{-# LANGUAGE CPP #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE EmptyDataDecls #-} {-# LANGUAGE TypeFamilies #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE DeriveGeneric #-} #endif #if __GLASGOW_HASKELL__ >= 706 {-# LANGUAGE PolyKinds #-} #endif #if __GLASGOW_HASKELL__ >= 708 {-# LANGUAGE Safe #-} #elif __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif #include "bifunctors-common.h" module Data.Bifunctor.Sum where import Data.Bifunctor import Data.Bifunctor.Functor import Data.Bifoldable import Data.Bitraversable #if __GLASGOW_HASKELL__ < 710 import Data.Functor import Data.Monoid hiding (Sum) #endif #if __GLASGOW_HASKELL__ >= 708 import Data.Typeable #endif #if __GLASGOW_HASKELL__ >= 702 import GHC.Generics #endif #if LIFTED_FUNCTOR_CLASSES import Data.Functor.Classes #endif data Sum p q a b = L2 (p a b) | R2 (q a b) deriving ( Sum p q a b -> Sum p q a b -> Bool (Sum p q a b -> Sum p q a b -> Bool) -> (Sum p q a b -> Sum p q a b -> Bool) -> Eq (Sum p q a b) forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Eq (p a b), Eq (q a b)) => Sum p q a b -> Sum p q a b -> Bool /= :: Sum p q a b -> Sum p q a b -> Bool $c/= :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Eq (p a b), Eq (q a b)) => Sum p q a b -> Sum p q a b -> Bool == :: Sum p q a b -> Sum p q a b -> Bool $c== :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Eq (p a b), Eq (q a b)) => Sum p q a b -> Sum p q a b -> Bool Eq, Eq (Sum p q a b) Eq (Sum p q a b) -> (Sum p q a b -> Sum p q a b -> Ordering) -> (Sum p q a b -> Sum p q a b -> Bool) -> (Sum p q a b -> Sum p q a b -> Bool) -> (Sum p q a b -> Sum p q a b -> Bool) -> (Sum p q a b -> Sum p q a b -> Bool) -> (Sum p q a b -> Sum p q a b -> Sum p q a b) -> (Sum p q a b -> Sum p q a b -> Sum p q a b) -> Ord (Sum p q a b) Sum p q a b -> Sum p q a b -> Bool Sum p q a b -> Sum p q a b -> Ordering Sum p q a b -> Sum p q a b -> Sum p q a b forall a. Eq a -> (a -> a -> Ordering) -> (a -> a -> Bool) -> (a -> a -> Bool) -> (a -> a -> Bool) -> (a -> a -> Bool) -> (a -> a -> a) -> (a -> a -> a) -> Ord a forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Ord (p a b), Ord (q a b)) => Eq (Sum p q a b) forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Ord (p a b), Ord (q a b)) => Sum p q a b -> Sum p q a b -> Bool forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Ord (p a b), Ord (q a b)) => Sum p q a b -> Sum p q a b -> Ordering forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Ord (p a b), Ord (q a b)) => Sum p q a b -> Sum p q a b -> Sum p q a b min :: Sum p q a b -> Sum p q a b -> Sum p q a b $cmin :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Ord (p a b), Ord (q a b)) => Sum p q a b -> Sum p q a b -> Sum p q a b max :: Sum p q a b -> Sum p q a b -> Sum p q a b $cmax :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Ord (p a b), Ord (q a b)) => Sum p q a b -> Sum p q a b -> Sum p q a b >= :: Sum p q a b -> Sum p q a b -> Bool $c>= :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Ord (p a b), Ord (q a b)) => Sum p q a b -> Sum p q a b -> Bool > :: Sum p q a b -> Sum p q a b -> Bool $c> :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Ord (p a b), Ord (q a b)) => Sum p q a b -> Sum p q a b -> Bool <= :: Sum p q a b -> Sum p q a b -> Bool $c<= :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Ord (p a b), Ord (q a b)) => Sum p q a b -> Sum p q a b -> Bool < :: Sum p q a b -> Sum p q a b -> Bool $c< :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Ord (p a b), Ord (q a b)) => Sum p q a b -> Sum p q a b -> Bool compare :: Sum p q a b -> Sum p q a b -> Ordering $ccompare :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Ord (p a b), Ord (q a b)) => Sum p q a b -> Sum p q a b -> Ordering $cp1Ord :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Ord (p a b), Ord (q a b)) => Eq (Sum p q a b) Ord, Int -> Sum p q a b -> ShowS [Sum p q a b] -> ShowS Sum p q a b -> String (Int -> Sum p q a b -> ShowS) -> (Sum p q a b -> String) -> ([Sum p q a b] -> ShowS) -> Show (Sum p q a b) forall a. (Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Show (p a b), Show (q a b)) => Int -> Sum p q a b -> ShowS forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Show (p a b), Show (q a b)) => [Sum p q a b] -> ShowS forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Show (p a b), Show (q a b)) => Sum p q a b -> String showList :: [Sum p q a b] -> ShowS $cshowList :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Show (p a b), Show (q a b)) => [Sum p q a b] -> ShowS show :: Sum p q a b -> String $cshow :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Show (p a b), Show (q a b)) => Sum p q a b -> String showsPrec :: Int -> Sum p q a b -> ShowS $cshowsPrec :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Show (p a b), Show (q a b)) => Int -> Sum p q a b -> ShowS Show, ReadPrec [Sum p q a b] ReadPrec (Sum p q a b) Int -> ReadS (Sum p q a b) ReadS [Sum p q a b] (Int -> ReadS (Sum p q a b)) -> ReadS [Sum p q a b] -> ReadPrec (Sum p q a b) -> ReadPrec [Sum p q a b] -> Read (Sum p q a b) forall a. (Int -> ReadS a) -> ReadS [a] -> ReadPrec a -> ReadPrec [a] -> Read a forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Read (p a b), Read (q a b)) => ReadPrec [Sum p q a b] forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Read (p a b), Read (q a b)) => ReadPrec (Sum p q a b) forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Read (p a b), Read (q a b)) => Int -> ReadS (Sum p q a b) forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Read (p a b), Read (q a b)) => ReadS [Sum p q a b] readListPrec :: ReadPrec [Sum p q a b] $creadListPrec :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Read (p a b), Read (q a b)) => ReadPrec [Sum p q a b] readPrec :: ReadPrec (Sum p q a b) $creadPrec :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Read (p a b), Read (q a b)) => ReadPrec (Sum p q a b) readList :: ReadS [Sum p q a b] $creadList :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Read (p a b), Read (q a b)) => ReadS [Sum p q a b] readsPrec :: Int -> ReadS (Sum p q a b) $creadsPrec :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). (Read (p a b), Read (q a b)) => Int -> ReadS (Sum p q a b) Read #if __GLASGOW_HASKELL__ >= 702 , (forall x. Sum p q a b -> Rep (Sum p q a b) x) -> (forall x. Rep (Sum p q a b) x -> Sum p q a b) -> Generic (Sum p q a b) forall x. Rep (Sum p q a b) x -> Sum p q a b forall x. Sum p q a b -> Rep (Sum p q a b) x forall a. (forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k) x. Rep (Sum p q a b) x -> Sum p q a b forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k) x. Sum p q a b -> Rep (Sum p q a b) x $cto :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k) x. Rep (Sum p q a b) x -> Sum p q a b $cfrom :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k) x. Sum p q a b -> Rep (Sum p q a b) x Generic #endif #if __GLASGOW_HASKELL__ >= 708 , (forall (a :: k). Sum p q a a -> Rep1 (Sum p q a) a) -> (forall (a :: k). Rep1 (Sum p q a) a -> Sum p q a a) -> Generic1 (Sum p q a) forall (a :: k). Rep1 (Sum p q a) a -> Sum p q a a forall (a :: k). Sum p q a a -> Rep1 (Sum p q a) a forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (a :: k). Rep1 (Sum p q a) a -> Sum p q a a forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (a :: k). Sum p q a a -> Rep1 (Sum p q a) a forall k (f :: k -> *). (forall (a :: k). f a -> Rep1 f a) -> (forall (a :: k). Rep1 f a -> f a) -> Generic1 f $cto1 :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (a :: k). Rep1 (Sum p q a) a -> Sum p q a a $cfrom1 :: forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (a :: k). Sum p q a a -> Rep1 (Sum p q a) a Generic1 , Typeable #endif ) #if __GLASGOW_HASKELL__ >= 702 && __GLASGOW_HASKELL__ < 708 data SumMetaData data SumMetaConsL2 data SumMetaConsR2 instance Datatype SumMetaData where datatypeName _ = "Sum" moduleName _ = "Data.Bifunctor.Sum" instance Constructor SumMetaConsL2 where conName _ = "L2" instance Constructor SumMetaConsR2 where conName _ = "R2" instance Generic1 (Sum p q a) where type Rep1 (Sum p q a) = D1 SumMetaData ((:+:) (C1 SumMetaConsL2 (S1 NoSelector (Rec1 (p a)))) (C1 SumMetaConsR2 (S1 NoSelector (Rec1 (q a))))) from1 (L2 p) = M1 (L1 (M1 (M1 (Rec1 p)))) from1 (R2 q) = M1 (R1 (M1 (M1 (Rec1 q)))) to1 (M1 (L1 (M1 (M1 p)))) = L2 (unRec1 p) to1 (M1 (R1 (M1 (M1 q)))) = R2 (unRec1 q) #endif #if LIFTED_FUNCTOR_CLASSES instance (Eq2 f, Eq2 g, Eq a) => Eq1 (Sum f g a) where liftEq :: (a -> b -> Bool) -> Sum f g a a -> Sum f g a b -> Bool liftEq = (a -> a -> Bool) -> (a -> b -> Bool) -> Sum f g a a -> Sum f g a b -> Bool forall (f :: * -> * -> *) a b c d. Eq2 f => (a -> b -> Bool) -> (c -> d -> Bool) -> f a c -> f b d -> Bool liftEq2 a -> a -> Bool forall a. Eq a => a -> a -> Bool (==) instance (Eq2 f, Eq2 g) => Eq2 (Sum f g) where liftEq2 :: (a -> b -> Bool) -> (c -> d -> Bool) -> Sum f g a c -> Sum f g b d -> Bool liftEq2 a -> b -> Bool f c -> d -> Bool g (L2 f a c x1) (L2 f b d x2) = (a -> b -> Bool) -> (c -> d -> Bool) -> f a c -> f b d -> Bool forall (f :: * -> * -> *) a b c d. Eq2 f => (a -> b -> Bool) -> (c -> d -> Bool) -> f a c -> f b d -> Bool liftEq2 a -> b -> Bool f c -> d -> Bool g f a c x1 f b d x2 liftEq2 a -> b -> Bool _ c -> d -> Bool _ (L2 f a c _) (R2 g b d _) = Bool False liftEq2 a -> b -> Bool _ c -> d -> Bool _ (R2 g a c _) (L2 f b d _) = Bool False liftEq2 a -> b -> Bool f c -> d -> Bool g (R2 g a c y1) (R2 g b d y2) = (a -> b -> Bool) -> (c -> d -> Bool) -> g a c -> g b d -> Bool forall (f :: * -> * -> *) a b c d. Eq2 f => (a -> b -> Bool) -> (c -> d -> Bool) -> f a c -> f b d -> Bool liftEq2 a -> b -> Bool f c -> d -> Bool g g a c y1 g b d y2 instance (Ord2 f, Ord2 g, Ord a) => Ord1 (Sum f g a) where liftCompare :: (a -> b -> Ordering) -> Sum f g a a -> Sum f g a b -> Ordering liftCompare = (a -> a -> Ordering) -> (a -> b -> Ordering) -> Sum f g a a -> Sum f g a b -> Ordering forall (f :: * -> * -> *) a b c d. Ord2 f => (a -> b -> Ordering) -> (c -> d -> Ordering) -> f a c -> f b d -> Ordering liftCompare2 a -> a -> Ordering forall a. Ord a => a -> a -> Ordering compare instance (Ord2 f, Ord2 g) => Ord2 (Sum f g) where liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) -> Sum f g a c -> Sum f g b d -> Ordering liftCompare2 a -> b -> Ordering f c -> d -> Ordering g (L2 f a c x1) (L2 f b d x2) = (a -> b -> Ordering) -> (c -> d -> Ordering) -> f a c -> f b d -> Ordering forall (f :: * -> * -> *) a b c d. Ord2 f => (a -> b -> Ordering) -> (c -> d -> Ordering) -> f a c -> f b d -> Ordering liftCompare2 a -> b -> Ordering f c -> d -> Ordering g f a c x1 f b d x2 liftCompare2 a -> b -> Ordering _ c -> d -> Ordering _ (L2 f a c _) (R2 g b d _) = Ordering LT liftCompare2 a -> b -> Ordering _ c -> d -> Ordering _ (R2 g a c _) (L2 f b d _) = Ordering GT liftCompare2 a -> b -> Ordering f c -> d -> Ordering g (R2 g a c y1) (R2 g b d y2) = (a -> b -> Ordering) -> (c -> d -> Ordering) -> g a c -> g b d -> Ordering forall (f :: * -> * -> *) a b c d. Ord2 f => (a -> b -> Ordering) -> (c -> d -> Ordering) -> f a c -> f b d -> Ordering liftCompare2 a -> b -> Ordering f c -> d -> Ordering g g a c y1 g b d y2 instance (Read2 f, Read2 g, Read a) => Read1 (Sum f g a) where liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Sum f g a a) liftReadsPrec = (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Sum f g a a) forall (f :: * -> * -> *) a b. Read2 f => (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (f a b) liftReadsPrec2 Int -> ReadS a forall a. Read a => Int -> ReadS a readsPrec ReadS [a] forall a. Read a => ReadS [a] readList instance (Read2 f, Read2 g) => Read2 (Sum f g) where liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Sum f g a b) liftReadsPrec2 Int -> ReadS a rp1 ReadS [a] rl1 Int -> ReadS b rp2 ReadS [b] rl2 = (String -> ReadS (Sum f g a b)) -> Int -> ReadS (Sum f g a b) forall a. (String -> ReadS a) -> Int -> ReadS a readsData ((String -> ReadS (Sum f g a b)) -> Int -> ReadS (Sum f g a b)) -> (String -> ReadS (Sum f g a b)) -> Int -> ReadS (Sum f g a b) forall a b. (a -> b) -> a -> b $ (Int -> ReadS (f a b)) -> String -> (f a b -> Sum f g a b) -> String -> ReadS (Sum f g a b) forall a t. (Int -> ReadS a) -> String -> (a -> t) -> String -> ReadS t readsUnaryWith ((Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (f a b) forall (f :: * -> * -> *) a b. Read2 f => (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (f a b) liftReadsPrec2 Int -> ReadS a rp1 ReadS [a] rl1 Int -> ReadS b rp2 ReadS [b] rl2) String "L2" f a b -> Sum f g a b forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). p a b -> Sum p q a b L2 (String -> ReadS (Sum f g a b)) -> (String -> ReadS (Sum f g a b)) -> String -> ReadS (Sum f g a b) forall a. Monoid a => a -> a -> a `mappend` (Int -> ReadS (g a b)) -> String -> (g a b -> Sum f g a b) -> String -> ReadS (Sum f g a b) forall a t. (Int -> ReadS a) -> String -> (a -> t) -> String -> ReadS t readsUnaryWith ((Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (g a b) forall (f :: * -> * -> *) a b. Read2 f => (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (f a b) liftReadsPrec2 Int -> ReadS a rp1 ReadS [a] rl1 Int -> ReadS b rp2 ReadS [b] rl2) String "R2" g a b -> Sum f g a b forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). q a b -> Sum p q a b R2 instance (Show2 f, Show2 g, Show a) => Show1 (Sum f g a) where liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Sum f g a a -> ShowS liftShowsPrec = (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Sum f g a a -> ShowS forall (f :: * -> * -> *) a b. Show2 f => (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> f a b -> ShowS liftShowsPrec2 Int -> a -> ShowS forall a. Show a => Int -> a -> ShowS showsPrec [a] -> ShowS forall a. Show a => [a] -> ShowS showList instance (Show2 f, Show2 g) => Show2 (Sum f g) where liftShowsPrec2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> Sum f g a b -> ShowS liftShowsPrec2 Int -> a -> ShowS sp1 [a] -> ShowS sl1 Int -> b -> ShowS sp2 [b] -> ShowS sl2 Int p (L2 f a b x) = (Int -> f a b -> ShowS) -> String -> Int -> f a b -> ShowS forall a. (Int -> a -> ShowS) -> String -> Int -> a -> ShowS showsUnaryWith ((Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> f a b -> ShowS forall (f :: * -> * -> *) a b. Show2 f => (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> f a b -> ShowS liftShowsPrec2 Int -> a -> ShowS sp1 [a] -> ShowS sl1 Int -> b -> ShowS sp2 [b] -> ShowS sl2) String "L2" Int p f a b x liftShowsPrec2 Int -> a -> ShowS sp1 [a] -> ShowS sl1 Int -> b -> ShowS sp2 [b] -> ShowS sl2 Int p (R2 g a b y) = (Int -> g a b -> ShowS) -> String -> Int -> g a b -> ShowS forall a. (Int -> a -> ShowS) -> String -> Int -> a -> ShowS showsUnaryWith ((Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> g a b -> ShowS forall (f :: * -> * -> *) a b. Show2 f => (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> f a b -> ShowS liftShowsPrec2 Int -> a -> ShowS sp1 [a] -> ShowS sl1 Int -> b -> ShowS sp2 [b] -> ShowS sl2) String "R2" Int p g a b y #endif instance (Bifunctor p, Bifunctor q) => Bifunctor (Sum p q) where bimap :: (a -> b) -> (c -> d) -> Sum p q a c -> Sum p q b d bimap a -> b f c -> d g (L2 p a c p) = p b d -> Sum p q b d forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). p a b -> Sum p q a b L2 ((a -> b) -> (c -> d) -> p a c -> p b d forall (p :: * -> * -> *) a b c d. Bifunctor p => (a -> b) -> (c -> d) -> p a c -> p b d bimap a -> b f c -> d g p a c p) bimap a -> b f c -> d g (R2 q a c q) = q b d -> Sum p q b d forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). q a b -> Sum p q a b R2 ((a -> b) -> (c -> d) -> q a c -> q b d forall (p :: * -> * -> *) a b c d. Bifunctor p => (a -> b) -> (c -> d) -> p a c -> p b d bimap a -> b f c -> d g q a c q) first :: (a -> b) -> Sum p q a c -> Sum p q b c first a -> b f (L2 p a c p) = p b c -> Sum p q b c forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). p a b -> Sum p q a b L2 ((a -> b) -> p a c -> p b c forall (p :: * -> * -> *) a b c. Bifunctor p => (a -> b) -> p a c -> p b c first a -> b f p a c p) first a -> b f (R2 q a c q) = q b c -> Sum p q b c forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). q a b -> Sum p q a b R2 ((a -> b) -> q a c -> q b c forall (p :: * -> * -> *) a b c. Bifunctor p => (a -> b) -> p a c -> p b c first a -> b f q a c q) second :: (b -> c) -> Sum p q a b -> Sum p q a c second b -> c f (L2 p a b p) = p a c -> Sum p q a c forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). p a b -> Sum p q a b L2 ((b -> c) -> p a b -> p a c forall (p :: * -> * -> *) b c a. Bifunctor p => (b -> c) -> p a b -> p a c second b -> c f p a b p) second b -> c f (R2 q a b q) = q a c -> Sum p q a c forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). q a b -> Sum p q a b R2 ((b -> c) -> q a b -> q a c forall (p :: * -> * -> *) b c a. Bifunctor p => (b -> c) -> p a b -> p a c second b -> c f q a b q) instance (Bifoldable p, Bifoldable q) => Bifoldable (Sum p q) where bifoldMap :: (a -> m) -> (b -> m) -> Sum p q a b -> m bifoldMap a -> m f b -> m g (L2 p a b p) = (a -> m) -> (b -> m) -> p a b -> m forall (p :: * -> * -> *) m a b. (Bifoldable p, Monoid m) => (a -> m) -> (b -> m) -> p a b -> m bifoldMap a -> m f b -> m g p a b p bifoldMap a -> m f b -> m g (R2 q a b q) = (a -> m) -> (b -> m) -> q a b -> m forall (p :: * -> * -> *) m a b. (Bifoldable p, Monoid m) => (a -> m) -> (b -> m) -> p a b -> m bifoldMap a -> m f b -> m g q a b q instance (Bitraversable p, Bitraversable q) => Bitraversable (Sum p q) where bitraverse :: (a -> f c) -> (b -> f d) -> Sum p q a b -> f (Sum p q c d) bitraverse a -> f c f b -> f d g (L2 p a b p) = p c d -> Sum p q c d forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). p a b -> Sum p q a b L2 (p c d -> Sum p q c d) -> f (p c d) -> f (Sum p q c d) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b <$> (a -> f c) -> (b -> f d) -> p a b -> f (p c d) forall (t :: * -> * -> *) (f :: * -> *) a c b d. (Bitraversable t, Applicative f) => (a -> f c) -> (b -> f d) -> t a b -> f (t c d) bitraverse a -> f c f b -> f d g p a b p bitraverse a -> f c f b -> f d g (R2 q a b q) = q c d -> Sum p q c d forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). q a b -> Sum p q a b R2 (q c d -> Sum p q c d) -> f (q c d) -> f (Sum p q c d) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b <$> (a -> f c) -> (b -> f d) -> q a b -> f (q c d) forall (t :: * -> * -> *) (f :: * -> *) a c b d. (Bitraversable t, Applicative f) => (a -> f c) -> (b -> f d) -> t a b -> f (t c d) bitraverse a -> f c f b -> f d g q a b q instance BifunctorFunctor (Sum p) where bifmap :: (p :-> q) -> Sum p p :-> Sum p q bifmap p :-> q _ (L2 p a b p) = p a b -> Sum p q a b forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). p a b -> Sum p q a b L2 p a b p bifmap p :-> q f (R2 p a b q) = q a b -> Sum p q a b forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). q a b -> Sum p q a b R2 (p a b -> q a b p :-> q f p a b q) instance BifunctorMonad (Sum p) where bireturn :: p a b -> Sum p p a b bireturn = p a b -> Sum p p a b forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). q a b -> Sum p q a b R2 bijoin :: Sum p (Sum p p) a b -> Sum p p a b bijoin (L2 p a b p) = p a b -> Sum p p a b forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). p a b -> Sum p q a b L2 p a b p bijoin (R2 Sum p p a b q) = Sum p p a b q bibind :: (p :-> Sum p q) -> Sum p p :-> Sum p q bibind p :-> Sum p q _ (L2 p a b p) = p a b -> Sum p q a b forall k k (p :: k -> k -> *) (q :: k -> k -> *) (a :: k) (b :: k). p a b -> Sum p q a b L2 p a b p bibind p :-> Sum p q f (R2 p a b q) = p a b -> Sum p q a b p :-> Sum p q f p a b q