{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE TypeFamilies #-}
module Math.NumberTheory.Quadratic.GaussianIntegers (
GaussianInteger(..),
ι,
conjugate,
norm,
primes,
findPrime,
) where
import Control.DeepSeq (NFData)
import Data.Coerce
import Data.List (mapAccumL, partition)
import Data.Maybe (fromMaybe)
import Data.Ord (comparing)
import GHC.Generics
import qualified Math.NumberTheory.Euclidean as ED
import Math.NumberTheory.Moduli.Sqrt
import Math.NumberTheory.Powers (integerSquareRoot)
import Math.NumberTheory.Primes.Types
import qualified Math.NumberTheory.Primes.Sieve as Sieve
import qualified Math.NumberTheory.Primes.Testing as Testing
import qualified Math.NumberTheory.Primes as U
import Math.NumberTheory.Utils (mergeBy)
import Math.NumberTheory.Utils.FromIntegral
infix 6 :+
data GaussianInteger = (:+) { real :: !Integer, imag :: !Integer }
deriving (Eq, Ord, Generic)
instance NFData GaussianInteger
ι :: GaussianInteger
ι = 0 :+ 1
instance Show GaussianInteger where
show (a :+ b)
| b == 0 = show a
| a == 0 = s ++ b'
| otherwise = show a ++ op ++ b'
where
b' = if abs b == 1 then "ι" else show (abs b) ++ "*ι"
op = if b > 0 then "+" else "-"
s = if b > 0 then "" else "-"
instance Num GaussianInteger where
(+) (a :+ b) (c :+ d) = (a + c) :+ (b + d)
(*) (a :+ b) (c :+ d) = (a * c - b * d) :+ (a * d + b * c)
abs = fst . absSignum
negate (a :+ b) = (-a) :+ (-b)
fromInteger n = n :+ 0
signum = snd . absSignum
absSignum :: GaussianInteger -> (GaussianInteger, GaussianInteger)
absSignum z@(a :+ b)
| a == 0 && b == 0 = (z, 0)
| a > 0 && b >= 0 = (z, 1)
| a <= 0 && b > 0 = (b :+ (-a), ι)
| a < 0 && b <= 0 = ((-a) :+ (-b), -1)
| otherwise = ((-b) :+ a, -ι)
instance ED.Euclidean GaussianInteger where
quotRem = divHelper quot
divMod = divHelper div
divHelper
:: (Integer -> Integer -> Integer)
-> GaussianInteger
-> GaussianInteger
-> (GaussianInteger, GaussianInteger)
divHelper divide g h =
let nr :+ ni = g * conjugate h
denom = norm h
q = divide nr denom :+ divide ni denom
p = h * q
in (q, g - p)
conjugate :: GaussianInteger -> GaussianInteger
conjugate (r :+ i) = r :+ (-i)
norm :: GaussianInteger -> Integer
norm (x :+ y) = x * x + y * y
isPrime :: GaussianInteger -> Bool
isPrime g@(x :+ y)
| x == 0 && y /= 0 = abs y `mod` 4 == 3 && Testing.isPrime y
| y == 0 && x /= 0 = abs x `mod` 4 == 3 && Testing.isPrime x
| otherwise = Testing.isPrime $ norm g
primes :: [U.Prime GaussianInteger]
primes = coerce $ (1 :+ 1) : mergeBy (comparing norm) l r
where
leftPrimes, rightPrimes :: [Prime Integer]
(leftPrimes, rightPrimes) = partition (\p -> unPrime p `mod` 4 == 3) (tail Sieve.primes)
l = [unPrime p :+ 0 | p <- leftPrimes]
r = [g | p <- rightPrimes, let Prime (x :+ y) = findPrime p, g <- [x :+ y, y :+ x]]
findPrime :: Prime Integer -> U.Prime GaussianInteger
findPrime p = case sqrtsModPrime (-1) p of
[] -> error "findPrime: an argument must be prime p = 4k + 1"
z : _ -> Prime $ go (unPrime p) z
where
sqrtp :: Integer
sqrtp = integerSquareRoot (unPrime p)
go :: Integer -> Integer -> GaussianInteger
go g h
| g <= sqrtp = g :+ h
| otherwise = go h (g `mod` h)
factorise :: GaussianInteger -> [(Prime GaussianInteger, Word)]
factorise g = concat $ snd $ mapAccumL go g (U.factorise $ norm g)
where
go :: GaussianInteger -> (Prime Integer, Word) -> (GaussianInteger, [(Prime GaussianInteger, Word)])
go z (Prime 2, e) = (divideByTwo z, [(Prime (1 :+ 1), e)])
go z (p, e)
| unPrime p `mod` 4 == 3
= let e' = e `quot` 2 in (z `quotI` (unPrime p ^ e'), [(Prime (unPrime p :+ 0), e')])
| otherwise
= (z', filter ((> 0) . snd) [(gp, k), (gp', k')])
where
gp = findPrime p
(k, k', z') = divideByPrime gp (unPrime p) e z
gp' = Prime (abs (conjugate (unPrime gp)))
divideByTwo :: GaussianInteger -> GaussianInteger
divideByTwo z@(x :+ y)
| even x, even y
= divideByTwo $ z `quotI` 2
| odd x, odd y
= (x - y) `quot` 2 :+ (x + y) `quot` 2
| otherwise
= z
divideByPrime
:: Prime GaussianInteger
-> Integer
-> Word
-> GaussianInteger
-> ( Word
, Word
, GaussianInteger
)
divideByPrime p np k = go k 0
where
go :: Word -> Word -> GaussianInteger -> (Word, Word, GaussianInteger)
go 0 d z = (d, d, z)
go c d z
| c >= 2
, Just z' <- z `quotEvenI` np
= go (c - 2) (d + 1) z'
go c d z = (d + d1, d + d2, z'')
where
(d1, z') = go1 c 0 z
d2 = c - d1
z'' = head $ drop (wordToInt d2)
$ iterate (\g -> fromMaybe err $ (g * unPrime p) `quotEvenI` np) z'
go1 :: Word -> Word -> GaussianInteger -> (Word, GaussianInteger)
go1 0 d z = (d, z)
go1 c d z
| Just z' <- (z * conjugate (unPrime p)) `quotEvenI` np
= go1 (c - 1) (d + 1) z'
| otherwise
= (d, z)
err = error $ "divideByPrime: malformed arguments" ++ show (p, np, k)
quotI :: GaussianInteger -> Integer -> GaussianInteger
quotI (x :+ y) n = (x `quot` n :+ y `quot` n)
quotEvenI :: GaussianInteger -> Integer -> Maybe GaussianInteger
quotEvenI (x :+ y) n
| xr == 0
, yr == 0
= Just (xq :+ yq)
| otherwise
= Nothing
where
(xq, xr) = x `quotRem` n
(yq, yr) = y `quotRem` n
instance U.UniqueFactorisation GaussianInteger where
factorise 0 = []
factorise g = coerce $ factorise g
isPrime g = if isPrime g then Just (Prime g) else Nothing