dc Type
bTy Integer
m'
(Term -> [Either Term Type] -> Term
mkApps (Value -> Term
valToTerm Value
f) [Term -> Either Term Type
forall a b. a -> Either a b
Left Term
n,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)])
(Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
nTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
m'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
bTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
f)
,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim (Text
-> Type -> WorkInfo -> IsMultiPrim -> PrimUnfolding -> PrimInfo
PrimInfo Text
"Clash.Sized.Internal.Index.+#" (TyConName -> Type
indexAddTy TyConName
indexTcNm) WorkInfo
WorkVariable IsMultiPrim
SingleResult PrimUnfolding
NoUnfolding))
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
nTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral Integer
n'))
,Term -> Either Term Type
forall a b. a -> Either a b
Left Term
n
,Term -> Either Term Type
forall a b. a -> Either a b
Left Term
iLit
])
])
| Bool
otherwise
-> Maybe Machine
forall a. Maybe a
Nothing
Text
"Clash.Sized.Vector.iterateI"
| Bool
isSubj
, [Type
nTy, Type
aTy] <- [Type]
tys
, [Value
_n, Value
f, Value
a] <- [Value]
args
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
->
let
TyConApp TyConName
vecTcNm [Type]
_ = Type -> TypeView
tyView (TyConMap -> Type -> [Type] -> Type
getResultTy TyConMap
tcm Type
ty [Type]
tys)
Just TyCon
vecTc = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
vecTcNm TyConMap
tcm
[DataCon
nilCon, DataCon
consCon] = TyCon -> [DataCon]
tyConDataCons TyCon
vecTc
in case Integer
n of
Integer
0 -> Term -> Maybe Machine
reduce (DataCon -> Type -> Term
mkVecNil DataCon
nilCon Type
aTy)
Integer
_ -> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
HasCallStack => DataCon -> Type -> Integer -> Term -> Term -> Term
DataCon -> Type -> Integer -> Term -> Term -> Term
mkVecCons DataCon
consCon Type
aTy Integer
n
(Value -> Term
valToTerm Value
a)
(Term -> [Either Term Type] -> Term
mkApps
(PrimInfo -> Term
Prim PrimInfo
pInfo)
[ Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)))
, Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm (Literal -> Value
Lit (Integer -> Literal
NaturalLiteral (Integer
n Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1))))
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
f)
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (Value -> Term
valToTerm Value
f) [Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
a)])
])
Text
"Clash.Sized.Vector.zipWith"
| Bool
isSubj
, Type
aTy : Type
bTy : Type
cTy : Type
nTy : [Type]
_ <- [Type]
tys
, Value
f : Value
xs : Value
ys : [Value]
_ <- [Value]
args
, DC DataCon
dc [Either Term Type]
vArgs <- Value
xs
, ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
vecTcNm [Type]
_) <- Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> case Integer
n of
Integer
0 -> Term -> Maybe Machine
reduce (DataCon -> Type -> Term
mkVecNil DataCon
dc Type
cTy)
Integer
n' -> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ HasCallStack => DataCon -> Type -> Integer -> Term -> Term -> Term
DataCon -> Type -> Integer -> Term -> Term -> Term
mkVecCons DataCon
dc Type
cTy Integer
n'
(Term -> [Either Term Type] -> Term
mkApps (Value -> Term
valToTerm Value
f)
[Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (TyConName -> Term
vecHeadPrim TyConName
vecTcNm)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
bTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
ys)
])
])
(Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
bTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
cTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n' Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
f)
,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (TyConName -> Term
vecTailPrim TyConName
vecTcNm)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
bTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
ys)
])])
Text
"Clash.Sized.Vector.foldr"
| Bool
isSubj
, Type
aTy : Type
bTy : Type
nTy : [Type]
_ <- [Type]
tys
, Value
f : Value
z : Value
xs : [Value]
_ <- [Value]
args
, DC DataCon
_ [Either Term Type]
vArgs <- Value
xs
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> case Integer
n of
Integer
0 -> Term -> Maybe Machine
reduce (Value -> Term
valToTerm Value
z)
Integer
_ -> Term -> Maybe Machine
reduceWHNF (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (Value -> Term
valToTerm Value
f)
[Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
bTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
f)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
z)
,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)
])
]
Text
"Clash.Sized.Vector.fold"
| Bool
isSubj
, Type
nTy : Type
aTy : [Type]
_ <- [Type]
tys
, Value
f : Value
vs : [Value]
_ <- [Value]
args
, DC DataCon
_ [Either Term Type]
vArgs <- Value
vs
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> case Integer
n of
Integer
0 -> Term -> Maybe Machine
reduceWHNF ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)
Integer
_ -> let ([Either TyVar Type]
tyArgs,Type
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
TyConApp TyConName
vecTcNm [Type]
_ = Type -> TypeView
tyView ([Either TyVar Type] -> [Type]
forall a b. [Either a b] -> [b]
Either.rights [Either TyVar Type]
tyArgs [Type] -> Int -> Type
forall a. [a] -> Int -> a
!! Int
1)
tupTcNm :: TyConName
tupTcNm = TyCon -> TyConName
ghcTyconToTyConName (Boxity -> Int -> TyCon
tupleTyCon Boxity
Boxed Int
2)
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
n' :: Integer
n' = Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
+Integer
1
m :: Integer
m = Integer
n' Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`div` Integer
2
n1 :: Integer
n1 = Integer
n' Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
m
mTy :: Type
mTy = LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
m)
m'ty :: Type
m'ty = LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
mInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1))
n1mTy :: Type
n1mTy = LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
n1)
n1m'ty :: Type
n1m'ty = LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n1Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1))
splitAtCall :: Term
splitAtCall =
Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim (Text
-> Type -> WorkInfo -> IsMultiPrim -> PrimUnfolding -> PrimInfo
PrimInfo Text
"Clash.Sized.Vector.fold_split" (TyConName -> Type
foldSplitAtTy TyConName
vecTcNm) WorkInfo
WorkNever IsMultiPrim
SingleResult PrimUnfolding
NoUnfolding))
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
mTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
n1mTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral Integer
m))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
vs)
]
mVecTy :: Type
mVecTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [Type
mTy,Type
aTy]
n1mVecTy :: Type
n1mVecTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [Type
n1mTy,Type
aTy]
asNm :: Name a
asNm = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"as" Int
0
bsNm :: Name a
bsNm = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"bs" Int
1
asId :: Id
asId = Type -> TmName -> Id
mkLocalId Type
mVecTy TmName
forall a. Name a
asNm
bsId :: Id
bsId = Type -> TmName -> Id
mkLocalId Type
n1mVecTy TmName
forall a. Name a
bsNm
tupPat :: Pat
tupPat = DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
tupDc [] [Id
asId,Id
bsId]
asAlt :: (Pat, Term)
asAlt = (Pat
tupPat, (Id -> Term
Var Id
asId))
bsAlt :: (Pat, Term)
bsAlt = (Pat
tupPat, (Id -> Term
Var Id
bsId))
in Term -> Maybe Machine
reduceWHNF (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (Value -> Term
valToTerm Value
f)
[Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
m'ty
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
f)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Type -> [(Pat, Term)] -> Term
Case Term
splitAtCall Type
mVecTy [(Pat, Term)
asAlt])
])
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
n1m'ty
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
f)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Type -> [(Pat, Term)] -> Term
Case Term
splitAtCall Type
n1mVecTy [(Pat, Term)
bsAlt])
])
]
Text
"Clash.Sized.Vector.fold_split"
| Bool
isSubj
, Type
mTy : Type
nTy : Type
aTy : [Type]
_ <- [Type]
tys
, Right Integer
m <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
mTy)
-> let
ty1 :: Type
ty1 = HasCallStack => TyConMap -> Type -> [Type] -> Type
TyConMap -> Type -> [Type] -> Type
piResultTys TyConMap
tcm Type
ty [Type]
tys
([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
tupTcNm tyArgs :: [Type]
tyArgs@(Type
tyArg:[Type]
_)) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty1
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
TyConApp TyConName
vecTcNm [Type]
_ = Type -> TypeView
tyView Type
tyArg
Just TyCon
vecTc = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
vecTcNm TyConMap
tcm
[DataCon
nilCon,DataCon
consCon] = TyCon -> [DataCon]
tyConDataCons TyCon
vecTc
splitAtRec :: Term -> Term
splitAtRec Term
v =
Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
mInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
nTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
mInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left Term
v
]
splitAtSelR :: Term -> Type -> [(Pat, Term)] -> Term
splitAtSelR Term
v = Term -> Type -> [(Pat, Term)] -> Term
Case (Term -> Term
splitAtRec Term
v)
m1VecTy :: Type
m1VecTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
mInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)),Type
aTy]
nVecTy :: Type
nVecTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [Type
nTy,Type
aTy]
lNm :: Name a
lNm = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"l" Int
0
rNm :: Name a
rNm = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"r" Int
1
lId :: Id
lId = Type -> TmName -> Id
mkLocalId Type
m1VecTy TmName
forall a. Name a
lNm
rId :: Id
rId = Type -> TmName -> Id
mkLocalId Type
nVecTy TmName
forall a. Name a
rNm
tupPat :: Pat
tupPat = DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
tupDc [] [Id
lId,Id
rId]
lAlt :: (Pat, Term)
lAlt = (Pat
tupPat, (Id -> Term
Var Id
lId))
rAlt :: (Pat, Term)
rAlt = (Pat
tupPat, (Id -> Term
Var Id
rId))
in case Integer
m of
Integer
0 -> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ([Either Term Type] -> Term) -> [Either Term Type] -> Term
forall a b. (a -> b) -> a -> b
$ ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs) [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[ Term -> Either Term Type
forall a b. a -> Either a b
Left (DataCon -> Type -> Term
mkVecNil DataCon
nilCon Type
aTy)
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm ([Value] -> Value
forall a. [a] -> a
last [Value]
args))
]
Integer
m' | DC DataCon
_ [Either Term Type]
vArgs <- [Value] -> Value
forall a. [a] -> a
last [Value]
args
-> Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc) ([Either Term Type] -> Term) -> [Either Term Type] -> Term
forall a b. (a -> b) -> a -> b
$ ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs) [Either Term Type] -> [Either Term Type] -> [Either Term Type]
forall a. [a] -> [a] -> [a]
++
[ Term -> Either Term Type
forall a b. a -> Either a b
Left (HasCallStack => DataCon -> Type -> Integer -> Term -> Term -> Term
DataCon -> Type -> Integer -> Term -> Term -> Term
mkVecCons DataCon
consCon Type
aTy Integer
m' ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)
(Term -> Type -> [(Pat, Term)] -> Term
splitAtSelR ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2) Type
m1VecTy [(Pat, Term)
lAlt]))
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Type -> [(Pat, Term)] -> Term
splitAtSelR ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2) Type
nVecTy [(Pat, Term)
rAlt])
]
Integer
_ -> Maybe Machine
forall a. Maybe a
Nothing
Text
"Clash.Sized.Vector.dfold"
| Bool
isSubj
, Type
pTy : Type
kTy : Type
aTy : [Type]
_ <- [Type]
tys
, Value
_ : Value
p : Value
f : Value
z : Value
xs : [Value]
_ <- [Value]
args
, DC DataCon
_ [Either Term Type]
vArgs <- Value
xs
, Right Integer
k' <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
kTy)
-> case Integer
k' of
Integer
0 -> Term -> Maybe Machine
reduce (Value -> Term
valToTerm Value
z)
Integer
_ -> let ([Either TyVar Type]
tyArgs,Type
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
([Either TyVar Type]
tyArgs',Type
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy ([Either TyVar Type] -> [Type]
forall a b. [Either a b] -> [b]
Either.rights [Either TyVar Type]
tyArgs [Type] -> Int -> Type
forall a. [a] -> Int -> a
!! Int
2)
TyConApp TyConName
snatTcNm [Type]
_ = Type -> TypeView
tyView ([Either TyVar Type] -> [Type]
forall a b. [Either a b] -> [b]
Either.rights [Either TyVar Type]
tyArgs' [Type] -> Int -> Type
forall a. [a] -> Int -> a
!! Int
0)
Just TyCon
snatTc = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
snatTcNm TyConMap
tcm
[DataCon
snatDc] = TyCon -> [DataCon]
tyConDataCons TyCon
snatTc
k'ty :: Type
k'ty = LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
k'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1))
in Term -> Maybe Machine
reduceWHNF (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (Value -> Term
valToTerm Value
f)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
k'ty
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
snatDc)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
k'ty
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
k'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))])
,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
pTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
k'ty
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
k'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
p)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
f)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
z)
,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)
])
]
Text
"Clash.Sized.Vector.dtfold"
| Bool
isSubj
, Type
pTy : Type
kTy : Type
aTy : [Type]
_ <- [Type]
tys
, Value
_ : Value
p : Value
f : Value
g : Value
xs : [Value]
_ <- [Value]
args
, DC DataCon
_ [Either Term Type]
vArgs <- Value
xs
, Right Integer
k' <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
kTy)
-> case Integer
k' of
Integer
0 -> Term -> Maybe Machine
reduceWHNF (Term -> [Either Term Type] -> Term
mkApps (Value -> Term
valToTerm Value
f) [Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)])
Integer
_ -> let ([Either TyVar Type]
tyArgs,Type
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
TyConApp TyConName
vecTcNm [Type]
_ = Type -> TypeView
tyView ([Either TyVar Type] -> [Type]
forall a b. [Either a b] -> [b]
Either.rights [Either TyVar Type]
tyArgs [Type] -> Int -> Type
forall a. [a] -> Int -> a
!! Int
4)
([Either TyVar Type]
tyArgs',Type
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy ([Either TyVar Type] -> [Type]
forall a b. [Either a b] -> [b]
Either.rights [Either TyVar Type]
tyArgs [Type] -> Int -> Type
forall a. [a] -> Int -> a
!! Int
3)
TyConApp TyConName
snatTcNm [Type]
_ = Type -> TypeView
tyView ([Either TyVar Type] -> [Type]
forall a b. [Either a b] -> [b]
Either.rights [Either TyVar Type]
tyArgs' [Type] -> Int -> Type
forall a. [a] -> Int -> a
!! Int
0)
Just TyCon
snatTc = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
snatTcNm TyConMap
tcm
[DataCon
snatDc] = TyCon -> [DataCon]
tyConDataCons TyCon
snatTc
tupTcNm :: TyConName
tupTcNm = TyCon -> TyConName
ghcTyconToTyConName (Boxity -> Int -> TyCon
tupleTyCon Boxity
Boxed Int
2)
(Just TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
k'ty :: Type
k'ty = LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
k'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1))
k2ty :: Type
k2ty = LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
2Integer -> Integer -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(Integer
k'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
splitAtCall :: Term
splitAtCall =
Term -> [Either Term Type] -> Term
mkApps (TyConName -> TyConName -> Term
splitAtPrim TyConName
snatTcNm TyConName
vecTcNm)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
k2ty
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
k2ty
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
snatDc)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
k2ty
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
2Integer -> Integer -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(Integer
k'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1))))])
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
xs)
]
xsSVecTy :: Type
xsSVecTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [Type
k2ty,Type
aTy]
xsLNm :: Name a
xsLNm = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"xsL" Int
0
xsRNm :: Name a
xsRNm = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"xsR" Int
1
xsLId :: Id
xsLId = Type -> TmName -> Id
mkLocalId Type
k2ty TmName
forall a. Name a
xsLNm
xsRId :: Id
xsRId = Type -> TmName -> Id
mkLocalId Type
k2ty TmName
forall a. Name a
xsRNm
tupPat :: Pat
tupPat = DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
tupDc [] [Id
xsLId,Id
xsRId]
asAlt :: (Pat, Term)
asAlt = (Pat
tupPat, (Id -> Term
Var Id
xsLId))
bsAlt :: (Pat, Term)
bsAlt = (Pat
tupPat, (Id -> Term
Var Id
xsRId))
in Term -> Maybe Machine
reduceWHNF (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (Value -> Term
valToTerm Value
g)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
k'ty
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
snatDc)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
k'ty
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
k'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))])
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
pTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
k'ty
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
k'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
p)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
f)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
g)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Type -> [(Pat, Term)] -> Term
Case Term
splitAtCall Type
xsSVecTy [(Pat, Term)
asAlt])])
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
pTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
k'ty
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
k'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
p)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
f)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
g)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Type -> [(Pat, Term)] -> Term
Case Term
splitAtCall Type
xsSVecTy [(Pat, Term)
bsAlt])])
]
Text
"Clash.Sized.Vector.lazyV"
| Bool
isSubj
, Type
nTy : Type
aTy : [Type]
_ <- [Type]
tys
, Value
_ : Value
xs : [Value]
_ <- [Value]
args
, ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
vecTcNm [Type]
_) <- Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> case Integer
n of
Integer
0 -> let (Just TyCon
vecTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
vecTcNm TyConMap
tcm
[DataCon
nilCon,DataCon
_] = TyCon -> [DataCon]
tyConDataCons TyCon
vecTc
in Term -> Maybe Machine
reduce (DataCon -> Type -> Term
mkVecNil DataCon
nilCon Type
aTy)
Integer
n' -> let (Just TyCon
vecTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
vecTcNm TyConMap
tcm
[DataCon
_,DataCon
consCon] = TyCon -> [DataCon]
tyConDataCons TyCon
vecTc
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ HasCallStack => DataCon -> Type -> Integer -> Term -> Term -> Term
DataCon -> Type -> Integer -> Term -> Term -> Term
mkVecCons DataCon
consCon Type
aTy Integer
n'
(Term -> [Either Term Type] -> Term
mkApps (TyConName -> Term
vecHeadPrim TyConName
vecTcNm)
[ Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n' Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)))
, Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
xs)
])
(Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[ Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n' Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)))
, Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (TyConName -> Term
vecTailPrim TyConName
vecTcNm)
[ Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
, Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
xs)
])
])
Text
"Clash.Sized.Vector.traverse#"
| Bool
isSubj
, Type
aTy : Type
fTy : Type
bTy : Type
nTy : [Type]
_ <- [Type]
tys
, Value
apDict : Value
f : Value
xs : [Value]
_ <- [Value]
args
, DC DataCon
dc [Either Term Type]
vArgs <- Value
xs
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> case Integer
n of
Integer
0 -> let (Term
pureF,Supply
ids') = PrimEvalMonad Term -> Supply -> (Term, Supply)
forall a. PrimEvalMonad a -> Supply -> (a, Supply)
runPEM (String
-> InScopeSet
-> TyConMap
-> Term
-> Int
-> Int
-> PrimEvalMonad Term
forall (m :: Type -> Type).
(HasCallStack, MonadUnique m) =>
String -> InScopeSet -> TyConMap -> Term -> Int -> Int -> m Term
mkSelectorCase $(String
curLoc) InScopeSet
is0 TyConMap
tcm (Value -> Term
valToTerm Value
apDict) Int
1 Int
1) Supply
ids
in Machine -> Term -> Maybe Machine
reduceWHNF' (Machine
mach { mSupply :: Supply
mSupply = Supply
ids' }) (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps Term
pureF
[Type -> Either Term Type
forall a b. b -> Either a b
Right (TyConName -> [Type] -> Type
mkTyConApp (TyConName
vecTcNm) [Type
nTy,Type
bTy])
,Term -> Either Term Type
forall a b. a -> Either a b
Left (DataCon -> Type -> Term
mkVecNil DataCon
dc Type
bTy)]
Integer
_ -> let ((Term
fmapF,Term
apF),Supply
ids') = (PrimEvalMonad (Term, Term) -> Supply -> ((Term, Term), Supply))
-> Supply -> PrimEvalMonad (Term, Term) -> ((Term, Term), Supply)
forall a b c. (a -> b -> c) -> b -> a -> c
flip PrimEvalMonad (Term, Term) -> Supply -> ((Term, Term), Supply)
forall a. PrimEvalMonad a -> Supply -> (a, Supply)
runPEM Supply
ids (PrimEvalMonad (Term, Term) -> ((Term, Term), Supply))
-> PrimEvalMonad (Term, Term) -> ((Term, Term), Supply)
forall a b. (a -> b) -> a -> b
$ do
Term
fDict <- String
-> InScopeSet
-> TyConMap
-> Term
-> Int
-> Int
-> PrimEvalMonad Term
forall (m :: Type -> Type).
(HasCallStack, MonadUnique m) =>
String -> InScopeSet -> TyConMap -> Term -> Int -> Int -> m Term
mkSelectorCase $(String
curLoc) InScopeSet
is0 TyConMap
tcm (Value -> Term
valToTerm Value
apDict) Int
1 Int
0
Term
fmapF' <- String
-> InScopeSet
-> TyConMap
-> Term
-> Int
-> Int
-> PrimEvalMonad Term
forall (m :: Type -> Type).
(HasCallStack, MonadUnique m) =>
String -> InScopeSet -> TyConMap -> Term -> Int -> Int -> m Term
mkSelectorCase $(String
curLoc) InScopeSet
is0 TyConMap
tcm Term
fDict Int
1 Int
0
Term
apF' <- String
-> InScopeSet
-> TyConMap
-> Term
-> Int
-> Int
-> PrimEvalMonad Term
forall (m :: Type -> Type).
(HasCallStack, MonadUnique m) =>
String -> InScopeSet -> TyConMap -> Term -> Int -> Int -> m Term
mkSelectorCase $(String
curLoc) InScopeSet
is0 TyConMap
tcm (Value -> Term
valToTerm Value
apDict) Int
1 Int
2
(Term, Term) -> PrimEvalMonad (Term, Term)
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Term
fmapF',Term
apF')
n'ty :: Type
n'ty = LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1))
Just (Type
consCoTy : [Type]
_) = DataCon -> [Type] -> Maybe [Type]
dataConInstArgTys DataCon
dc [Type
nTy,Type
bTy,Type
n'ty]
in Machine -> Term -> Maybe Machine
reduceWHNF' (Machine
mach { mSupply :: Supply
mSupply = Supply
ids' }) (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps Term
apF
[Type -> Either Term Type
forall a b. b -> Either a b
Right (TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [Type
n'ty,Type
bTy])
,Type -> Either Term Type
forall a b. b -> Either a b
Right (TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [Type
nTy,Type
bTy])
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps Term
fmapF
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
bTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right (Type -> Type -> Type
mkFunTy (TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [Type
n'ty,Type
bTy])
(TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [Type
nTy,Type
bTy]))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
dc)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
nTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
bTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
n'ty
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Type -> Term
primCo Type
consCoTy)])
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (Value -> Term
valToTerm Value
f)
[Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)])
])
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
aTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
fTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
bTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
n'ty
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
apDict)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
f)
,Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)
])
]
where
([Either TyVar Type]
tyArgs,Type
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
TyConApp TyConName
vecTcNm [Type]
_ = Type -> TypeView
tyView ([Either TyVar Type] -> [Type]
forall a b. [Either a b] -> [b]
Either.rights [Either TyVar Type]
tyArgs [Type] -> Int -> Type
forall a. [a] -> Int -> a
!! Int
2)
(Supply
ids, InScopeSet
is0) = (Machine -> Supply
mSupply Machine
mach, Machine -> InScopeSet
mScopeNames Machine
mach)
Text
"Clash.Sized.Vector.concatBitVector#"
| Bool
isSubj
, Type
nTy : Type
mTy : [Type]
_ <- [Type]
tys
, Value
_ : Value
km : Value
v : [Value]
_ <- [Value]
args
, DC DataCon
_ [Either Term Type]
vArgs <- Value
v
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> case Integer
n of
Integer
0 -> let resTyInfo :: (Type, Type, Integer)
resTyInfo = TyConMap -> Type -> [Type] -> (Type, Type, Integer)
extractTySizeInfo TyConMap
tcm Type
ty [Type]
tys
in Term -> Maybe Machine
reduce ((Type, Type, Integer) -> Integer -> Integer -> Term
mkBitVectorLit' (Type, Type, Integer)
resTyInfo Integer
0 Integer
0)
Integer
n' | Right Integer
m <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
mTy)
, ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
bvTcNm [Type]
_) <- Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
-> Term -> Maybe Machine
reduceWHNF (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$
Term -> [Either Term Type] -> Term
mkApps (TyConName -> Term
bvAppendPrim TyConName
bvTcNm)
[ Type -> Either Term Type
forall a b. b -> Either a b
Right (TyConName -> [Type] -> Type
mkTyConApp TyConName
typeNatMul [LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)),Type
mTy])
, Type -> Either Term Type
forall a b. b -> Either a b
Right Type
mTy
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral ((Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
m)))
, Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
1)
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[ Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
, Type -> Either Term Type
forall a b. b -> Either a b
Right Type
mTy
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
km)
, Term -> Either Term Type
forall a b. a -> Either a b
Left ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
vArgs [Term] -> Int -> Term
forall a. [a] -> Int -> a
!! Int
2)
])
]
Integer
_ -> Maybe Machine
forall a. Maybe a
Nothing
Text
"Clash.Sized.Vector.unconcatBitVector#"
| Bool
isSubj
, Type
nTy : Type
mTy : [Type]
_ <- [Type]
tys
, Value
_ : Value
km : Value
bv : [Value]
_ <- [Value]
args
, ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
vecTcNm [Type
_,Type
bvMTy]) <- Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
, TyConApp TyConName
bvTcNm [Type]
_ <- Type -> TypeView
tyView Type
bvMTy
, Right Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> case Integer
n of
Integer
0 ->
let (Just TyCon
vecTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
vecTcNm TyConMap
tcm
[DataCon
nilCon,DataCon
_] = TyCon -> [DataCon]
tyConDataCons TyCon
vecTc
in Term -> Maybe Machine
reduce (DataCon -> Type -> Term
mkVecNil DataCon
nilCon (TyConName -> [Type] -> Type
mkTyConApp TyConName
bvTcNm [Type
mTy]))
Integer
n' | Right Integer
m <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
mTy) ->
let Just TyCon
vecTc = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
vecTcNm TyConMap
tcm
[DataCon
_,DataCon
consCon] = TyCon -> [DataCon]
tyConDataCons TyCon
vecTc
tupTcNm :: TyConName
tupTcNm = TyCon -> TyConName
ghcTyconToTyConName (Boxity -> Int -> TyCon
tupleTyCon Boxity
Boxed Int
2)
Just TyCon
tupTc = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
tupTcNm TyConMap
tcm
[DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
splitCall :: Term
splitCall =
Term -> [Either Term Type] -> Term
mkApps (TyConName -> Term
bvSplitPrim TyConName
bvTcNm)
[ Type -> Either Term Type
forall a b. b -> Either a b
Right (TyConName -> [Type] -> Type
mkTyConApp TyConName
typeNatMul [LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)),Type
mTy])
, Type -> Either Term Type
forall a b. b -> Either a b
Right Type
mTy
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral ((Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
*Integer
m)))
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
bv)
]
mBVTy :: Type
mBVTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
bvTcNm [Type
mTy]
n1BVTy :: Type
n1BVTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
bvTcNm
[TyConName -> [Type] -> Type
mkTyConApp TyConName
typeNatMul
[LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1))
,Type
mTy]]
xNm :: Name a
xNm = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"x" Int
0
bvNm :: Name a
bvNm = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"bv'" Int
1
xId :: Id
xId = Type -> TmName -> Id
mkLocalId Type
mBVTy TmName
forall a. Name a
xNm
bvId :: Id
bvId = Type -> TmName -> Id
mkLocalId Type
n1BVTy TmName
forall a. Name a
bvNm
tupPat :: Pat
tupPat = DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
tupDc [] [Id
xId,Id
bvId]
xAlt :: (Pat, Term)
xAlt = (Pat
tupPat, (Id -> Term
Var Id
xId))
bvAlt :: (Pat, Term)
bvAlt = (Pat
tupPat, (Id -> Term
Var Id
bvId))
in Term -> Maybe Machine
reduce (Term -> Maybe Machine) -> Term -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ HasCallStack => DataCon -> Type -> Integer -> Term -> Term -> Term
DataCon -> Type -> Integer -> Term -> Term -> Term
mkVecCons DataCon
consCon (TyConName -> [Type] -> Type
mkTyConApp TyConName
bvTcNm [Type
mTy]) Integer
n'
(Term -> Type -> [(Pat, Term)] -> Term
Case Term
splitCall Type
mBVTy [(Pat, Term)
xAlt])
(Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo)
[ Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
, Type -> Either Term Type
forall a b. b -> Either a b
Right Type
mTy
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral (Integer
n'Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Value -> Term
valToTerm Value
km)
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Type -> [(Pat, Term)] -> Term
Case Term
splitCall Type
n1BVTy [(Pat, Term)
bvAlt])
])
Integer
_ -> Maybe Machine
forall a. Maybe a
Nothing
#if MIN_VERSION_ghc(9,4,0)
"Data.Text.Show.$wunpackCStringAscii#"
| [Lit (StringLiteral addr)] <- args
, Text.Text (Text.ByteArray ba) _off len <- Text.pack addr
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = UniqMap.lookup tupTcNm tcm
[tupDc] = tyConDataCons tupTc
ret = mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal (ByteArrayLiteral (BA.ByteArray ba)))
, Left (Literal (IntLiteral 0))
, Left (Literal (IntLiteral (toInteger len)))])
in reduce ret
"GHC.Magic.noinlineConstraint"
| [arg] <- args
-> reduce (valToTerm arg)
"GHC.TypeNats.withSomeSNat"
| Lit (NaturalLiteral n) : fun : _ <- args
, _ : funTy : _ <- Either.rights (fst (splitFunForallTy ty))
, (tyView -> TyConApp snatTcNm _) : _ <- Either.rights (fst (splitFunForallTy funTy))
, Just snatTc <- UniqMap.lookup snatTcNm tcm
, [snatDc] <- tyConDataCons snatTc
-> let nTy = LitTy (NumTy n)
snat = mkApps (Data snatDc) [Right nTy, Left (Literal (NaturalLiteral n))]
ret = mkApps (valToTerm fun) [Right nTy, Left snat]
in reduce ret
"GHC.Magic.nospec"
| [arg] <- args
-> reduce (valToTerm arg)
"GHC.Float.$wproperFractionDouble"
| _ : Lit (DoubleLiteral d) : _ <- args
, [sty@(tyView -> TyConApp signedTcNm [nTy@(LitTy (NumTy kn))])] <- tys
, nameOcc signedTcNm == "Clash.Sized.Internal.Signed.Signed"
, (_, tyView -> TyConApp tupTcNm tyArgs) <- splitFunForallTy ty
, Just tupTc <- UniqMap.lookup tupTcNm tcm
, [tupDc] <- tyConDataCons tupTc
-> let (sn, d1) = reifyNat kn (\p -> first toInteger (op p (wordToDouble d)))
ret = mkApps (Data tupDc) (map Right tyArgs ++
[ Left (mkSignedLit sty nTy kn sn)
, Left (mkDoubleCLit tcm (doubleToWord d1) (last tyArgs))
])
in reduce ret
where
op :: KnownNat n => Proxy n -> Double -> (Signed n, Double)
op _ = properFraction
#endif
Text
_ -> Maybe Machine
forall a. Maybe a
Nothing
where
ty :: Type
ty = PrimInfo -> Type
primType PrimInfo
pInfo
checkNaturalRange1 :: Type -> Integer -> (Natural -> Natural) -> Term
checkNaturalRange1 Type
nTy Integer
i Natural -> Natural
f =
Type -> [Integer] -> ([Natural] -> Term) -> Term
checkNaturalRange Type
nTy [Integer
i]
(\[Natural
i'] -> Natural -> Term
naturalToNaturalLiteral (Natural -> Natural
f Natural
i'))
checkNaturalRange2 :: Type
-> Integer -> Integer -> (Natural -> Natural -> Natural) -> Term
checkNaturalRange2 Type
nTy Integer
i Integer
j Natural -> Natural -> Natural
f =
Type -> [Integer] -> ([Natural] -> Term) -> Term
checkNaturalRange Type
nTy [Integer
i, Integer
j]
(\[Natural
i', Natural
j'] -> Natural -> Term
naturalToNaturalLiteral (Natural -> Natural -> Natural
f Natural
i' Natural
j'))
checkNaturalRange
:: Type
-> [Integer]
-> ([Natural] -> Term)
-> Term
checkNaturalRange :: Type -> [Integer] -> ([Natural] -> Term) -> Term
checkNaturalRange Type
nTy [Integer]
natsAsInts [Natural] -> Term
f =
if (Integer -> Bool) -> [Integer] -> Bool
forall (t :: Type -> Type) a.
Foldable t =>
(a -> Bool) -> t a -> Bool
any (Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<Integer
0) [Integer]
natsAsInts then
Term -> Type -> Term
TyApp (PrimInfo -> Term
Prim PrimInfo
NP.undefined) Type
nTy
else
[Natural] -> Term
f ((Integer -> Natural) -> [Integer] -> [Natural]
forall a b. (a -> b) -> [a] -> [b]
map Integer -> Natural
forall a. Num a => Integer -> a
fromInteger [Integer]
natsAsInts)
reduce :: Term -> Maybe Machine
reduce :: Term -> Maybe Machine
reduce Term
e = case Term -> Either String Term
forall a. a -> Either String a
isX Term
e of
Left String
msg -> String -> Maybe Machine -> Maybe Machine
forall a. String -> a -> a
trace ([String] -> String
unlines [String
"Warning: Not evaluating constant expression:", Text -> String
forall a. Show a => a -> String
show (PrimInfo -> Text
primName PrimInfo
pInfo), String
"Because doing so generates an XException:", String
msg]) Maybe Machine
forall a. Maybe a
Nothing
Right Term
e' -> Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Term -> Machine -> Machine
setTerm Term
e' Machine
mach)
reduceWHNF :: Term -> Maybe Machine
reduceWHNF Term
e =
let eval :: Evaluator
eval = Step -> Unwind -> PrimStep -> PrimUnwind -> Evaluator
Evaluator Step
ghcStep Unwind
ghcUnwind PrimStep
ghcPrimStep PrimUnwind
ghcPrimUnwind
mach1 :: Machine
mach1@Machine{mStack :: Machine -> Stack
mStack=[]} = Evaluator -> TyConMap -> Bool -> Machine -> Machine
whnf Evaluator
eval TyConMap
tcm Bool
isSubj (Term -> Machine -> Machine
setTerm Term
e (Machine -> Machine) -> Machine -> Machine
forall a b. (a -> b) -> a -> b
$ Machine -> Machine
stackClear Machine
mach)
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Machine
mach1 { mStack :: Stack
mStack = Machine -> Stack
mStack Machine
mach }
reduceWHNF' :: Machine -> Term -> Maybe Machine
reduceWHNF' Machine
mach1 Term
e =
let eval :: Evaluator
eval = Step -> Unwind -> PrimStep -> PrimUnwind -> Evaluator
Evaluator Step
ghcStep Unwind
ghcUnwind PrimStep
ghcPrimStep PrimUnwind
ghcPrimUnwind
mach2 :: Machine
mach2@Machine{mStack :: Machine -> Stack
mStack=[]} = Evaluator -> TyConMap -> Bool -> Machine -> Machine
whnf Evaluator
eval TyConMap
tcm Bool
isSubj (Term -> Machine -> Machine
setTerm Term
e Machine
mach1)
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ Machine
mach2 { mStack :: Stack
mStack = Machine -> Stack
mStack Machine
mach }
makeUndefinedIf :: Exception e => (e -> Bool) -> Term -> Term
makeUndefinedIf :: (e -> Bool) -> Term -> Term
makeUndefinedIf e -> Bool
wantToHandle Term
tm =
case IO (Either e Term) -> Either e Term
forall a. IO a -> a
unsafeDupablePerformIO (IO (Either e Term) -> Either e Term)
-> IO (Either e Term) -> Either e Term
forall a b. (a -> b) -> a -> b
$ (e -> Maybe e) -> IO Term -> IO (Either e Term)
forall e b a.
Exception e =>
(e -> Maybe b) -> IO a -> IO (Either b a)
tryJust e -> Maybe e
selectException (Term -> IO Term
forall a. a -> IO a
evaluate (Term -> IO Term) -> Term -> IO Term
forall a b. (a -> b) -> a -> b
$ Term -> Term
forall a. NFData a => a -> a
force Term
tm) of
Right Term
b -> Term
b
Left e
e -> String -> Term -> Term
forall a. String -> a -> a
trace (e -> String
forall a. Show a => a -> String
msg e
e) (Term -> Type -> Term
TyApp (PrimInfo -> Term
Prim PrimInfo
NP.undefined) Type
resTy)
where
resTy :: Type
resTy = TyConMap -> Type -> [Type] -> Type
getResultTy TyConMap
tcm Type
ty [Type]
tys
selectException :: e -> Maybe e
selectException e
e | e -> Bool
wantToHandle e
e = e -> Maybe e
forall a. a -> Maybe a
Just e
e
| Bool
otherwise = Maybe e
forall a. Maybe a
Nothing
msg :: a -> String
msg a
e = [String] -> String
unlines [String
"Warning: caught exception: \"" String -> String -> String
forall a. [a] -> [a] -> [a]
++ a -> String
forall a. Show a => a -> String
show a
e String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"\" while trying to evaluate: "
, Term -> String
forall p. PrettyPrec p => p -> String
showPpr (Term -> [Either Term Type] -> Term
mkApps (PrimInfo -> Term
Prim PrimInfo
pInfo) ((Value -> Either Term Type) -> [Value] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map (Term -> Either Term Type
forall a b. a -> Either a b
Left (Term -> Either Term Type)
-> (Value -> Term) -> Value -> Either Term Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Value -> Term
valToTerm) [Value]
args))
]
catchDivByZero :: Term -> Term
catchDivByZero = (ArithException -> Bool) -> Term -> Term
forall e. Exception e => (e -> Bool) -> Term -> Term
makeUndefinedIf (ArithException -> ArithException -> Bool
forall a. Eq a => a -> a -> Bool
==ArithException
DivideByZero)
pairOf :: (Value -> Maybe a) -> [Value] -> Maybe (a, a)
pairOf :: (Value -> Maybe a) -> [Value] -> Maybe (a, a)
pairOf Value -> Maybe a
f [Value
x, Value
y] = (,) (a -> a -> (a, a)) -> Maybe a -> Maybe (a -> (a, a))
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Value -> Maybe a
f Value
x Maybe (a -> (a, a)) -> Maybe a -> Maybe (a, a)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Value -> Maybe a
f Value
y
pairOf Value -> Maybe a
_ [Value]
_ = Maybe (a, a)
forall a. Maybe a
Nothing
listOf :: (Value -> Maybe a) -> [Value] -> [a]
listOf :: (Value -> Maybe a) -> [Value] -> [a]
listOf = (Value -> Maybe a) -> [Value] -> [a]
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe
wrapUnsigned :: Integer -> Integer -> Integer
wrapUnsigned :: Integer -> Integer -> Integer
wrapUnsigned Integer
n Integer
i = Integer
i Integer -> Integer -> Integer
forall a. Integral a => a -> a -> a
`mod` Integer
sz
where
sz :: Integer
sz = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger Integer
n
wrapSigned :: Integer -> Integer -> Integer
wrapSigned :: Integer -> Integer -> Integer
wrapSigned Integer
n Integer
i = if Integer
n Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
0 then Integer
0 else Integer
res
where
mask :: Integer
mask = Integer
1 Integer -> Int -> Integer
forall a. Bits a => a -> Int -> a
`shiftL` Integer -> Int
forall a. Num a => Integer -> a
fromInteger (Integer
n Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
1)
res :: Integer
res = case Integer -> Integer -> (Integer, Integer)
forall a. Integral a => a -> a -> (a, a)
divMod Integer
i Integer
mask of
(Integer
s,Integer
i1) | Integer -> Bool
forall a. Integral a => a -> Bool
even Integer
s -> Integer
i1
| Bool
otherwise -> Integer
i1 Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- Integer
mask
doubleLiterals' :: [Value] -> [Word64]
doubleLiterals' :: [Value] -> [Word64]
doubleLiterals' = (Value -> Maybe Word64) -> [Value] -> [Word64]
forall a. (Value -> Maybe a) -> [Value] -> [a]
listOf Value -> Maybe Word64
doubleLiteral
doubleLiteral :: Value -> Maybe Word64
doubleLiteral :: Value -> Maybe Word64
doubleLiteral Value
v = case Value
v of
Lit (DoubleLiteral Word64
i) -> Word64 -> Maybe Word64
forall a. a -> Maybe a
Just Word64
i
Value
_ -> Maybe Word64
forall a. Maybe a
Nothing
floatLiterals' :: [Value] -> [Word32]
floatLiterals' :: [Value] -> [Word32]
floatLiterals' = (Value -> Maybe Word32) -> [Value] -> [Word32]
forall a. (Value -> Maybe a) -> [Value] -> [a]
listOf Value -> Maybe Word32
floatLiteral
floatLiteral :: Value -> Maybe Word32
floatLiteral :: Value -> Maybe Word32
floatLiteral Value
v = case Value
v of
Lit (FloatLiteral Word32
i) -> Word32 -> Maybe Word32
forall a. a -> Maybe a
Just Word32
i
Value
_ -> Maybe Word32
forall a. Maybe a
Nothing
integerLiterals :: [Value] -> Maybe (Integer, Integer)
integerLiterals :: [Value] -> Maybe (Integer, Integer)
integerLiterals = (Value -> Maybe Integer) -> [Value] -> Maybe (Integer, Integer)
forall a. (Value -> Maybe a) -> [Value] -> Maybe (a, a)
pairOf Value -> Maybe Integer
integerLiteral
integerLiteral :: Value -> Maybe Integer
integerLiteral :: Value -> Maybe Integer
integerLiteral Value
v =
case Value
v of
Lit (IntegerLiteral Integer
i) -> Integer -> Maybe Integer
forall a. a -> Maybe a
Just Integer
i
DC DataCon
dc [Left (Literal (IntLiteral Integer
i))]
| DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1
-> Integer -> Maybe Integer
forall a. a -> Maybe a
Just Integer
i
DC DataCon
dc [Left (Literal (ByteArrayLiteral (BA.ByteArray ByteArray#
ba)))]
| DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
2
#if MIN_VERSION_base(4,15,0)
-> Just (IP ba)
#else
-> Integer -> Maybe Integer
forall a. a -> Maybe a
Just (BigNat -> Integer
Jp# (ByteArray# -> BigNat
BN# ByteArray#
ba))
#endif
| DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
3
#if MIN_VERSION_base(4,15,0)
-> Just (IN ba)
#else
-> Integer -> Maybe Integer
forall a. a -> Maybe a
Just (BigNat -> Integer
Jn# (ByteArray# -> BigNat
BN# ByteArray#
ba))
#endif
Value
_ -> Maybe Integer
forall a. Maybe a
Nothing
naturalLiterals :: [Value] -> Maybe (Integer, Integer)
naturalLiterals :: [Value] -> Maybe (Integer, Integer)
naturalLiterals = (Value -> Maybe Integer) -> [Value] -> Maybe (Integer, Integer)
forall a. (Value -> Maybe a) -> [Value] -> Maybe (a, a)
pairOf Value -> Maybe Integer
naturalLiteral
naturalLiteral :: Value -> Maybe Integer
naturalLiteral :: Value -> Maybe Integer
naturalLiteral Value
v =
case Value
v of
Lit (NaturalLiteral Integer
i) -> Integer -> Maybe Integer
forall a. a -> Maybe a
Just Integer
i
DC DataCon
dc [Left (Literal (WordLiteral Integer
i))]
| DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1
-> Integer -> Maybe Integer
forall a. a -> Maybe a
Just Integer
i
DC DataCon
dc [Left (Literal (ByteArrayLiteral (BA.ByteArray ByteArray#
ba)))]
| DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
2
#if MIN_VERSION_base(4,15,0)
-> Just (IP ba)
#else
-> Integer -> Maybe Integer
forall a. a -> Maybe a
Just (BigNat -> Integer
Jp# (ByteArray# -> BigNat
BN# ByteArray#
ba))
#endif
Value
_ -> Maybe Integer
forall a. Maybe a
Nothing
integerLiterals' :: [Value] -> [Integer]
integerLiterals' :: [Value] -> [Integer]
integerLiterals' = (Value -> Maybe Integer) -> [Value] -> [Integer]
forall a. (Value -> Maybe a) -> [Value] -> [a]
listOf Value -> Maybe Integer
integerLiteral
naturalLiterals' :: [Value] -> [Integer]
naturalLiterals' :: [Value] -> [Integer]
naturalLiterals' = (Value -> Maybe Integer) -> [Value] -> [Integer]
forall a. (Value -> Maybe a) -> [Value] -> [a]
listOf Value -> Maybe Integer
naturalLiteral
intLiterals :: [Value] -> Maybe (Integer,Integer)
intLiterals :: [Value] -> Maybe (Integer, Integer)
intLiterals = (Value -> Maybe Integer) -> [Value] -> Maybe (Integer, Integer)
forall a. (Value -> Maybe a) -> [Value] -> Maybe (a, a)
pairOf Value -> Maybe Integer
intLiteral
intLiterals' :: [Value] -> [Integer]
intLiterals' :: [Value] -> [Integer]
intLiterals' = (Value -> Maybe Integer) -> [Value] -> [Integer]
forall a. (Value -> Maybe a) -> [Value] -> [a]
listOf Value -> Maybe Integer
intLiteral
intCLiterals' :: [Value] -> [Integer]
intCLiterals' :: [Value] -> [Integer]
intCLiterals' = (Value -> Maybe Integer) -> [Value] -> [Integer]
forall a. (Value -> Maybe a) -> [Value] -> [a]
listOf Value -> Maybe Integer
intCLiteral
intLiteral :: Value -> Maybe Integer
intLiteral :: Value -> Maybe Integer
intLiteral Value
x = case Value
x of
Lit (IntLiteral Integer
i) -> Integer -> Maybe Integer
forall a. a -> Maybe a
Just Integer
i
Value
_ -> Maybe Integer
forall a. Maybe a
Nothing
#if MIN_VERSION_base(4,16,0)
int8Literals' :: [Value] -> [Integer]
int8Literals' = listOf int8Literal
int8Literal :: Value -> Maybe Integer
int8Literal x = case x of
Lit (Int8Literal i) -> Just i
_ -> Nothing
int16Literals' :: [Value] -> [Integer]
int16Literals' = listOf int16Literal
int16Literal :: Value -> Maybe Integer
int16Literal x = case x of
Lit (Int16Literal i) -> Just i
_ -> Nothing
int32Literals' :: [Value] -> [Integer]
int32Literals' = listOf int32Literal
int32Literal :: Value -> Maybe Integer
int32Literal x = case x of
Lit (Int32Literal i) -> Just i
_ -> Nothing
#if MIN_VERSION_base(4,17,0)
int64Literals' :: [Value] -> [Integer]
int64Literals' = listOf int64Literal
int64Literal :: Value -> Maybe Integer
int64Literal x = case x of
Lit (Int64Literal i) -> Just i
_ -> Nothing
#endif
#endif
intCLiteral :: Value -> Maybe Integer
intCLiteral :: Value -> Maybe Integer
intCLiteral Value
v = case Value
v of
(DC DataCon
_ [Left (Literal (IntLiteral Integer
i))]) -> Integer -> Maybe Integer
forall a. a -> Maybe a
Just Integer
i
Value
_ -> Maybe Integer
forall a. Maybe a
Nothing
intCLiterals :: [Value] -> Maybe (Integer, Integer)
intCLiterals :: [Value] -> Maybe (Integer, Integer)
intCLiterals = (Value -> Maybe Integer) -> [Value] -> Maybe (Integer, Integer)
forall a. (Value -> Maybe a) -> [Value] -> Maybe (a, a)
pairOf Value -> Maybe Integer
intCLiteral
wordLiterals :: [Value] -> Maybe (Integer,Integer)
wordLiterals :: [Value] -> Maybe (Integer, Integer)
wordLiterals = (Value -> Maybe Integer) -> [Value] -> Maybe (Integer, Integer)
forall a. (Value -> Maybe a) -> [Value] -> Maybe (a, a)
pairOf Value -> Maybe Integer
wordLiteral
wordLiterals' :: [Value] -> [Integer]
wordLiterals' :: [Value] -> [Integer]
wordLiterals' = (Value -> Maybe Integer) -> [Value] -> [Integer]
forall a. (Value -> Maybe a) -> [Value] -> [a]
listOf Value -> Maybe Integer
wordLiteral
wordLiteral :: Value -> Maybe Integer
wordLiteral :: Value -> Maybe Integer
wordLiteral Value
x = case Value
x of
Lit (WordLiteral Integer
i) -> Integer -> Maybe Integer
forall a. a -> Maybe a
Just Integer
i
Value
_ -> Maybe Integer
forall a. Maybe a
Nothing
#if MIN_VERSION_base(4,16,0)
word8Literals' :: [Value] -> [Integer]
word8Literals' = listOf word8Literal
word8Literal :: Value -> Maybe Integer
word8Literal x = case x of
Lit (Word8Literal i) -> Just i
_ -> Nothing
word16Literals' :: [Value] -> [Integer]
word16Literals' = listOf word16Literal
word16Literal :: Value -> Maybe Integer
word16Literal x = case x of
Lit (Word16Literal i) -> Just i
_ -> Nothing
word32Literals' :: [Value] -> [Integer]
word32Literals' = listOf word32Literal
word32Literal :: Value -> Maybe Integer
word32Literal x = case x of
Lit (Word32Literal i) -> Just i
_ -> Nothing
#if MIN_VERSION_base(4,17,0)
word64Literals' :: [Value] -> [Integer]
word64Literals' = listOf word64Literal
word64Literal :: Value -> Maybe Integer
word64Literal x = case x of
Lit (Word64Literal i) -> Just i
_ -> Nothing
#endif
#endif
charLiterals :: [Value] -> Maybe (Char,Char)
charLiterals :: [Value] -> Maybe (Char, Char)
charLiterals = (Value -> Maybe Char) -> [Value] -> Maybe (Char, Char)
forall a. (Value -> Maybe a) -> [Value] -> Maybe (a, a)
pairOf Value -> Maybe Char
charLiteral
charLiterals' :: [Value] -> [Char]
charLiterals' :: [Value] -> String
charLiterals' = (Value -> Maybe Char) -> [Value] -> String
forall a. (Value -> Maybe a) -> [Value] -> [a]
listOf Value -> Maybe Char
charLiteral
charLiteral :: Value -> Maybe Char
charLiteral :: Value -> Maybe Char
charLiteral Value
x = case Value
x of
Lit (CharLiteral Char
c) -> Char -> Maybe Char
forall a. a -> Maybe a
Just Char
c
Value
_ -> Maybe Char
forall a. Maybe a
Nothing
sizedLiterals :: Text -> [Value] -> Maybe (Integer,Integer)
sizedLiterals :: Text -> [Value] -> Maybe (Integer, Integer)
sizedLiterals Text
szCon = (Value -> Maybe Integer) -> [Value] -> Maybe (Integer, Integer)
forall a. (Value -> Maybe a) -> [Value] -> Maybe (a, a)
pairOf (Text -> Value -> Maybe Integer
sizedLiteral Text
szCon)
sizedLiterals' :: Text -> [Value] -> [Integer]
sizedLiterals' :: Text -> [Value] -> [Integer]
sizedLiterals' Text
szCon = (Value -> Maybe Integer) -> [Value] -> [Integer]
forall a. (Value -> Maybe a) -> [Value] -> [a]
listOf (Text -> Value -> Maybe Integer
sizedLiteral Text
szCon)
sizedLiteral :: Text -> Value -> Maybe Integer
sizedLiteral :: Text -> Value -> Maybe Integer
sizedLiteral Text
szCon Value
val = case Value
val of
PrimVal PrimInfo
p [Type]
_ [Value
_, Lit (IntegerLiteral Integer
i)]
| PrimInfo -> Text
primName PrimInfo
p Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== Text
szCon -> Integer -> Maybe Integer
forall a. a -> Maybe a
Just Integer
i
Value
_ -> Maybe Integer
forall a. Maybe a
Nothing
bitLiterals
:: [Value]
-> [(Integer,Integer)]
bitLiterals :: [Value] -> [(Integer, Integer)]
bitLiterals = ((Integer, Integer) -> (Integer, Integer))
-> [(Integer, Integer)] -> [(Integer, Integer)]
forall a b. (a -> b) -> [a] -> [b]
map (Integer, Integer) -> (Integer, Integer)
forall a b. (Bits a, Bits b, Num a, Num b) => (a, b) -> (a, b)
normalizeBit ([(Integer, Integer)] -> [(Integer, Integer)])
-> ([Value] -> [(Integer, Integer)])
-> [Value]
-> [(Integer, Integer)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Value -> Maybe (Integer, Integer))
-> [Value] -> [(Integer, Integer)]
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe Value -> Maybe (Integer, Integer)
go
where
normalizeBit :: (a, b) -> (a, b)
normalizeBit (a
msk,b
v) = (a
msk a -> a -> a
forall a. Bits a => a -> a -> a
.&. a
1, b
v b -> b -> b
forall a. Bits a => a -> a -> a
.&. b
1)
go :: Value -> Maybe (Integer, Integer)
go Value
val = case Value
val of
PrimVal PrimInfo
p [Type]
_ [Lit (WordLiteral Integer
m), Lit (IntegerLiteral Integer
i)]
| PrimInfo -> Text
primName PrimInfo
p Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== Text
"Clash.Sized.Internal.BitVector.fromInteger##"
-> (Integer, Integer) -> Maybe (Integer, Integer)
forall a. a -> Maybe a
Just (Integer
m,Integer
i)
Value
_ -> Maybe (Integer, Integer)
forall a. Maybe a
Nothing
indexLiterals, signedLiterals, unsignedLiterals
:: [Value] -> Maybe (Integer,Integer)
indexLiterals :: [Value] -> Maybe (Integer, Integer)
indexLiterals = Text -> [Value] -> Maybe (Integer, Integer)
sizedLiterals Text
"Clash.Sized.Internal.Index.fromInteger#"
signedLiterals :: [Value] -> Maybe (Integer, Integer)
signedLiterals = Text -> [Value] -> Maybe (Integer, Integer)
sizedLiterals Text
"Clash.Sized.Internal.Signed.fromInteger#"
unsignedLiterals :: [Value] -> Maybe (Integer, Integer)
unsignedLiterals = Text -> [Value] -> Maybe (Integer, Integer)
sizedLiterals Text
"Clash.Sized.Internal.Unsigned.fromInteger#"
indexLiterals', signedLiterals', unsignedLiterals'
:: [Value] -> [Integer]
indexLiterals' :: [Value] -> [Integer]
indexLiterals' = Text -> [Value] -> [Integer]
sizedLiterals' Text
"Clash.Sized.Internal.Index.fromInteger#"
signedLiterals' :: [Value] -> [Integer]
signedLiterals' = Text -> [Value] -> [Integer]
sizedLiterals' Text
"Clash.Sized.Internal.Signed.fromInteger#"
unsignedLiterals' :: [Value] -> [Integer]
unsignedLiterals' = Text -> [Value] -> [Integer]
sizedLiterals' Text
"Clash.Sized.Internal.Unsigned.fromInteger#"
bitVectorLiterals'
:: [Value] -> [(Integer,Integer)]
bitVectorLiterals' :: [Value] -> [(Integer, Integer)]
bitVectorLiterals' = (Value -> Maybe (Integer, Integer))
-> [Value] -> [(Integer, Integer)]
forall a. (Value -> Maybe a) -> [Value] -> [a]
listOf Value -> Maybe (Integer, Integer)
bitVectorLiteral
bitVectorLiteral :: Value -> Maybe (Integer, Integer)
bitVectorLiteral :: Value -> Maybe (Integer, Integer)
bitVectorLiteral Value
val = case Value
val of
(PrimVal PrimInfo
p [Type]
_ [Value
_, Lit (NaturalLiteral Integer
m), Lit (IntegerLiteral Integer
i)])
| PrimInfo -> Text
primName PrimInfo
p Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== Text
"Clash.Sized.Internal.BitVector.fromInteger#" -> (Integer, Integer) -> Maybe (Integer, Integer)
forall a. a -> Maybe a
Just (Integer
m, Integer
i)
Value
_ -> Maybe (Integer, Integer)
forall a. Maybe a
Nothing
toBV :: (Integer,Integer) -> BitVector n
toBV :: (Integer, Integer) -> BitVector n
toBV (Integer
mask,Integer
val) = Natural -> Natural -> BitVector n
forall (n :: Nat). Natural -> Natural -> BitVector n
BV (Integer -> Natural
forall a. Num a => Integer -> a
fromInteger Integer
mask) (Integer -> Natural
forall a. Num a => Integer -> a
fromInteger Integer
val)
splitBV :: BitVector n -> (Integer,Integer)
splitBV :: BitVector n -> (Integer, Integer)
splitBV (BV Natural
msk Natural
val) = (Natural -> Integer
forall a. Integral a => a -> Integer
toInteger Natural
msk, Natural -> Integer
forall a. Integral a => a -> Integer
toInteger Natural
val)
toBit :: (Integer,Integer) -> Bit
toBit :: (Integer, Integer) -> Bit
toBit (Integer
mask,Integer
val) = Word -> Word -> Bit
Bit (Integer -> Word
forall a. Num a => Integer -> a
fromInteger Integer
mask) (Integer -> Word
forall a. Num a => Integer -> a
fromInteger Integer
val)
valArgs
:: Value
-> Maybe [Term]
valArgs :: Value -> Maybe [Term]
valArgs Value
v =
case Value
v of
PrimVal PrimInfo
_ [Type]
_ [Value]
vs -> [Term] -> Maybe [Term]
forall a. a -> Maybe a
Just ((Value -> Term) -> [Value] -> [Term]
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap Value -> Term
valToTerm [Value]
vs)
DC DataCon
_ [Either Term Type]
args -> [Term] -> Maybe [Term]
forall a. a -> Maybe a
Just ([Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Type]
args)
Value
_ -> Maybe [Term]
forall a. Maybe a
Nothing
sizedLitIntLit
:: Text -> TyConMap -> [Type] -> [Value]
-> Maybe (Type,Integer,Integer,Integer)
sizedLitIntLit :: Text
-> TyConMap
-> [Type]
-> [Value]
-> Maybe (Type, Integer, Integer, Integer)
sizedLitIntLit Text
szCon TyConMap
tcm [Type]
tys [Value]
args
| Just (Type
nTy,Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [Value
_
,PrimVal PrimInfo
p [Type]
_ [Value
_,Lit (IntegerLiteral Integer
i)]
,Value -> Maybe [Term]
valArgs -> Just [Literal (IntLiteral Integer
j)]
] <- [Value]
args
, PrimInfo -> Text
primName PrimInfo
p Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== Text
szCon
= (Type, Integer, Integer, Integer)
-> Maybe (Type, Integer, Integer, Integer)
forall a. a -> Maybe a
Just (Type
nTy,Integer
kn,Integer
i,Integer
j)
| Bool
otherwise
= Maybe (Type, Integer, Integer, Integer)
forall a. Maybe a
Nothing
signedLitIntLit, unsignedLitIntLit
:: TyConMap -> [Type] -> [Value]
-> Maybe (Type,Integer,Integer,Integer)
signedLitIntLit :: TyConMap
-> [Type] -> [Value] -> Maybe (Type, Integer, Integer, Integer)
signedLitIntLit = Text
-> TyConMap
-> [Type]
-> [Value]
-> Maybe (Type, Integer, Integer, Integer)
sizedLitIntLit Text
"Clash.Sized.Internal.Signed.fromInteger#"
unsignedLitIntLit :: TyConMap
-> [Type] -> [Value] -> Maybe (Type, Integer, Integer, Integer)
unsignedLitIntLit = Text
-> TyConMap
-> [Type]
-> [Value]
-> Maybe (Type, Integer, Integer, Integer)
sizedLitIntLit Text
"Clash.Sized.Internal.Unsigned.fromInteger#"
bitVectorLitIntLit
:: TyConMap -> [Type] -> [Value]
-> Maybe (Type,Integer,(Integer,Integer),Integer)
bitVectorLitIntLit :: TyConMap
-> [Type]
-> [Value]
-> Maybe (Type, Integer, (Integer, Integer), Integer)
bitVectorLitIntLit TyConMap
tcm [Type]
tys [Value]
args
| Just (Type
nTy,Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [Value
_
,PrimVal PrimInfo
p [Type]
_ [Value
_,Lit (NaturalLiteral Integer
m),Lit (IntegerLiteral Integer
i)]
,Value -> Maybe [Term]
valArgs -> Just [Literal (IntLiteral Integer
j)]
] <- [Value]
args
, PrimInfo -> Text
primName PrimInfo
p Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== Text
"Clash.Sized.Internal.BitVector.fromInteger#"
= (Type, Integer, (Integer, Integer), Integer)
-> Maybe (Type, Integer, (Integer, Integer), Integer)
forall a. a -> Maybe a
Just (Type
nTy,Integer
kn,(Integer
m,Integer
i),Integer
j)
| Bool
otherwise
= Maybe (Type, Integer, (Integer, Integer), Integer)
forall a. Maybe a
Nothing
mkIntCLit :: TyConMap -> Integer -> Type -> Term
mkIntCLit :: TyConMap -> Integer -> Type -> Term
mkIntCLit TyConMap
tcm Integer
lit Type
resTy =
Term -> Term -> Term
App (DataCon -> Term
Data DataCon
intDc) (Literal -> Term
Literal (Integer -> Literal
IntLiteral Integer
lit))
where
([Either TyVar Type]
_, Type -> TypeView
tyView -> TyConApp TyConName
intTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
resTy
Just TyCon
intTc = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
intTcNm TyConMap
tcm
[DataCon
intDc] = TyCon -> [DataCon]
tyConDataCons TyCon
intTc
mkFloatCLit :: TyConMap -> Word32 -> Type -> Term
mkFloatCLit :: TyConMap -> Word32 -> Type -> Term
mkFloatCLit TyConMap
tcm Word32
lit Type
resTy =
Term -> Term -> Term
App (DataCon -> Term
Data DataCon
floatDc) (Literal -> Term
Literal (Word32 -> Literal
FloatLiteral Word32
lit))
where
([Either TyVar Type]
_, Type -> TypeView
tyView -> TyConApp TyConName
floatTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
resTy
(Just TyCon
floatTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
floatTcNm TyConMap
tcm
[DataCon
floatDc] = TyCon -> [DataCon]
tyConDataCons TyCon
floatTc
mkDoubleCLit :: TyConMap -> Word64 -> Type -> Term
mkDoubleCLit :: TyConMap -> Word64 -> Type -> Term
mkDoubleCLit TyConMap
tcm Word64
lit Type
resTy =
Term -> Term -> Term
App (DataCon -> Term
Data DataCon
doubleDc) (Literal -> Term
Literal (Word64 -> Literal
DoubleLiteral Word64
lit))
where
([Either TyVar Type]
_, Type -> TypeView
tyView -> TyConApp TyConName
doubleTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
resTy
(Just TyCon
doubleTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
doubleTcNm TyConMap
tcm
[DataCon
doubleDc] = TyCon -> [DataCon]
tyConDataCons TyCon
doubleTc
mkSomeNat :: TyConMap -> Integer -> Type -> Term
mkSomeNat :: TyConMap -> Integer -> Type -> Term
mkSomeNat TyConMap
tcm Integer
lit Type
resTy =
Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
someNatDc)
[ Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
lit))
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral Integer
lit))
, Term -> Either Term Type
forall a b. a -> Either a b
Left Term
proxy
]
where
TyConApp TyConName
someNatTcNm [] = Type -> TypeView
tyView Type
resTy
(Just TyCon
someNatTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
someNatTcNm TyConMap
tcm
[DataCon
someNatDc] = TyCon -> [DataCon]
tyConDataCons TyCon
someNatTc
(Either TyVar Type
_:Either TyVar Type
_:Right (Type -> TypeView
tyView -> TyConApp TyConName
proxyTcNm [Type
natTy,Type
_]):[Either TyVar Type]
_,Type
_) =
Type -> ([Either TyVar Type], Type)
splitFunForallTy (DataCon -> Type
dcType DataCon
someNatDc)
(Just TyCon
proxyTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
proxyTcNm TyConMap
tcm
[DataCon
proxyDc] = TyCon -> [DataCon]
tyConDataCons TyCon
proxyTc
proxy :: Term
proxy = Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
proxyDc)
[ Type -> Either Term Type
forall a b. b -> Either a b
Right Type
natTy
, Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
lit))
]
extractKnownNat :: TyConMap -> [Type] -> Maybe (Type, Integer)
TyConMap
tcm [Type]
tys = case [Type]
tys of
Type
nTy : [Type]
_ | Right Integer
nInt <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
nTy)
-> (Type, Integer) -> Maybe (Type, Integer)
forall a. a -> Maybe a
Just (Type
nTy, Integer
nInt)
[Type]
_ -> Maybe (Type, Integer)
forall a. Maybe a
Nothing
extractKnownNats :: TyConMap -> [Type] -> [(Type, Integer)]
TyConMap
tcm =
(Type -> Maybe (Type, Integer)) -> [Type] -> [(Type, Integer)]
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe (TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm ([Type] -> Maybe (Type, Integer))
-> (Type -> [Type]) -> Type -> Maybe (Type, Integer)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type -> [Type]
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure)
mkSizedLit
:: (Type -> Term)
-> Type
-> Type
-> Integer
-> Integer
-> Term
mkSizedLit :: (Type -> Term) -> Type -> Type -> Integer -> Integer -> Term
mkSizedLit Type -> Term
conPrim Type
ty Type
nTy Integer
kn Integer
val =
Term -> [Either Term Type] -> Term
mkApps
(Type -> Term
conPrim Type
sTy)
[ Type -> Either Term Type
forall a b. b -> Either a b
Right Type
nTy
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral Integer
kn))
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral Integer
val)) ]
where
([Either TyVar Type]
_,Type
sTy) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
mkBitLit
:: Type
-> Integer
-> Integer
-> Term
mkBitLit :: Type -> Integer -> Integer -> Term
mkBitLit Type
ty Integer
msk Integer
val =
Term -> [Either Term Type] -> Term
mkApps (Type -> Term
bConPrim Type
sTy) [ Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
WordLiteral (Integer
msk Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. Integer
1)))
, Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral (Integer
val Integer -> Integer -> Integer
forall a. Bits a => a -> a -> a
.&. Integer
1)))]
where
([Either TyVar Type]
_,Type
sTy) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
mkSignedLit, mkUnsignedLit
:: Type
-> Type
-> Integer
-> Integer
-> Term
mkSignedLit :: Type -> Type -> Integer -> Integer -> Term
mkSignedLit = (Type -> Term) -> Type -> Type -> Integer -> Integer -> Term
mkSizedLit Type -> Term
signedConPrim
mkUnsignedLit :: Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit = (Type -> Term) -> Type -> Type -> Integer -> Integer -> Term
mkSizedLit Type -> Term
unsignedConPrim
mkBitVectorLit
:: Type
-> Type
-> Integer
-> Integer
-> Integer
-> Term
mkBitVectorLit :: Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
ty Type
nTy Integer
kn Integer
mask Integer
val
= Term -> [Either Term Type] -> Term
mkApps (Type -> Term
bvConPrim Type
sTy)
[Type -> Either Term Type
forall a b. b -> Either a b
Right Type
nTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral Integer
kn))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
NaturalLiteral Integer
mask))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral Integer
val))]
where
([Either TyVar Type]
_,Type
sTy) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
mkIndexLitE
:: Type
-> Type
-> Integer
-> Integer
-> Either Term Term
mkIndexLitE :: Type -> Type -> Integer -> Integer -> Either Term Term
mkIndexLitE Type
rTy Type
nTy Integer
kn Integer
val
| Integer
val Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
0
, Integer
val Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
kn
= Term -> Either Term Term
forall a b. b -> Either a b
Right ((Type -> Term) -> Type -> Type -> Integer -> Integer -> Term
mkSizedLit Type -> Term
indexConPrim Type
rTy Type
nTy Integer
kn Integer
val)
| Bool
otherwise
= Term -> Either Term Term
forall a b. a -> Either a b
Left (Term -> Type -> Term
TyApp (PrimInfo -> Term
Prim PrimInfo
NP.undefined) (TyConName -> [Type] -> Type
mkTyConApp TyConName
indexTcNm [Type
nTy]))
where
TyConApp TyConName
indexTcNm [Type]
_ = Type -> TypeView
tyView (([Either TyVar Type], Type) -> Type
forall a b. (a, b) -> b
snd (Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
rTy))
mkIndexLit
:: Type
-> Type
-> Integer
-> Integer
-> Term
mkIndexLit :: Type -> Type -> Integer -> Integer -> Term
mkIndexLit Type
rTy Type
nTy Integer
kn Integer
val =
(Term -> Term) -> (Term -> Term) -> Either Term Term -> Term
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either Term -> Term
forall a. a -> a
id Term -> Term
forall a. a -> a
id (Type -> Type -> Integer -> Integer -> Either Term Term
mkIndexLitE Type
rTy Type
nTy Integer
kn Integer
val)
mkBitVectorLit'
:: (Type, Type, Integer)
-> Integer
-> Integer
-> Term
mkBitVectorLit' :: (Type, Type, Integer) -> Integer -> Integer -> Term
mkBitVectorLit' (Type
ty,Type
nTy,Integer
kn) = Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
ty Type
nTy Integer
kn
mkIndexLit'
:: (Type, Type, Integer)
-> Integer
-> Term
mkIndexLit' :: (Type, Type, Integer) -> Integer -> Term
mkIndexLit' (Type
rTy,Type
nTy,Integer
kn) = Type -> Type -> Integer -> Integer -> Term
mkIndexLit Type
rTy Type
nTy Integer
kn
boolToIntLiteral :: Bool -> Term
boolToIntLiteral :: Bool -> Term
boolToIntLiteral Bool
b = if Bool
b then Literal -> Term
Literal (Integer -> Literal
IntLiteral Integer
1) else Literal -> Term
Literal (Integer -> Literal
IntLiteral Integer
0)
boolToBoolLiteral :: TyConMap -> Type -> Bool -> Term
boolToBoolLiteral :: TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty Bool
b =
let ([Either TyVar Type]
_,Type -> TypeView
tyView -> TyConApp TyConName
boolTcNm []) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty
(Just TyCon
boolTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
UniqMap.lookup TyConName
boolTcNm TyConMap
tcm
[DataCon
falseDc,DataCon
trueDc] = TyCon -> [DataCon]
tyConDataCons TyCon
boolTc
retDc :: DataCon
retDc = if Bool
b then DataCon
trueDc else DataCon
falseDc
in DataCon -> Term
Data DataCon
retDc
charToCharLiteral :: Char -> Term
charToCharLiteral :: Char -> Term
charToCharLiteral = Literal -> Term
Literal (Literal -> Term) -> (Char -> Literal) -> Char -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Literal
CharLiteral
integerToIntLiteral :: Integer -> Term
integerToIntLiteral :: Integer -> Term
integerToIntLiteral = Literal -> Term
Literal (Literal -> Term) -> (Integer -> Literal) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Integer -> Integer) -> Integer -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Integer) -> (Integer -> Int) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Int
forall a. Num a => Integer -> a
fromInteger :: Integer -> Int)
integerToWordLiteral :: Integer -> Term
integerToWordLiteral :: Integer -> Term
integerToWordLiteral = Literal -> Term
Literal (Literal -> Term) -> (Integer -> Literal) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
WordLiteral (Integer -> Literal) -> (Integer -> Integer) -> Integer -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word -> Integer
forall a. Integral a => a -> Integer
toInteger (Word -> Integer) -> (Integer -> Word) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word)
integerToInt64Literal :: Integer -> Term
integerToInt64Literal :: Integer -> Term
integerToInt64Literal = Literal -> Term
Literal (Literal -> Term) -> (Integer -> Literal) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
Int64Literal (Integer -> Literal) -> (Integer -> Integer) -> Integer -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int64 -> Integer
forall a. Integral a => a -> Integer
toInteger (Int64 -> Integer) -> (Integer -> Int64) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Int64
forall a. Num a => Integer -> a
fromInteger :: Integer -> Int64)
integerToWord64Literal :: Integer -> Term
integerToWord64Literal :: Integer -> Term
integerToWord64Literal = Literal -> Term
Literal (Literal -> Term) -> (Integer -> Literal) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
Word64Literal (Integer -> Literal) -> (Integer -> Integer) -> Integer -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word64 -> Integer
forall a. Integral a => a -> Integer
toInteger (Word64 -> Integer) -> (Integer -> Word64) -> Integer -> Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Integer -> Word64
forall a. Num a => Integer -> a
fromInteger :: Integer -> Word64)
integerToIntegerLiteral :: Integer -> Term
integerToIntegerLiteral :: Integer -> Term
integerToIntegerLiteral = Literal -> Term
Literal (Literal -> Term) -> (Integer -> Literal) -> Integer -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntegerLiteral
naturalToNaturalLiteral :: Natural -> Term
naturalToNaturalLiteral :: Natural -> Term
naturalToNaturalLiteral = Literal -> Term
Literal (Literal -> Term) -> (Natural -> Literal) -> Natural -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
NaturalLiteral (Integer -> Literal) -> (Natural -> Integer) -> Natural -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Natural -> Integer
forall a. Integral a => a -> Integer
toInteger
bConPrim :: Type -> Term
bConPrim :: Type -> Term
bConPrim (Type -> TypeView
tyView -> TyConApp TyConName
bTcNm [Type]
_)
= PrimInfo -> Term
Prim (Text
-> Type -> WorkInfo -> IsMultiPrim -> PrimUnfolding -> PrimInfo
PrimInfo Text
"Clash.Sized.Internal.BitVector.fromInteger##" Type
funTy WorkInfo
WorkNever IsMultiPrim
SingleResult PrimUnfolding
NoUnfolding)
where
funTy :: Type
funTy = (Type -> Type -> Type) -> [Type] -> Type
forall (t :: Type -> Type) a.
Foldable t =>
(a -> a -> a) -> t a -> a
foldr1 Type -> Type -> Type
mkFunTy [Type
wordPrimTy,Type
integerPrimTy,TyConName -> [Type] -> Type
mkTyConApp TyConName
bTcNm []]
bConPrim Type
_ = String -> Term
forall a. HasCallStack => String -> a
error (String -> Term) -> String -> Term
forall a b. (a -> b) -> a -> b
$ $(String
curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"called with incorrect type"
bvConPrim :: Type -> Term
bvConPrim :: Type -> Term
bvConPrim (Type -> TypeView
tyView -> TyConApp TyConName
bvTcNm [Type]
_)
= PrimInfo -> Term
Prim (Text
-> Type -> WorkInfo -> IsMultiPrim -> PrimUnfolding -> PrimInfo
PrimInfo Text
"Clash.Sized.Internal.BitVector.fromInteger#" (TyVar -> Type -> Type
ForAllTy TyVar
nTV Type
funTy) WorkInfo
WorkNever IsMultiPrim
SingleResult PrimUnfolding
NoUnfolding)
where
funTy :: Type
funTy = (Type -> Type -> Type) -> [Type] -> Type
forall (t :: Type -> Type) a.
Foldable t =>
(a -> a -> a) -> t a -> a
foldr1 Type -> Type -> Type
mkFunTy [Type
naturalPrimTy,Type
naturalPrimTy,Type
integerPrimTy,TyConName -> [Type] -> Type
mkTyConApp TyConName
bvTcNm [Type
nVar]]
nName :: Name a
nName = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"n" Int
0
nVar :: Type
nVar = TyVar -> Type
VarTy TyVar
nTV
nTV :: TyVar
nTV = Type -> TyName -> TyVar
mkTyVar Type
typeNatKind TyName
forall a. Name a
nName
bvConPrim Type
_ = String -> Term
forall a. HasCallStack => String -> a
error (String -> Term) -> String -> Term
forall a b. (a -> b) -> a -> b
$ $(String
curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"called with incorrect type"
indexConPrim :: Type -> Term
indexConPrim :: Type -> Term
indexConPrim (Type -> TypeView
tyView -> TyConApp TyConName
indexTcNm [Type]
_)
= PrimInfo -> Term
Prim (Text
-> Type -> WorkInfo -> IsMultiPrim -> PrimUnfolding -> PrimInfo
PrimInfo Text
"Clash.Sized.Internal.Index.fromInteger#" (TyVar -> Type -> Type
ForAllTy TyVar
nTV Type
funTy) WorkInfo
WorkNever IsMultiPrim
SingleResult PrimUnfolding
NoUnfolding)
where
funTy :: Type
funTy = (Type -> Type -> Type) -> [Type] -> Type
forall (t :: Type -> Type) a.
Foldable t =>
(a -> a -> a) -> t a -> a
foldr1 Type -> Type -> Type
mkFunTy [Type
naturalPrimTy,Type
integerPrimTy,TyConName -> [Type] -> Type
mkTyConApp TyConName
indexTcNm [Type
nVar]]
nName :: Name a
nName = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"n" Int
0
nVar :: Type
nVar = TyVar -> Type
VarTy TyVar
nTV
nTV :: TyVar
nTV = Type -> TyName -> TyVar
mkTyVar Type
typeNatKind TyName
forall a. Name a
nName
indexConPrim Type
_ = String -> Term
forall a. HasCallStack => String -> a
error (String -> Term) -> String -> Term
forall a b. (a -> b) -> a -> b
$ $(String
curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"called with incorrect type"
signedConPrim :: Type -> Term
signedConPrim :: Type -> Term
signedConPrim (Type -> TypeView
tyView -> TyConApp TyConName
signedTcNm [Type]
_)
= PrimInfo -> Term
Prim (Text
-> Type -> WorkInfo -> IsMultiPrim -> PrimUnfolding -> PrimInfo
PrimInfo Text
"Clash.Sized.Internal.Signed.fromInteger#" (TyVar -> Type -> Type
ForAllTy TyVar
nTV Type
funTy) WorkInfo
WorkNever IsMultiPrim
SingleResult PrimUnfolding
NoUnfolding)
where
funTy :: Type
funTy = (Type -> Type -> Type) -> [Type] -> Type
forall (t :: Type -> Type) a.
Foldable t =>
(a -> a -> a) -> t a -> a
foldr1 Type -> Type -> Type
mkFunTy [Type
naturalPrimTy,Type
integerPrimTy,TyConName -> [Type] -> Type
mkTyConApp TyConName
signedTcNm [Type
nVar]]
nName :: Name a
nName = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"n" Int
0
nVar :: Type
nVar = TyVar -> Type
VarTy TyVar
nTV
nTV :: TyVar
nTV = Type -> TyName -> TyVar
mkTyVar Type
typeNatKind TyName
forall a. Name a
nName
signedConPrim Type
_ = String -> Term
forall a. HasCallStack => String -> a
error (String -> Term) -> String -> Term
forall a b. (a -> b) -> a -> b
$ $(String
curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"called with incorrect type"
unsignedConPrim :: Type -> Term
unsignedConPrim :: Type -> Term
unsignedConPrim (Type -> TypeView
tyView -> TyConApp TyConName
unsignedTcNm [Type]
_)
= PrimInfo -> Term
Prim (Text
-> Type -> WorkInfo -> IsMultiPrim -> PrimUnfolding -> PrimInfo
PrimInfo Text
"Clash.Sized.Internal.Unsigned.fromInteger#" (TyVar -> Type -> Type
ForAllTy TyVar
nTV Type
funTy) WorkInfo
WorkNever IsMultiPrim
SingleResult PrimUnfolding
NoUnfolding)
where
funTy :: Type
funTy = (Type -> Type -> Type) -> [Type] -> Type
forall (t :: Type -> Type) a.
Foldable t =>
(a -> a -> a) -> t a -> a
foldr1 Type -> Type -> Type
mkFunTy [Type
naturalPrimTy,Type
integerPrimTy,TyConName -> [Type] -> Type
mkTyConApp TyConName
unsignedTcNm [Type
nVar]]
nName :: Name a
nName = Text -> Int -> Name a
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"n" Int
0
nVar :: Type
nVar = TyVar -> Type
VarTy TyVar
nTV
nTV :: TyVar
nTV = Type -> TyName -> TyVar
mkTyVar Type
typeNatKind TyName
forall a. Name a
nName
unsignedConPrim Type
_ = String -> Term
forall a. HasCallStack => String -> a
error (String -> Term) -> String -> Term
forall a b. (a -> b) -> a -> b
$ $(String
curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"called with incorrect type"
liftUnsigned2 :: KnownNat n
=> (Unsigned n -> Unsigned n -> Unsigned n)
-> Type
-> TyConMap
-> [Type]
-> [Value]
-> (Proxy n -> Maybe Term)
liftUnsigned2 :: (Unsigned n -> Unsigned n -> Unsigned n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftUnsigned2 = ([Value] -> [Integer])
-> (Type -> Type -> Integer -> Integer -> Term)
-> (Unsigned n -> Unsigned n -> Unsigned n)
-> Type
-> TyConMap
-> [Type]
-> [Value]
-> Proxy n
-> Maybe Term
forall (n :: Nat) (sized :: Nat -> Type).
(KnownNat n, Integral (sized n)) =>
([Value] -> [Integer])
-> (Type -> Type -> Integer -> Integer -> Term)
-> (sized n -> sized n -> sized n)
-> Type
-> TyConMap
-> [Type]
-> [Value]
-> Proxy n
-> Maybe Term
liftSized2 [Value] -> [Integer]
unsignedLiterals' Type -> Type -> Integer -> Integer -> Term
mkUnsignedLit
liftSigned2 :: KnownNat n
=> (Signed n -> Signed n -> Signed n)
-> Type
-> TyConMap
-> [Type]
-> [Value]
-> (Proxy n -> Maybe Term)
liftSigned2 :: (Signed n -> Signed n -> Signed n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftSigned2 = ([Value] -> [Integer])
-> (Type -> Type -> Integer -> Integer -> Term)
-> (Signed n -> Signed n -> Signed n)
-> Type
-> TyConMap
-> [Type]
-> [Value]
-> Proxy n
-> Maybe Term
forall (n :: Nat) (sized :: Nat -> Type).
(KnownNat n, Integral (sized n)) =>
([Value] -> [Integer])
-> (Type -> Type -> Integer -> Integer -> Term)
-> (sized n -> sized n -> sized n)
-> Type
-> TyConMap
-> [Type]
-> [Value]
-> Proxy n
-> Maybe Term
liftSized2 [Value] -> [Integer]
signedLiterals' Type -> Type -> Integer -> Integer -> Term
mkSignedLit
liftBitVector2 :: KnownNat n
=> (BitVector n -> BitVector n -> BitVector n)
-> Type
-> TyConMap
-> [Type]
-> [Value]
-> (Proxy n -> Maybe Term)
liftBitVector2 :: (BitVector n -> BitVector n -> BitVector n)
-> Type -> TyConMap -> [Type] -> [Value] -> Proxy n -> Maybe Term
liftBitVector2 BitVector n -> BitVector n -> BitVector n
f Type
ty TyConMap
tcm [Type]
tys [Value]
args Proxy n
_p
| Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [(Integer, Integer)
i,(Integer, Integer)
j] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
= let BV Natural
mask Natural
val = BitVector n -> BitVector n -> BitVector n
f ((Integer, Integer) -> BitVector n
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i) ((Integer, Integer) -> BitVector n
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
j)
in Term -> Maybe Term
forall a. a -> Maybe a
Just (Term -> Maybe Term) -> Term -> Maybe Term
forall a b. (a -> b) -> a -> b
$ Type -> Type -> Integer -> Integer -> Integer -> Term
mkBitVectorLit Type
ty Type
nTy Integer
kn (Natural -> Integer
forall a. Integral a => a -> Integer
toInteger Natural
mask) (Natural -> Integer
forall a. Integral a => a -> Integer
toInteger Natural
val)
| Bool
otherwise = Maybe Term
forall a. Maybe a
Nothing
liftBitVector2Bool :: KnownNat n
=> (BitVector n -> BitVector n -> Bool)
-> Type
-> TyConMap
-> [Value]
-> (Proxy n -> Maybe Term)
liftBitVector2Bool :: (BitVector n -> BitVector n -> Bool)
-> Type -> TyConMap -> [Value] -> Proxy n -> Maybe Term
liftBitVector2Bool BitVector n -> BitVector n -> Bool
f Type
ty TyConMap
tcm [Value]
args Proxy n
_p
| [(Integer, Integer)
i,(Integer, Integer)
j] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
= let val :: Bool
val = BitVector n -> BitVector n -> Bool
f ((Integer, Integer) -> BitVector n
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i) ((Integer, Integer) -> BitVector n
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
j)
in Term -> Maybe Term
forall a. a -> Maybe a
Just (Term -> Maybe Term) -> Term -> Maybe Term
forall a b. (a -> b) -> a -> b
$ TyConMap -> Type -> Bool -> Term
boolToBoolLiteral TyConMap
tcm Type
ty Bool
val
| Bool
otherwise = Maybe Term
forall a. Maybe a
Nothing
liftInteger2BitVector
:: KnownNat n
=> (Integer -> BitVector n)
-> (Type, Type, Integer)
-> [Value]
-> (Proxy n -> Maybe Term)
liftInteger2BitVector :: (Integer -> BitVector n)
-> (Type, Type, Integer) -> [Value] -> Proxy n -> Maybe Term
liftInteger2BitVector Integer -> BitVector n
f (Type, Type, Integer)
resTyInfo [Value]
args Proxy n
_p
| [Integer
i] <- [Value] -> [Integer]
intCLiterals' [Value]
args
= let BV Natural
msk Natural
val = Integer -> BitVector n
f Integer
i
in Term -> Maybe Term
forall a. a -> Maybe a
Just ((Type, Type, Integer) -> Integer -> Integer -> Term
mkBitVectorLit' (Type, Type, Integer)
resTyInfo (Natural -> Integer
forall a. Integral a => a -> Integer
toInteger Natural
msk) (Natural -> Integer
forall a. Integral a => a -> Integer
toInteger Natural
val))
| Bool
otherwise
= Maybe Term
forall a. Maybe a
Nothing
liftBitVector2CInt
:: KnownNat n
=> TyConMap
-> Type
-> (BitVector n -> Integer)
-> [Value]
-> (Proxy n -> Maybe Term)
liftBitVector2CInt :: TyConMap
-> Type
-> (BitVector n -> Integer)
-> [Value]
-> Proxy n
-> Maybe Term
liftBitVector2CInt TyConMap
tcm Type
resTy BitVector n -> Integer
f [Value]
args Proxy n
_p
| [(Integer, Integer)
i] <- [Value] -> [(Integer, Integer)]
bitVectorLiterals' [Value]
args
= let val :: Integer
val = BitVector n -> Integer
f ((Integer, Integer) -> BitVector n
forall (n :: Nat). (Integer, Integer) -> BitVector n
toBV (Integer, Integer)
i)
in Term -> Maybe Term
forall a. a -> Maybe a
Just (Term -> Maybe Term) -> Term -> Maybe Term
forall a b. (a -> b) -> a -> b
$ TyConMap -> Integer -> Type -> Term
mkIntCLit TyConMap
tcm Integer
val Type
resTy
| Bool
otherwise
= Maybe Term
forall a. Maybe a
Nothing
liftSized2 :: (KnownNat n, Integral (sized n))
=> ([Value] -> [Integer])
-> (Type -> Type -> Integer -> Integer -> Term)
-> (sized n -> sized n -> sized n)
-> Type
-> TyConMap
-> [Type]
-> [Value]
-> (Proxy n -> Maybe Term)
liftSized2 :: ([Value] -> [Integer])
-> (Type -> Type -> Integer -> Integer -> Term)
-> (sized n -> sized n -> sized n)
-> Type
-> TyConMap
-> [Type]
-> [Value]
-> Proxy n
-> Maybe Term
liftSized2 [Value] -> [Integer]
extractLitArgs Type -> Type -> Integer -> Integer -> Term
mkLit sized n -> sized n -> sized n
f Type
ty TyConMap
tcm [Type]
tys [Value]
args Proxy n
p
| Just (Type
nTy, Integer
kn) <- TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat TyConMap
tcm [Type]
tys
, [Integer
i,Integer
j] <- [Value] -> [Integer]
extractLitArgs [Value]
args
= let val :: Integer
val = (sized n -> sized n -> sized n)
-> Integer -> Integer -> Proxy n -> Integer
forall (n :: Nat) (sized :: Nat -> Type).
(KnownNat n, Integral (sized n)) =>
(sized n -> sized n -> sized n)
-> Integer -> Integer -> Proxy n -> Integer
runSizedF sized n -> sized n -> sized n
f Integer
i Integer
j Proxy n
p
in Term -> Maybe Term
forall a. a -> Maybe a
Just (Term -> Maybe Term) -> Term -> Maybe Term
forall a b. (a -> b) -> a -> b
$ Type -> Type -> Integer -> Integer -> Term
mkLit Type
ty Type
nTy Integer
kn Integer
val
| Bool
otherwise = Maybe Term
forall a. Maybe a
Nothing
runSizedF
:: (KnownNat n, Integral (sized n))
=> (sized n -> sized n -> sized n)
-> Integer
-> Integer
-> (Proxy n -> Integer)
runSizedF :: (sized n -> sized n -> sized n)
-> Integer -> Integer -> Proxy n -> Integer
runSizedF sized n -> sized n -> sized n
f Integer
i Integer
j Proxy n
_ = sized n -> Integer
forall a. Integral a => a -> Integer
toInteger (sized n -> Integer) -> sized n -> Integer
forall a b. (a -> b) -> a -> b
$ sized n -> sized n -> sized n
f (Integer -> sized n
forall a. Num a => Integer -> a
fromInteger Integer
i) (Integer -> sized n
forall a. Num a => Integer -> a
fromInteger Integer
j)
extractTySizeInfo :: TyConMap -> Type -> [Type] -> (Type, Type, Integer)
TyConMap
tcm Type
ty [Type]
tys = (Type
resTy,Type
resSizeTy,Integer
resSize)
where
ty' :: Type
ty' = HasCallStack => TyConMap -> Type -> [Type] -> Type
TyConMap -> Type -> [Type] -> Type
piResultTys TyConMap
tcm Type
ty [Type]
tys
([Either TyVar Type]
_,Type
resTy) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty'
TyConApp TyConName
_ [Type
resSizeTy] = Type -> TypeView
tyView Type
resTy
Right Integer
resSize = Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
tcm Type
resSizeTy)
getResultTy
:: TyConMap
-> Type
-> [Type]
-> Type
getResultTy :: TyConMap -> Type -> [Type] -> Type
getResultTy TyConMap
tcm Type
ty [Type]
tys = Type
resTy
where
ty' :: Type
ty' = HasCallStack => TyConMap -> Type -> [Type] -> Type
TyConMap -> Type -> [Type] -> Type
piResultTys TyConMap
tcm Type
ty [Type]
tys
([Either TyVar Type]
_,Type
resTy) = Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty'
liftDDI :: (Double# -> Double# -> Int#) -> [Value] -> Maybe Term
liftDDI :: (Double# -> Double# -> Int#) -> [Value] -> Maybe Term
liftDDI Double# -> Double# -> Int#
f [Value]
args = case [Value] -> [Word64]
doubleLiterals' [Value]
args of
[Word64
i,Word64
j] -> Term -> Maybe Term
forall a. a -> Maybe a
Just (Term -> Maybe Term) -> Term -> Maybe Term
forall a b. (a -> b) -> a -> b
$ (Double# -> Double# -> Int#) -> Word64 -> Word64 -> Term
runDDI Double# -> Double# -> Int#
f Word64
i Word64
j
[Word64]
_ -> Maybe Term
forall a. Maybe a
Nothing
liftDDD :: (Double# -> Double# -> Double#) -> [Value] -> Maybe Term
liftDDD :: (Double# -> Double# -> Double#) -> [Value] -> Maybe Term
liftDDD Double# -> Double# -> Double#
f [Value]
args = case [Value] -> [Word64]
doubleLiterals' [Value]
args of
[Word64
i,Word64
j] -> Term -> Maybe Term
forall a. a -> Maybe a
Just (Term -> Maybe Term) -> Term -> Maybe Term
forall a b. (a -> b) -> a -> b
$ (Double# -> Double# -> Double#) -> Word64 -> Word64 -> Term
runDDD Double# -> Double# -> Double#
f Word64
i Word64
j
[Word64]
_ -> Maybe Term
forall a. Maybe a
Nothing
liftDD :: (Double# -> Double#) -> [Value] -> Maybe Term
liftDD :: (Double# -> Double#) -> [Value] -> Maybe Term
liftDD Double# -> Double#
f [Value]
args = case [Value] -> [Word64]
doubleLiterals' [Value]
args of
[Word64
i] -> Term -> Maybe Term
forall a. a -> Maybe a
Just (Term -> Maybe Term) -> Term -> Maybe Term
forall a b. (a -> b) -> a -> b
$ (Double# -> Double#) -> Word64 -> Term
runDD Double# -> Double#
f Word64
i
[Word64]
_ -> Maybe Term
forall a. Maybe a
Nothing
runDDI :: (Double# -> Double# -> Int#) -> Word64 -> Word64 -> Term
runDDI :: (Double# -> Double# -> Int#) -> Word64 -> Word64 -> Term
runDDI Double# -> Double# -> Int#
f Word64
i Word64
j
= let !(D# Double#
a) = Word64 -> Double
wordToDouble Word64
i
!(D# Double#
b) = Word64 -> Double
wordToDouble Word64
j
r :: Int#
r = Double# -> Double# -> Int#
f Double#
a Double#
b
in Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Term) -> Int -> Term
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
r
runDDD :: (Double# -> Double# -> Double#) -> Word64 -> Word64 -> Term
runDDD :: (Double# -> Double# -> Double#) -> Word64 -> Word64 -> Term
runDDD Double# -> Double# -> Double#
f Word64
i Word64
j
= let !(D# Double#
a) = Word64 -> Double
wordToDouble Word64
i
!(D# Double#
b) = Word64 -> Double
wordToDouble Word64
j
r :: Double#
r = Double# -> Double# -> Double#
f Double#
a Double#
b
in Literal -> Term
Literal (Literal -> Term) -> (Double -> Literal) -> Double -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word64 -> Literal
DoubleLiteral (Word64 -> Literal) -> (Double -> Word64) -> Double -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Double -> Word64
doubleToWord (Double -> Term) -> Double -> Term
forall a b. (a -> b) -> a -> b
$ Double# -> Double
D# Double#
r
runDD :: (Double# -> Double#) -> Word64 -> Term
runDD :: (Double# -> Double#) -> Word64 -> Term
runDD Double# -> Double#
f Word64
i
= let !(D# Double#
a) = Word64 -> Double
wordToDouble Word64
i
r :: Double#
r = Double# -> Double#
f Double#
a
in Literal -> Term
Literal (Literal -> Term) -> (Double -> Literal) -> Double -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word64 -> Literal
DoubleLiteral (Word64 -> Literal) -> (Double -> Word64) -> Double -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Double -> Word64
doubleToWord (Double -> Term) -> Double -> Term
forall a b. (a -> b) -> a -> b
$ Double# -> Double
D# Double#
r
liftFFI :: (Float# -> Float# -> Int#) -> [Value] -> Maybe Term
liftFFI :: (Float# -> Float# -> Int#) -> [Value] -> Maybe Term
liftFFI Float# -> Float# -> Int#
f [Value]
args = case [Value] -> [Word32]
floatLiterals' [Value]
args of
[Word32
i,Word32
j] -> Term -> Maybe Term
forall a. a -> Maybe a
Just (Term -> Maybe Term) -> Term -> Maybe Term
forall a b. (a -> b) -> a -> b
$ (Float# -> Float# -> Int#) -> Word32 -> Word32 -> Term
runFFI Float# -> Float# -> Int#
f Word32
i Word32
j
[Word32]
_ -> Maybe Term
forall a. Maybe a
Nothing
liftFFF :: (Float# -> Float# -> Float#) -> [Value] -> Maybe Term
liftFFF :: (Float# -> Float# -> Float#) -> [Value] -> Maybe Term
liftFFF Float# -> Float# -> Float#
f [Value]
args = case [Value] -> [Word32]
floatLiterals' [Value]
args of
[Word32
i,Word32
j] -> Term -> Maybe Term
forall a. a -> Maybe a
Just (Term -> Maybe Term) -> Term -> Maybe Term
forall a b. (a -> b) -> a -> b
$ (Float# -> Float# -> Float#) -> Word32 -> Word32 -> Term
runFFF Float# -> Float# -> Float#
f Word32
i Word32
j
[Word32]
_ -> Maybe Term
forall a. Maybe a
Nothing
liftFF :: (Float# -> Float#) -> [Value] -> Maybe Term
liftFF :: (Float# -> Float#) -> [Value] -> Maybe Term
liftFF Float# -> Float#
f [Value]
args = case [Value] -> [Word32]
floatLiterals' [Value]
args of
[Word32
i] -> Term -> Maybe Term
forall a. a -> Maybe a
Just (Term -> Maybe Term) -> Term -> Maybe Term
forall a b. (a -> b) -> a -> b
$ (Float# -> Float#) -> Word32 -> Term
runFF Float# -> Float#
f Word32
i
[Word32]
_ -> Maybe Term
forall a. Maybe a
Nothing
runFFI :: (Float# -> Float# -> Int#) -> Word32 -> Word32 -> Term
runFFI :: (Float# -> Float# -> Int#) -> Word32 -> Word32 -> Term
runFFI Float# -> Float# -> Int#
f Word32
i Word32
j
= let !(F# Float#
a) = Word32 -> Float
wordToFloat Word32
i
!(F# Float#
b) = Word32 -> Float
wordToFloat Word32
j
r :: Int#
r = Float# -> Float# -> Int#
f Float#
a Float#
b
in Literal -> Term
Literal (Literal -> Term) -> (Int -> Literal) -> Int -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
IntLiteral (Integer -> Literal) -> (Int -> Integer) -> Int -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Integer
forall a. Integral a => a -> Integer
toInteger (Int -> Term) -> Int -> Term
forall a b. (a -> b) -> a -> b
$ Int# -> Int
I# Int#
r
runFFF :: (Float# -> Float# -> Float#) -> Word32 -> Word32 -> Term
runFFF :: (Float# -> Float# -> Float#) -> Word32 -> Word32 -> Term
runFFF Float# -> Float# -> Float#
f Word32
i Word32
j
= let !(F# Float#
a) = Word32 -> Float
wordToFloat Word32
i
!(F# Float#
b) = Word32 -> Float
wordToFloat Word32
j
r :: Float#
r = Float# -> Float# -> Float#
f Float#
a Float#
b
in Literal -> Term
Literal (Literal -> Term) -> (Float -> Literal) -> Float -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word32 -> Literal
FloatLiteral (Word32 -> Literal) -> (Float -> Word32) -> Float -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Float -> Word32
floatToWord (Float -> Term) -> Float -> Term
forall a b. (a -> b) -> a -> b
$ Float# -> Float
F# Float#
r
runFF :: (Float# -> Float#) -> Word32 -> Term
runFF :: (Float# -> Float#) -> Word32 -> Term
runFF Float# -> Float#
f Word32
i
= let !(F# Float#
a) = Word32 -> Float
wordToFloat Word32
i
r :: Float#
r = Float# -> Float#
f Float#
a
in Literal -> Term
Literal (Literal -> Term) -> (Float -> Literal) -> Float -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word32 -> Literal
FloatLiteral (Word32 -> Literal) -> (Float -> Word32) -> Float -> Literal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Float -> Word32
floatToWord (Float -> Term) -> Float -> Term
forall a b. (a -> b) -> a -> b
$ Float# -> Float
F# Float#
r
#if MIN_VERSION_base(4,16,0)
liftI8 :: (Int8# -> Int8# -> Int8#) -> [Value] -> Maybe Term
liftI8 f args = case int8Literals' args of
[i,j] ->
let !(I8# a) = fromInteger i
!(I8# b) = fromInteger j
in Just (Literal (Int8Literal (toInteger (I8# (f a b)))))
_ -> Nothing
liftI8I :: (Int8# -> Int# -> Int8#) -> [Value] -> Maybe Term
liftI8I f args = case args of
[Lit (Int8Literal i),Lit (IntLiteral j)] ->
let !(I8# a) = fromInteger i
!(I# b) = fromInteger j
in Just (Literal (Int8Literal (toInteger (I8# (f a b)))))
_ -> Nothing
liftI8RI :: (Int8# -> Int8# -> Int#) -> [Value] -> Maybe Term
liftI8RI f args = case int8Literals' args of
[i,j] ->
let !(I8# a) = fromInteger i
!(I8# b) = fromInteger j
in Just (Literal (IntLiteral (toInteger (I# (f a b)))))
_ -> Nothing
liftI16 :: (Int16# -> Int16# -> Int16#) -> [Value] -> Maybe Term
liftI16 f args = case int16Literals' args of
[i,j] ->
let !(I16# a) = fromInteger i
!(I16# b) = fromInteger j
in Just (Literal (Int16Literal (toInteger (I16# (f a b)))))
_ -> Nothing
liftI16I :: (Int16# -> Int# -> Int16#) -> [Value] -> Maybe Term
liftI16I f args = case args of
[Lit (Int16Literal i),Lit (IntLiteral j)] ->
let !(I16# a) = fromInteger i
!(I# b) = fromInteger j
in Just (Literal (Int16Literal (toInteger (I16# (f a b)))))
_ -> Nothing
liftI16RI :: (Int16# -> Int16# -> Int#) -> [Value] -> Maybe Term
liftI16RI f args = case int16Literals' args of
[i,j] ->
let !(I16# a) = fromInteger i
!(I16# b) = fromInteger j
in Just (Literal (IntLiteral (toInteger (I# (f a b)))))
_ -> Nothing
liftI32 :: (Int32# -> Int32# -> Int32#) -> [Value] -> Maybe Term
liftI32 f args = case int32Literals' args of
[i,j] ->
let !(I32# a) = fromInteger i
!(I32# b) = fromInteger j
in Just (Literal (Int32Literal (toInteger (I32# (f a b)))))
_ -> Nothing
liftI32I :: (Int32# -> Int# -> Int32#) -> [Value] -> Maybe Term
liftI32I f args = case args of
[Lit (Int32Literal i),Lit (IntLiteral j)] ->
let !(I32# a) = fromInteger i
!(I# b) = fromInteger j
in Just (Literal (Int32Literal (toInteger (I32# (f a b)))))
_ -> Nothing
liftI32RI :: (Int32# -> Int32# -> Int#) -> [Value] -> Maybe Term
liftI32RI f args = case int32Literals' args of
[i,j] ->
let !(I32# a) = fromInteger i
!(I32# b) = fromInteger j
in Just (Literal (IntLiteral (toInteger (I# (f a b)))))
_ -> Nothing
#if MIN_VERSION_base(4,17,0)
liftI64 :: (Int64# -> Int64# -> Int64#) -> [Value] -> Maybe Term
liftI64 f args = case int64Literals' args of
[i,j] ->
let !(I64# a) = fromInteger i
!(I64# b) = fromInteger j
in Just (Literal (Int64Literal (toInteger (I64# (f a b)))))
_ -> Nothing
liftI64I :: (Int64# -> Int# -> Int64#) -> [Value] -> Maybe Term
liftI64I f args = case args of
[Lit (Int64Literal i),Lit (IntLiteral j)] ->
let !(I64# a) = fromInteger i
!(I# b) = fromInteger j
in Just (Literal (Int64Literal (toInteger (I64# (f a b)))))
_ -> Nothing
liftI64RI :: (Int64# -> Int64# -> Int#) -> [Value] -> Maybe Term
liftI64RI f args = case int64Literals' args of
[i,j] ->
let !(I64# a) = fromInteger i
!(I64# b) = fromInteger j
in Just (Literal (IntLiteral (toInteger (I# (f a b)))))
_ -> Nothing
#endif
liftW8 :: (Word8# -> Word8# -> Word8#) -> [Value] -> Maybe Term
liftW8 f args = case word8Literals' args of
[i,j] ->
let !(W8# a) = fromInteger i
!(W8# b) = fromInteger j
in Just (Literal (Word8Literal (toInteger (W8# (f a b)))))
_ -> Nothing
liftW8I :: (Word8# -> Int# -> Word8#) -> [Value] -> Maybe Term
liftW8I f args = case args of
[Lit (Word8Literal i),Lit (IntLiteral j)] ->
let !(W8# a) = fromInteger i
!(I# b) = fromInteger j
in Just (Literal (Word8Literal (toInteger (W8# (f a b)))))
_ -> Nothing
liftW8RI :: (Word8# -> Word8# -> Int#) -> [Value] -> Maybe Term
liftW8RI f args = case word8Literals' args of
[i,j] ->
let !(W8# a) = fromInteger i
!(W8# b) = fromInteger j
in Just (Literal (IntLiteral (toInteger (I# (f a b)))))
_ -> Nothing
liftW16 :: (Word16# -> Word16# -> Word16#) -> [Value] -> Maybe Term
liftW16 f args = case word16Literals' args of
[i,j] -> let !(W16# a) = fromInteger i
!(W16# b) = fromInteger j
in Just (Literal (Word16Literal (toInteger (W16# (f a b)))))
_ -> Nothing
liftW16I :: (Word16# -> Int# -> Word16#) -> [Value] -> Maybe Term
liftW16I f args = case args of
[Lit (Word16Literal i),Lit (IntLiteral j)] ->
let !(W16# a) = fromInteger i
!(I# b) = fromInteger j
in Just (Literal (Word16Literal (toInteger (W16# (f a b)))))
_ -> Nothing
liftW16RI :: (Word16# -> Word16# -> Int#) -> [Value] -> Maybe Term
liftW16RI f args = case word16Literals' args of
[i,j] ->
let !(W16# a) = fromInteger i
!(W16# b) = fromInteger j
in Just (Literal (IntLiteral (toInteger (I# (f a b)))))
_ -> Nothing
liftW32 :: (Word32# -> Word32# -> Word32#) -> [Value] -> Maybe Term
liftW32 f args = case word32Literals' args of
[i,j] -> let !(W32# a) = fromInteger i
!(W32# b) = fromInteger j
in Just (Literal (Word32Literal (toInteger (W32# (f a b)))))
_ -> Nothing
liftW32I :: (Word32# -> Int# -> Word32#) -> [Value] -> Maybe Term
liftW32I f args = case args of
[Lit (Word32Literal i),Lit (IntLiteral j)] ->
let !(W32# a) = fromInteger i
!(I# b) = fromInteger j
in Just (Literal (Word32Literal (toInteger (W32# (f a b)))))
_ -> Nothing
liftW32RI :: (Word32# -> Word32# -> Int#) -> [Value] -> Maybe Term
liftW32RI f args = case word32Literals' args of
[i,j] ->
let !(W32# a) = fromInteger i
!(W32# b) = fromInteger j
in Just (Literal (IntLiteral (toInteger (I# (f a b)))))
_ -> Nothing
#if MIN_VERSION_base(4,17,0)
liftW64 :: (Word64# -> Word64# -> Word64#) -> [Value] -> Maybe Term
liftW64 f args = case word64Literals' args of
[i,j] -> let !(W64# a) = fromInteger i
!(W64# b) = fromInteger j
in Just (Literal (Word64Literal (toInteger (W64# (f a b)))))
_ -> Nothing
liftW64I :: (Word64# -> Int# -> Word64#) -> [Value] -> Maybe Term
liftW64I f args = case args of
[Lit (Word64Literal i),Lit (IntLiteral j)] ->
let !(W64# a) = fromInteger i
!(I# b) = fromInteger j
in Just (Literal (Word64Literal (toInteger (W64# (f a b)))))
_ -> Nothing
liftW64RI :: (Word64# -> Word64# -> Int#) -> [Value] -> Maybe Term
liftW64RI f args = case word64Literals' args of
[i,j] ->
let !(W64# a) = fromInteger i
!(W64# b) = fromInteger j
in Just (Literal (IntLiteral (toInteger (I# (f a b)))))
_ -> Nothing
#endif
#endif
splitAtPrim
:: TyConName
-> TyConName
-> Term
splitAtPrim :: TyConName -> TyConName -> Term
splitAtPrim TyConName
snatTcNm TyConName
vecTcNm =
PrimInfo -> Term
Prim (Text
-> Type -> WorkInfo -> IsMultiPrim -> PrimUnfolding -> PrimInfo
PrimInfo Text
"Clash.Sized.Vector.splitAt" (TyConName -> TyConName -> Type
splitAtTy TyConName
snatTcNm TyConName
vecTcNm) WorkInfo
WorkNever IsMultiPrim
SingleResult PrimUnfolding
NoUnfolding)
splitAtTy
:: TyConName
-> TyConName
-> Type
splitAtTy :: TyConName -> TyConName -> Type
splitAtTy TyConName
snatNm TyConName
vecNm =
TyVar -> Type -> Type
ForAllTy TyVar
mTV (
TyVar -> Type -> Type
ForAllTy TyVar
nTV (
TyVar -> Type -> Type
ForAllTy TyVar
aTV (
Type -> Type -> Type
mkFunTy
(TyConName -> [Type] -> Type
mkTyConApp TyConName
snatNm [TyVar -> Type
VarTy TyVar
mTV])
(Type -> Type -> Type
mkFunTy
(TyConName -> [Type] -> Type
mkTyConApp TyConName
vecNm
[TyConName -> [Type] -> Type
mkTyConApp TyConName
typeNatAdd
[TyVar -> Type
VarTy TyVar
mTV
,TyVar -> Type
VarTy TyVar
nTV]
,TyVar -> Type
VarTy TyVar
aTV])
(TyConName -> [Type] -> Type
mkTyConApp TyConName
tupNm
[TyConName -> [Type] -> Type
mkTyConApp TyConName
vecNm
[TyVar -> Type
VarTy TyVar
mTV
,TyVar -> Type
VarTy TyVar
aTV]
,TyConName -> [Type] -> Type
mkTyConApp TyConName
vecNm
[TyVar -> Type
VarTy TyVar
nTV
,TyVar -> Type
VarTy TyVar
aTV]])))))
where
mTV :: TyVar
mTV = Type -> TyName -> TyVar
mkTyVar Type
typeNatKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"m" Int
0)
nTV :: TyVar
nTV = Type -> TyName -> TyVar
mkTyVar Type
typeNatKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"n" Int
1)
aTV :: TyVar
aTV = Type -> TyName -> TyVar
mkTyVar Type
liftedTypeKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"a" Int
2)
tupNm :: TyConName
tupNm = TyCon -> TyConName
ghcTyconToTyConName (Boxity -> Int -> TyCon
tupleTyCon Boxity
Boxed Int
2)
foldSplitAtTy
:: TyConName
-> Type
foldSplitAtTy :: TyConName -> Type
foldSplitAtTy TyConName
vecNm =
TyVar -> Type -> Type
ForAllTy TyVar
mTV (
TyVar -> Type -> Type
ForAllTy TyVar
nTV (
TyVar -> Type -> Type
ForAllTy TyVar
aTV (
Type -> Type -> Type
mkFunTy
Type
naturalPrimTy
(Type -> Type -> Type
mkFunTy
(TyConName -> [Type] -> Type
mkTyConApp TyConName
vecNm
[TyConName -> [Type] -> Type
mkTyConApp TyConName
typeNatAdd
[TyVar -> Type
VarTy TyVar
mTV
,TyVar -> Type
VarTy TyVar
nTV]
,TyVar -> Type
VarTy TyVar
aTV])
(TyConName -> [Type] -> Type
mkTyConApp TyConName
tupNm
[TyConName -> [Type] -> Type
mkTyConApp TyConName
vecNm
[TyVar -> Type
VarTy TyVar
mTV
,TyVar -> Type
VarTy TyVar
aTV]
,TyConName -> [Type] -> Type
mkTyConApp TyConName
vecNm
[TyVar -> Type
VarTy TyVar
nTV
,TyVar -> Type
VarTy TyVar
aTV]])))))
where
mTV :: TyVar
mTV = Type -> TyName -> TyVar
mkTyVar Type
typeNatKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"m" Int
0)
nTV :: TyVar
nTV = Type -> TyName -> TyVar
mkTyVar Type
typeNatKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"n" Int
1)
aTV :: TyVar
aTV = Type -> TyName -> TyVar
mkTyVar Type
liftedTypeKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"a" Int
2)
tupNm :: TyConName
tupNm = TyCon -> TyConName
ghcTyconToTyConName (Boxity -> Int -> TyCon
tupleTyCon Boxity
Boxed Int
2)
vecAppendPrim
:: TyConName
-> Term
vecAppendPrim :: TyConName -> Term
vecAppendPrim TyConName
vecNm =
PrimInfo -> Term
Prim (Text
-> Type -> WorkInfo -> IsMultiPrim -> PrimUnfolding -> PrimInfo
PrimInfo Text
"Clash.Sized.Vector.++" (TyConName -> Type
vecAppendTy TyConName
vecNm) WorkInfo
WorkNever IsMultiPrim
SingleResult PrimUnfolding
NoUnfolding)
vecAppendTy
:: TyConName
-> Type
vecAppendTy :: TyConName -> Type
vecAppendTy TyConName
vecNm =
TyVar -> Type -> Type
ForAllTy TyVar
nTV (
TyVar -> Type -> Type
ForAllTy TyVar
aTV (
TyVar -> Type -> Type
ForAllTy TyVar
mTV (
Type -> Type -> Type
mkFunTy
(TyConName -> [Type] -> Type
mkTyConApp TyConName
vecNm [TyVar -> Type
VarTy TyVar
nTV
,TyVar -> Type
VarTy TyVar
aTV
])
(Type -> Type -> Type
mkFunTy
(TyConName -> [Type] -> Type
mkTyConApp TyConName
vecNm [TyVar -> Type
VarTy TyVar
mTV
,TyVar -> Type
VarTy TyVar
aTV
])
(TyConName -> [Type] -> Type
mkTyConApp TyConName
vecNm [TyConName -> [Type] -> Type
mkTyConApp TyConName
typeNatAdd
[TyVar -> Type
VarTy TyVar
nTV
,TyVar -> Type
VarTy TyVar
mTV]
,TyVar -> Type
VarTy TyVar
aTV
])))))
where
nTV :: TyVar
nTV = Type -> TyName -> TyVar
mkTyVar Type
typeNatKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"n" Int
0)
aTV :: TyVar
aTV = Type -> TyName -> TyVar
mkTyVar Type
liftedTypeKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"a" Int
1)
mTV :: TyVar
mTV = Type -> TyName -> TyVar
mkTyVar Type
typeNatKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"m" Int
2)
vecZipWithPrim
:: TyConName
-> Term
vecZipWithPrim :: TyConName -> Term
vecZipWithPrim TyConName
vecNm =
PrimInfo -> Term
Prim (Text
-> Type -> WorkInfo -> IsMultiPrim -> PrimUnfolding -> PrimInfo
PrimInfo Text
"Clash.Sized.Vector.zipWith" (TyConName -> Type
vecZipWithTy TyConName
vecNm) WorkInfo
WorkNever IsMultiPrim
SingleResult PrimUnfolding
NoUnfolding)
vecZipWithTy
:: TyConName
-> Type
vecZipWithTy :: TyConName -> Type
vecZipWithTy TyConName
vecNm =
TyVar -> Type -> Type
ForAllTy TyVar
aTV (
TyVar -> Type -> Type
ForAllTy TyVar
bTV (
TyVar -> Type -> Type
ForAllTy TyVar
cTV (
TyVar -> Type -> Type
ForAllTy TyVar
nTV (
Type -> Type -> Type
mkFunTy
(Type -> Type -> Type
mkFunTy Type
aTy (Type -> Type -> Type
mkFunTy Type
bTy Type
cTy))
(Type -> Type -> Type
mkFunTy
(TyConName -> [Type] -> Type
mkTyConApp TyConName
vecNm [Type
nTy,Type
aTy])
(Type -> Type -> Type
mkFunTy
(TyConName -> [Type] -> Type
mkTyConApp TyConName
vecNm [Type
nTy,Type
bTy])
(TyConName -> [Type] -> Type
mkTyConApp TyConName
vecNm [Type
nTy,Type
cTy])))))))
where
aTV :: TyVar
aTV = Type -> TyName -> TyVar
mkTyVar Type
liftedTypeKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"a" Int
0)
bTV :: TyVar
bTV = Type -> TyName -> TyVar
mkTyVar Type
liftedTypeKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"b" Int
1)
cTV :: TyVar
cTV = Type -> TyName -> TyVar
mkTyVar Type
liftedTypeKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"c" Int
2)
nTV :: TyVar
nTV = Type -> TyName -> TyVar
mkTyVar Type
typeNatKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"n" Int
3)
aTy :: Type
aTy = TyVar -> Type
VarTy TyVar
aTV
bTy :: Type
bTy = TyVar -> Type
VarTy TyVar
bTV
cTy :: Type
cTy = TyVar -> Type
VarTy TyVar
cTV
nTy :: Type
nTy = TyVar -> Type
VarTy TyVar
nTV
vecImapGoTy
:: TyConName
-> TyConName
-> Type
vecImapGoTy :: TyConName -> TyConName -> Type
vecImapGoTy TyConName
vecTcNm TyConName
indexTcNm =
TyVar -> Type -> Type
ForAllTy TyVar
nTV (
TyVar -> Type -> Type
ForAllTy TyVar
mTV (
TyVar -> Type -> Type
ForAllTy TyVar
aTV (
TyVar -> Type -> Type
ForAllTy TyVar
bTV (
Type -> Type -> Type
mkFunTy Type
fTy
(Type -> Type -> Type
mkFunTy Type
vecATy (Type -> Type -> Type
mkFunTy Type
indexTy Type
vecBTy))))))
where
nTV :: TyVar
nTV = Type -> TyName -> TyVar
mkTyVar Type
typeNatKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"n" Int
0)
mTV :: TyVar
mTV = Type -> TyName -> TyVar
mkTyVar Type
typeNatKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"m" Int
1)
aTV :: TyVar
aTV = Type -> TyName -> TyVar
mkTyVar Type
liftedTypeKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"a" Int
2)
bTV :: TyVar
bTV = Type -> TyName -> TyVar
mkTyVar Type
liftedTypeKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"b" Int
3)
indexTy :: Type
indexTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
indexTcNm [Type
nTy]
nTy :: Type
nTy = TyVar -> Type
VarTy TyVar
nTV
mTy :: Type
mTy = TyVar -> Type
VarTy TyVar
mTV
fTy :: Type
fTy = Type -> Type -> Type
mkFunTy Type
indexTy (Type -> Type -> Type
mkFunTy Type
aTy Type
bTy)
aTy :: Type
aTy = TyVar -> Type
VarTy TyVar
aTV
bTy :: Type
bTy = TyVar -> Type
VarTy TyVar
bTV
vecATy :: Type
vecATy = TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [Type
mTy,Type
aTy]
vecBTy :: Type
vecBTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
vecTcNm [Type
mTy,Type
bTy]
indexAddTy
:: TyConName
-> Type
indexAddTy :: TyConName -> Type
indexAddTy TyConName
indexTcNm =
TyVar -> Type -> Type
ForAllTy TyVar
nTV (
Type -> Type -> Type
mkFunTy Type
naturalPrimTy (Type -> Type -> Type
mkFunTy Type
indexTy (Type -> Type -> Type
mkFunTy Type
indexTy Type
indexTy)))
where
nTV :: TyVar
nTV = Type -> TyName -> TyVar
mkTyVar Type
typeNatKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"n" Int
0)
indexTy :: Type
indexTy = TyConName -> [Type] -> Type
mkTyConApp TyConName
indexTcNm [TyVar -> Type
VarTy TyVar
nTV]
bvAppendPrim
:: TyConName
-> Term
bvAppendPrim :: TyConName -> Term
bvAppendPrim TyConName
bvTcNm =
PrimInfo -> Term
Prim (Text
-> Type -> WorkInfo -> IsMultiPrim -> PrimUnfolding -> PrimInfo
PrimInfo Text
"Clash.Sized.Internal.BitVector.++#" (TyConName -> Type
bvAppendTy TyConName
bvTcNm) WorkInfo
WorkNever IsMultiPrim
SingleResult PrimUnfolding
NoUnfolding)
bvAppendTy
:: TyConName
-> Type
bvAppendTy :: TyConName -> Type
bvAppendTy TyConName
bvNm =
TyVar -> Type -> Type
ForAllTy TyVar
mTV (
TyVar -> Type -> Type
ForAllTy TyVar
nTV (
Type -> Type -> Type
mkFunTy Type
naturalPrimTy (Type -> Type -> Type
mkFunTy
(TyConName -> [Type] -> Type
mkTyConApp TyConName
bvNm [TyVar -> Type
VarTy TyVar
nTV])
(Type -> Type -> Type
mkFunTy
(TyConName -> [Type] -> Type
mkTyConApp TyConName
bvNm [TyVar -> Type
VarTy TyVar
mTV])
(TyConName -> [Type] -> Type
mkTyConApp TyConName
bvNm [TyConName -> [Type] -> Type
mkTyConApp TyConName
typeNatAdd
[TyVar -> Type
VarTy TyVar
nTV
,TyVar -> Type
VarTy TyVar
mTV]])))))
where
mTV :: TyVar
mTV = Type -> TyName -> TyVar
mkTyVar Type
typeNatKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"m" Int
0)
nTV :: TyVar
nTV = Type -> TyName -> TyVar
mkTyVar Type
typeNatKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"n" Int
1)
bvSplitPrim
:: TyConName
-> Term
bvSplitPrim :: TyConName -> Term
bvSplitPrim TyConName
bvTcNm =
PrimInfo -> Term
Prim (Text
-> Type -> WorkInfo -> IsMultiPrim -> PrimUnfolding -> PrimInfo
PrimInfo Text
"Clash.Sized.Internal.BitVector.split#" (TyConName -> Type
bvSplitTy TyConName
bvTcNm) WorkInfo
WorkNever IsMultiPrim
SingleResult PrimUnfolding
NoUnfolding)
bvSplitTy
:: TyConName
-> Type
bvSplitTy :: TyConName -> Type
bvSplitTy TyConName
bvNm =
TyVar -> Type -> Type
ForAllTy TyVar
nTV (
TyVar -> Type -> Type
ForAllTy TyVar
mTV (
Type -> Type -> Type
mkFunTy Type
naturalPrimTy (Type -> Type -> Type
mkFunTy
(TyConName -> [Type] -> Type
mkTyConApp TyConName
bvNm [TyConName -> [Type] -> Type
mkTyConApp TyConName
typeNatAdd
[TyVar -> Type
VarTy TyVar
mTV
,TyVar -> Type
VarTy TyVar
nTV]])
(TyConName -> [Type] -> Type
mkTyConApp TyConName
tupNm [TyConName -> [Type] -> Type
mkTyConApp TyConName
bvNm [TyVar -> Type
VarTy TyVar
mTV]
,TyConName -> [Type] -> Type
mkTyConApp TyConName
bvNm [TyVar -> Type
VarTy TyVar
nTV]]))))
where
nTV :: TyVar
nTV = Type -> TyName -> TyVar
mkTyVar Type
typeNatKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"n" Int
0)
mTV :: TyVar
mTV = Type -> TyName -> TyVar
mkTyVar Type
typeNatKind (Text -> Int -> TyName
forall a. Text -> Int -> Name a
mkUnsafeSystemName Text
"m" Int
1)
tupNm :: TyConName
tupNm = TyCon -> TyConName
ghcTyconToTyConName (Boxity -> Int -> TyCon
tupleTyCon Boxity
Boxed Int
2)
ghcTyconToTyConName
:: TyCon.TyCon
-> TyConName
ghcTyconToTyConName :: TyCon -> TyConName
ghcTyconToTyConName TyCon
tc =
NameSort -> Text -> Int -> SrcSpan -> TyConName
forall a. NameSort -> Text -> Int -> SrcSpan -> Name a
Name NameSort
User Text
n' (Unique -> Int
getKey (TyCon -> Unique
TyCon.tyConUnique TyCon
tc)) (Name -> SrcSpan
forall a. NamedThing a => a -> SrcSpan
getSrcSpan Name
n)
where
n' :: Text
n' = Text -> Maybe Text -> Text
forall a. a -> Maybe a -> a
fromMaybe Text
"_INTERNAL_" (Name -> Maybe Text
modNameM Name
n) Text -> Text -> Text
`Text.append`
(Char
'.' Char -> Text -> Text
`Text.cons` String -> Text
Text.pack String
occName)
occName :: String
occName = OccName -> String
occNameString (OccName -> String) -> OccName -> String
forall a b. (a -> b) -> a -> b
$ Name -> OccName
nameOccName Name
n
n :: Name
n = TyCon -> Name
TyCon.tyConName TyCon
tc
svoid :: (State# RealWorld -> State# RealWorld) -> IO ()
svoid :: (State# RealWorld -> State# RealWorld) -> IO ()
svoid State# RealWorld -> State# RealWorld
m0 = (State# RealWorld -> (# State# RealWorld, () #)) -> IO ()
forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO (\State# RealWorld
s -> case State# RealWorld -> State# RealWorld
m0 State# RealWorld
s of State# RealWorld
s' -> (# State# RealWorld
s', () #))
isTrueDC,isFalseDC :: DataCon -> Bool
isTrueDC :: DataCon -> Bool
isTrueDC DataCon
dc = DataCon -> Int
dcUniq DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Unique -> Int
getKey Unique
trueDataConKey
isFalseDC :: DataCon -> Bool
isFalseDC DataCon
dc = DataCon -> Int
dcUniq DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Unique -> Int
getKey Unique
falseDataConKey