-- | -- Module: Math.NumberTheory.Prefactored -- Copyright: (c) 2017 Andrew Lelechenko -- Licence: MIT -- Maintainer: Andrew Lelechenko <andrew.lelechenko@gmail.com> -- -- Type for numbers, accompanied by their factorisation. -- {-# LANGUAGE CPP #-} {-# LANGUAGE TypeFamilies #-} {-# OPTIONS_GHC -fno-warn-unused-imports #-} module Math.NumberTheory.Prefactored ( Prefactored(prefValue, prefFactors) , fromValue , fromFactors ) where import Control.Arrow import Data.Semigroup import Math.NumberTheory.Euclidean import Math.NumberTheory.Euclidean.Coprimes import Math.NumberTheory.Primes import Math.NumberTheory.Primes.Types -- | A container for a number and its pairwise coprime (but not neccessarily prime) -- factorisation. -- It is designed to preserve information about factors under multiplication. -- One can use this representation to speed up prime factorisation -- and computation of arithmetic functions. -- -- For instance, let @p@ and @q@ be big primes: -- -- >>> let p = 1000000000000000000000000000057 :: Integer -- >>> let q = 2000000000000000000000000000071 :: Integer -- -- It would be difficult to compute the totient function -- of their product as is, because once we multiplied them -- the information of factors is lost and -- 'Math.NumberTheory.ArithmeticFunctions.totient' (@p@ * @q@) -- would take ages. Things become different if we simply -- change types of @p@ and @q@ to prefactored ones: -- -- >>> let p = 1000000000000000000000000000057 :: Prefactored Integer -- >>> let q = 2000000000000000000000000000071 :: Prefactored Integer -- -- Now the 'Math.NumberTheory.ArithmeticFunctions.totient' function -- can be computed instantly: -- -- >>> import Math.NumberTheory.ArithmeticFunctions -- >>> prefValue $ totient (p^2 * q^3) -- 8000000000000000000000000001752000000000000000000000000151322000000000000000000000006445392000000000000000000000135513014000000000000000000001126361040 -- >>> prefValue $ totient $ totient (p^2 * q^3) -- 2133305798262843681544648472180210822742702690942899511234131900112583590230336435053688694839034890779375223070157301188739881477320529552945446912000 -- -- Let us look under the hood: -- -- >>> import Math.NumberTheory.ArithmeticFunctions -- >>> prefFactors $ totient (p^2 * q^3) -- Coprimes {unCoprimes = [(1000000000000000000000000000057,1),(41666666666666666666666666669,1),(2000000000000000000000000000071,2),(111111111111111111111111111115,1),(2,4),(3,3)]} -- >>> prefFactors $ totient $ totient (p^2 * q^3) -- Coprimes {unCoprimes = [(39521,1),(6046667,1),(22222222222222222222222222223,1),(2000000000000000000000000000071,1),(361696272343,1),(85331809838489,1),(227098769,1),(199937,1),(5,3),(41666666666666666666666666669,1),(2,22),(3,8)]} -- -- Pairwise coprimality of factors is crucial, because it allows -- us to process them independently, possibly even -- in parallel or concurrent fashion. -- -- Following invariant is guaranteed to hold: -- -- > abs (prefValue x) = abs (product (map (uncurry (^)) (prefFactors x))) data Prefactored a = Prefactored { prefValue :: a -- ^ Number itself. , prefFactors :: Coprimes a Word -- ^ List of pairwise coprime (but not neccesarily prime) factors, -- accompanied by their multiplicities. } deriving (Show) -- | Create 'Prefactored' from a given number. -- -- >>> fromValue 123 -- Prefactored {prefValue = 123, prefFactors = Coprimes {unCoprimes = [(123,1)]}} fromValue :: (Eq a, Num a) => a -> Prefactored a fromValue a = Prefactored a (singleton a 1) -- | Create 'Prefactored' from a given list of pairwise coprime -- (but not neccesarily prime) factors with multiplicities. -- -- >>> fromFactors (splitIntoCoprimes [(140, 1), (165, 1)]) -- Prefactored {prefValue = 23100, prefFactors = Coprimes {unCoprimes = [(28,1),(33,1),(5,2)]}} -- >>> fromFactors (splitIntoCoprimes [(140, 2), (165, 3)]) -- Prefactored {prefValue = 88045650000, prefFactors = Coprimes {unCoprimes = [(28,2),(33,3),(5,5)]}} fromFactors :: Num a => Coprimes a Word -> Prefactored a fromFactors as = Prefactored (product (map (uncurry (^)) (unCoprimes as))) as instance Euclidean a => Num (Prefactored a) where Prefactored v1 _ + Prefactored v2 _ = fromValue (v1 + v2) Prefactored v1 _ - Prefactored v2 _ = fromValue (v1 - v2) Prefactored v1 f1 * Prefactored v2 f2 = Prefactored (v1 * v2) (f1 <> f2) negate (Prefactored v f) = Prefactored (negate v) f abs (Prefactored v f) = Prefactored (abs v) f signum (Prefactored v _) = Prefactored (signum v) mempty fromInteger n = fromValue (fromInteger n) instance (Euclidean a, UniqueFactorisation a) => UniqueFactorisation (Prefactored a) where factorise (Prefactored _ f) = concatMap (\(x, xm) -> map (\(p, k) -> (Prime $ fromValue $ unPrime p, k * xm)) (factorise x)) (unCoprimes f) isPrime (Prefactored _ f) = case unCoprimes f of [(n, 1)] -> Prime . fromValue . unPrime <$> isPrime n _ -> Nothing