{-# OPTIONS_GHC -w #-}
{-# OPTIONS -XMagicHash -XBangPatterns -XTypeSynonymInstances -XFlexibleInstances -cpp #-}
#if __GLASGOW_HASKELL__ >= 710
{-# OPTIONS_GHC -XPartialTypeSignatures #-}
#endif
{-# OPTIONS_GHC -w #-}
module Parser ( parse, P ) where
import AbsSyn
import Scan
import CharSet
import ParseMonad hiding ( StartCode )
import Data.Char
import qualified Data.Array as Happy_Data_Array
import qualified Data.Bits as Bits
import qualified GHC.Exts as Happy_GHC_Exts
import Control.Applicative(Applicative(..))
import Control.Monad (ap)
newtype HappyAbsSyn = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
happyIn4 :: ((Maybe (AlexPosn,Code), [Directive], Scanner, Maybe (AlexPosn,Code))) -> (HappyAbsSyn )
happyIn4 :: (Maybe (AlexPosn, Code), [Directive], Scanner,
Maybe (AlexPosn, Code))
-> HappyAbsSyn
happyIn4 (Maybe (AlexPosn, Code), [Directive], Scanner,
Maybe (AlexPosn, Code))
x = (Maybe (AlexPosn, Code), [Directive], Scanner,
Maybe (AlexPosn, Code))
-> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Maybe (AlexPosn, Code), [Directive], Scanner,
Maybe (AlexPosn, Code))
x
{-# INLINE happyIn4 #-}
happyOut4 :: (HappyAbsSyn ) -> ((Maybe (AlexPosn,Code), [Directive], Scanner, Maybe (AlexPosn,Code)))
happyOut4 :: HappyAbsSyn
-> (Maybe (AlexPosn, Code), [Directive], Scanner,
Maybe (AlexPosn, Code))
happyOut4 HappyAbsSyn
x = HappyAbsSyn
-> (Maybe (AlexPosn, Code), [Directive], Scanner,
Maybe (AlexPosn, Code))
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut4 #-}
happyIn5 :: (Maybe (AlexPosn,Code)) -> (HappyAbsSyn )
happyIn5 :: Maybe (AlexPosn, Code) -> HappyAbsSyn
happyIn5 Maybe (AlexPosn, Code)
x = Maybe (AlexPosn, Code) -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Maybe (AlexPosn, Code)
x
{-# INLINE happyIn5 #-}
happyOut5 :: (HappyAbsSyn ) -> (Maybe (AlexPosn,Code))
happyOut5 :: HappyAbsSyn -> Maybe (AlexPosn, Code)
happyOut5 HappyAbsSyn
x = HappyAbsSyn -> Maybe (AlexPosn, Code)
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut5 #-}
happyIn6 :: ([Directive]) -> (HappyAbsSyn )
happyIn6 :: [Directive] -> HappyAbsSyn
happyIn6 [Directive]
x = [Directive] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# [Directive]
x
{-# INLINE happyIn6 #-}
happyOut6 :: (HappyAbsSyn ) -> ([Directive])
happyOut6 :: HappyAbsSyn -> [Directive]
happyOut6 HappyAbsSyn
x = HappyAbsSyn -> [Directive]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut6 #-}
happyIn7 :: (Directive) -> (HappyAbsSyn )
happyIn7 :: Directive -> HappyAbsSyn
happyIn7 Directive
x = Directive -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Directive
x
{-# INLINE happyIn7 #-}
happyOut7 :: (HappyAbsSyn ) -> (Directive)
happyOut7 :: HappyAbsSyn -> Directive
happyOut7 HappyAbsSyn
x = HappyAbsSyn -> Directive
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut7 #-}
happyIn8 :: (()) -> (HappyAbsSyn )
happyIn8 :: () -> HappyAbsSyn
happyIn8 ()
x = () -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ()
x
{-# INLINE happyIn8 #-}
happyOut8 :: (HappyAbsSyn ) -> (())
happyOut8 :: HappyAbsSyn -> ()
happyOut8 HappyAbsSyn
x = HappyAbsSyn -> ()
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut8 #-}
happyIn9 :: (()) -> (HappyAbsSyn )
happyIn9 :: () -> HappyAbsSyn
happyIn9 ()
x = () -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ()
x
{-# INLINE happyIn9 #-}
happyOut9 :: (HappyAbsSyn ) -> (())
happyOut9 :: HappyAbsSyn -> ()
happyOut9 HappyAbsSyn
x = HappyAbsSyn -> ()
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut9 #-}
happyIn10 :: (Scanner) -> (HappyAbsSyn )
happyIn10 :: Scanner -> HappyAbsSyn
happyIn10 Scanner
x = Scanner -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Scanner
x
{-# INLINE happyIn10 #-}
happyOut10 :: (HappyAbsSyn ) -> (Scanner)
happyOut10 :: HappyAbsSyn -> Scanner
happyOut10 HappyAbsSyn
x = HappyAbsSyn -> Scanner
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut10 #-}
happyIn11 :: ([RECtx]) -> (HappyAbsSyn )
happyIn11 :: [RECtx] -> HappyAbsSyn
happyIn11 [RECtx]
x = [RECtx] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# [RECtx]
x
{-# INLINE happyIn11 #-}
happyOut11 :: (HappyAbsSyn ) -> ([RECtx])
happyOut11 :: HappyAbsSyn -> [RECtx]
happyOut11 HappyAbsSyn
x = HappyAbsSyn -> [RECtx]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut11 #-}
happyIn12 :: ([RECtx]) -> (HappyAbsSyn )
happyIn12 :: [RECtx] -> HappyAbsSyn
happyIn12 [RECtx]
x = [RECtx] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# [RECtx]
x
{-# INLINE happyIn12 #-}
happyOut12 :: (HappyAbsSyn ) -> ([RECtx])
happyOut12 :: HappyAbsSyn -> [RECtx]
happyOut12 HappyAbsSyn
x = HappyAbsSyn -> [RECtx]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut12 #-}
happyIn13 :: (RECtx) -> (HappyAbsSyn )
happyIn13 :: RECtx -> HappyAbsSyn
happyIn13 RECtx
x = RECtx -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# RECtx
x
{-# INLINE happyIn13 #-}
happyOut13 :: (HappyAbsSyn ) -> (RECtx)
happyOut13 :: HappyAbsSyn -> RECtx
happyOut13 HappyAbsSyn
x = HappyAbsSyn -> RECtx
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut13 #-}
happyIn14 :: ([RECtx]) -> (HappyAbsSyn )
happyIn14 :: [RECtx] -> HappyAbsSyn
happyIn14 [RECtx]
x = [RECtx] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# [RECtx]
x
{-# INLINE happyIn14 #-}
happyOut14 :: (HappyAbsSyn ) -> ([RECtx])
happyOut14 :: HappyAbsSyn -> [RECtx]
happyOut14 HappyAbsSyn
x = HappyAbsSyn -> [RECtx]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut14 #-}
happyIn15 :: ([(String,StartCode)]) -> (HappyAbsSyn )
happyIn15 :: [(Code, StartCode)] -> HappyAbsSyn
happyIn15 [(Code, StartCode)]
x = [(Code, StartCode)] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# [(Code, StartCode)]
x
{-# INLINE happyIn15 #-}
happyOut15 :: (HappyAbsSyn ) -> ([(String,StartCode)])
happyOut15 :: HappyAbsSyn -> [(Code, StartCode)]
happyOut15 HappyAbsSyn
x = HappyAbsSyn -> [(Code, StartCode)]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut15 #-}
happyIn16 :: ([(String,StartCode)]) -> (HappyAbsSyn )
happyIn16 :: [(Code, StartCode)] -> HappyAbsSyn
happyIn16 [(Code, StartCode)]
x = [(Code, StartCode)] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# [(Code, StartCode)]
x
{-# INLINE happyIn16 #-}
happyOut16 :: (HappyAbsSyn ) -> ([(String,StartCode)])
happyOut16 :: HappyAbsSyn -> [(Code, StartCode)]
happyOut16 HappyAbsSyn
x = HappyAbsSyn -> [(Code, StartCode)]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut16 #-}
happyIn17 :: (String) -> (HappyAbsSyn )
happyIn17 :: Code -> HappyAbsSyn
happyIn17 Code
x = Code -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Code
x
{-# INLINE happyIn17 #-}
happyOut17 :: (HappyAbsSyn ) -> (String)
happyOut17 :: HappyAbsSyn -> Code
happyOut17 HappyAbsSyn
x = HappyAbsSyn -> Code
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut17 #-}
happyIn18 :: (Maybe Code) -> (HappyAbsSyn )
happyIn18 :: Maybe Code -> HappyAbsSyn
happyIn18 Maybe Code
x = Maybe Code -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Maybe Code
x
{-# INLINE happyIn18 #-}
happyOut18 :: (HappyAbsSyn ) -> (Maybe Code)
happyOut18 :: HappyAbsSyn -> Maybe Code
happyOut18 HappyAbsSyn
x = HappyAbsSyn -> Maybe Code
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut18 #-}
happyIn19 :: (Maybe CharSet, RExp, RightContext RExp) -> (HappyAbsSyn )
happyIn19 :: (Maybe CharSet, RExp, RightContext RExp) -> HappyAbsSyn
happyIn19 (Maybe CharSet, RExp, RightContext RExp)
x = (Maybe CharSet, RExp, RightContext RExp) -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Maybe CharSet, RExp, RightContext RExp)
x
{-# INLINE happyIn19 #-}
happyOut19 :: (HappyAbsSyn ) -> (Maybe CharSet, RExp, RightContext RExp)
happyOut19 :: HappyAbsSyn -> (Maybe CharSet, RExp, RightContext RExp)
happyOut19 HappyAbsSyn
x = HappyAbsSyn -> (Maybe CharSet, RExp, RightContext RExp)
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut19 #-}
happyIn20 :: (CharSet) -> (HappyAbsSyn )
happyIn20 :: CharSet -> HappyAbsSyn
happyIn20 CharSet
x = CharSet -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CharSet
x
{-# INLINE happyIn20 #-}
happyOut20 :: (HappyAbsSyn ) -> (CharSet)
happyOut20 :: HappyAbsSyn -> CharSet
happyOut20 HappyAbsSyn
x = HappyAbsSyn -> CharSet
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut20 #-}
happyIn21 :: (RightContext RExp) -> (HappyAbsSyn )
happyIn21 :: RightContext RExp -> HappyAbsSyn
happyIn21 RightContext RExp
x = RightContext RExp -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# RightContext RExp
x
{-# INLINE happyIn21 #-}
happyOut21 :: (HappyAbsSyn ) -> (RightContext RExp)
happyOut21 :: HappyAbsSyn -> RightContext RExp
happyOut21 HappyAbsSyn
x = HappyAbsSyn -> RightContext RExp
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut21 #-}
happyIn22 :: (RExp) -> (HappyAbsSyn )
happyIn22 :: RExp -> HappyAbsSyn
happyIn22 RExp
x = RExp -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# RExp
x
{-# INLINE happyIn22 #-}
happyOut22 :: (HappyAbsSyn ) -> (RExp)
happyOut22 :: HappyAbsSyn -> RExp
happyOut22 HappyAbsSyn
x = HappyAbsSyn -> RExp
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut22 #-}
happyIn23 :: (RExp) -> (HappyAbsSyn )
happyIn23 :: RExp -> HappyAbsSyn
happyIn23 RExp
x = RExp -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# RExp
x
{-# INLINE happyIn23 #-}
happyOut23 :: (HappyAbsSyn ) -> (RExp)
happyOut23 :: HappyAbsSyn -> RExp
happyOut23 HappyAbsSyn
x = HappyAbsSyn -> RExp
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut23 #-}
happyIn24 :: (RExp) -> (HappyAbsSyn )
happyIn24 :: RExp -> HappyAbsSyn
happyIn24 RExp
x = RExp -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# RExp
x
{-# INLINE happyIn24 #-}
happyOut24 :: (HappyAbsSyn ) -> (RExp)
happyOut24 :: HappyAbsSyn -> RExp
happyOut24 HappyAbsSyn
x = HappyAbsSyn -> RExp
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut24 #-}
happyIn25 :: (RExp -> RExp) -> (HappyAbsSyn )
happyIn25 :: (RExp -> RExp) -> HappyAbsSyn
happyIn25 RExp -> RExp
x = (RExp -> RExp) -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# RExp -> RExp
x
{-# INLINE happyIn25 #-}
happyOut25 :: (HappyAbsSyn ) -> (RExp -> RExp)
happyOut25 :: HappyAbsSyn -> RExp -> RExp
happyOut25 HappyAbsSyn
x = HappyAbsSyn -> RExp -> RExp
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut25 #-}
happyIn26 :: (RExp) -> (HappyAbsSyn )
happyIn26 :: RExp -> HappyAbsSyn
happyIn26 RExp
x = RExp -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# RExp
x
{-# INLINE happyIn26 #-}
happyOut26 :: (HappyAbsSyn ) -> (RExp)
happyOut26 :: HappyAbsSyn -> RExp
happyOut26 HappyAbsSyn
x = HappyAbsSyn -> RExp
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut26 #-}
happyIn27 :: (CharSet) -> (HappyAbsSyn )
happyIn27 :: CharSet -> HappyAbsSyn
happyIn27 CharSet
x = CharSet -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CharSet
x
{-# INLINE happyIn27 #-}
happyOut27 :: (HappyAbsSyn ) -> (CharSet)
happyOut27 :: HappyAbsSyn -> CharSet
happyOut27 HappyAbsSyn
x = HappyAbsSyn -> CharSet
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut27 #-}
happyIn28 :: (CharSet) -> (HappyAbsSyn )
happyIn28 :: CharSet -> HappyAbsSyn
happyIn28 CharSet
x = CharSet -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CharSet
x
{-# INLINE happyIn28 #-}
happyOut28 :: (HappyAbsSyn ) -> (CharSet)
happyOut28 :: HappyAbsSyn -> CharSet
happyOut28 HappyAbsSyn
x = HappyAbsSyn -> CharSet
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut28 #-}
happyIn29 :: ([CharSet]) -> (HappyAbsSyn )
happyIn29 :: [CharSet] -> HappyAbsSyn
happyIn29 [CharSet]
x = [CharSet] -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# [CharSet]
x
{-# INLINE happyIn29 #-}
happyOut29 :: (HappyAbsSyn ) -> ([CharSet])
happyOut29 :: HappyAbsSyn -> [CharSet]
happyOut29 HappyAbsSyn
x = HappyAbsSyn -> [CharSet]
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut29 #-}
happyIn30 :: ((AlexPosn,String)) -> (HappyAbsSyn )
happyIn30 :: (AlexPosn, Code) -> HappyAbsSyn
happyIn30 (AlexPosn, Code)
x = (AlexPosn, Code) -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (AlexPosn, Code)
x
{-# INLINE happyIn30 #-}
happyOut30 :: (HappyAbsSyn ) -> ((AlexPosn,String))
happyOut30 :: HappyAbsSyn -> (AlexPosn, Code)
happyOut30 HappyAbsSyn
x = HappyAbsSyn -> (AlexPosn, Code)
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut30 #-}
happyInTok :: (Token) -> (HappyAbsSyn )
happyInTok :: Token -> HappyAbsSyn
happyInTok Token
x = Token -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# Token
x
{-# INLINE happyInTok #-}
happyOutTok :: (HappyAbsSyn ) -> (Token)
happyOutTok :: HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
x = HappyAbsSyn -> Token
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOutTok #-}
happyExpList :: HappyAddr
happyExpList :: HappyAddr
happyExpList = Addr# -> HappyAddr
HappyA# Addr#
"\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x04\x00\x0a\x30\x00\x00\x00\x00\x02\x20\x85\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x20\x48\x21\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\xb0\x42\x1c\x00\x00\x00\x80\x00\x40\x01\x06\x00\x00\x00\x40\x00\xa0\x02\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x40\x01\xa4\x12\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x00\xa9\xc4\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x50\x2a\x71\x00\x00\x00\x00\x04\x00\x00\x04\x00\x00\x00\x00\x01\x90\x42\x1c\x00\x00\x00\x00\x10\x00\x08\x00\x00\x00\x00\x00\x00\x10\x02\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x0a\x30\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x01\xc0\x02\x0c\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x40\x00\xa0\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x29\xc4\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x29\xe4\x01\x00\x00\x00\x00\x01\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\xa4\x12\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\xa9\xc4\x01\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x90\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
{-# NOINLINE happyExpListPerState #-}
happyExpListPerState :: StartCode -> [Code]
happyExpListPerState StartCode
st =
[Code]
token_strs_expected
where token_strs :: [Code]
token_strs = [Code
"error",Code
"%dummy",Code
"%start_parse",Code
"alex",Code
"maybe_code",Code
"directives",Code
"directive",Code
"macdefs",Code
"macdef",Code
"scanner",Code
"tokendefs",Code
"tokendef",Code
"rule",Code
"rules",Code
"startcodes",Code
"startcodes0",Code
"startcode",Code
"rhs",Code
"context",Code
"left_ctx",Code
"right_ctx",Code
"rexp",Code
"alt",Code
"term",Code
"rep",Code
"rexp0",Code
"set",Code
"set0",Code
"sets",Code
"smac",Code
"'.'",Code
"';'",Code
"'<'",Code
"'>'",Code
"','",Code
"'$'",Code
"'|'",Code
"'*'",Code
"'+'",Code
"'?'",Code
"'{'",Code
"'}'",Code
"'('",Code
"')'",Code
"'#'",Code
"'~'",Code
"'-'",Code
"'['",Code
"']'",Code
"'^'",Code
"'/'",Code
"ZERO",Code
"STRING",Code
"BIND",Code
"ID",Code
"CODE",Code
"CHAR",Code
"SMAC",Code
"RMAC",Code
"SMAC_DEF",Code
"RMAC_DEF",Code
"WRAPPER",Code
"%eof"]
bit_start :: StartCode
bit_start = StartCode
st StartCode -> StartCode -> StartCode
forall a. Num a => a -> a -> a
* StartCode
63
bit_end :: StartCode
bit_end = (StartCode
st StartCode -> StartCode -> StartCode
forall a. Num a => a -> a -> a
+ StartCode
1) StartCode -> StartCode -> StartCode
forall a. Num a => a -> a -> a
* StartCode
63
read_bit :: StartCode -> Bool
read_bit = HappyAddr -> StartCode -> Bool
readArrayBit HappyAddr
happyExpList
bits :: [Bool]
bits = (StartCode -> Bool) -> [StartCode] -> [Bool]
forall a b. (a -> b) -> [a] -> [b]
map StartCode -> Bool
read_bit [StartCode
bit_start..StartCode
bit_end StartCode -> StartCode -> StartCode
forall a. Num a => a -> a -> a
- StartCode
1]
bits_indexed :: [(Bool, StartCode)]
bits_indexed = [Bool] -> [StartCode] -> [(Bool, StartCode)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Bool]
bits [StartCode
0..StartCode
62]
token_strs_expected :: [Code]
token_strs_expected = ((Bool, StartCode) -> [Code]) -> [(Bool, StartCode)] -> [Code]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (Bool, StartCode) -> [Code]
f [(Bool, StartCode)]
bits_indexed
f :: (Bool, StartCode) -> [Code]
f (Bool
False, StartCode
_) = []
f (Bool
True, StartCode
nr) = [[Code]
token_strs [Code] -> StartCode -> Code
forall a. [a] -> StartCode -> a
!! StartCode
nr]
happyActOffsets :: HappyAddr
happyActOffsets :: HappyAddr
happyActOffsets = Addr# -> HappyAddr
HappyA# Addr#
"\xec\xff\xec\xff\xea\xff\x00\x00\xf6\xff\xfc\xff\x04\x00\x18\x00\x00\x00\x00\x00\x23\x00\xfc\xff\x7d\x00\x6f\x00\x00\x00\x27\x00\x00\x00\xb4\x00\x3b\x00\x00\x00\x00\x00\x00\x00\x39\x00\x7d\x00\x0f\x00\x00\x00\x3d\x00\x00\x00\x00\x00\x44\x00\x00\x00\x42\x00\x01\x00\x00\x00\x01\x00\x00\x00\x15\x00\xff\xff\x6f\x00\xfd\xff\x24\x00\x2f\x00\x00\x00\x00\x00\x7d\x00\x4e\x00\x75\x00\x47\x00\x7d\x00\x00\x00\x51\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x00\x00\x00\x6f\x00\x00\x00\x21\x00\x00\x00\x59\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6a\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4b\x00\xfd\xff\x00\x00\x00\x00\x00\x00\x00\x00\x5d\x00\x00\x00\x5d\x00\x6b\x00\x00\x00\x00\x00\x00\x00\x2f\x00\x00\x00\x00\x00\xf9\xff\x00\x00\x00\x00\x71\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyGotoOffsets :: HappyAddr
happyGotoOffsets :: HappyAddr
happyGotoOffsets = Addr# -> HappyAddr
HappyA# Addr#
"\x40\x00\x7a\x00\x33\x00\x00\x00\x00\x00\x4d\x00\x5e\x00\x00\x00\x00\x00\x00\x00\x82\x00\x5f\x00\x25\x00\xf5\xff\x00\x00\xf8\x00\x00\x00\x74\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd8\x00\x35\x00\xb7\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7f\x00\x8b\x00\x00\x00\x9f\x00\x00\x00\xcf\x00\x80\x00\xe1\x00\x84\x00\x00\x00\x66\x00\x00\x00\x00\x00\x3f\x00\x00\x00\xfc\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xea\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf3\x00\x86\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb1\x00\x00\x00\xc3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x76\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyAdjustOffset :: Happy_GHC_Exts.Int# -> Happy_GHC_Exts.Int#
happyAdjustOffset :: Int# -> Int#
happyAdjustOffset Int#
off = Int#
off
happyDefActions :: HappyAddr
happyDefActions :: HappyAddr
happyDefActions = Addr# -> HappyAddr
HappyA# Addr#
"\xfc\xff\x00\x00\xfa\xff\xfd\xff\x00\x00\xf7\xff\xfa\xff\x00\x00\xf9\xff\xfb\xff\x00\x00\xf7\xff\x00\x00\x00\x00\xf5\xff\xdb\xff\xd9\xff\xd7\xff\xcd\xff\xca\xff\xc7\xff\xc1\xff\x00\x00\x00\x00\xc2\xff\xcf\xff\xc9\xff\xc0\xff\xce\xff\xf6\xff\xf8\xff\xfc\xff\xf2\xff\xf4\xff\xf2\xff\xef\xff\x00\x00\x00\x00\x00\x00\xdd\xff\xcd\xff\x00\x00\xe2\xff\xfe\xff\x00\x00\x00\x00\xc2\xff\x00\x00\xc2\xff\xc4\xff\x00\x00\xd0\xff\xd8\xff\xd6\xff\xd5\xff\xd4\xff\x00\x00\xda\xff\x00\x00\xdc\xff\x00\x00\xcc\xff\x00\x00\xc6\xff\xc3\xff\xc8\xff\xcb\xff\x00\x00\xe9\xff\xe8\xff\xe7\xff\xe1\xff\xe3\xff\xe0\xff\x00\x00\xdd\xff\xee\xff\xe5\xff\xe6\xff\xf1\xff\xec\xff\xf3\xff\xec\xff\x00\x00\xe4\xff\xdf\xff\xde\xff\x00\x00\xeb\xff\xc5\xff\x00\x00\xd3\xff\xd2\xff\x00\x00\xea\xff\xf0\xff\xed\xff\xd1\xff"#
happyCheck :: HappyAddr
happyCheck :: HappyAddr
happyCheck = Addr# -> HappyAddr
HappyA# Addr#
"\xff\xff\x02\x00\x01\x00\x06\x00\x03\x00\x0c\x00\x1a\x00\x12\x00\x13\x00\x14\x00\x20\x00\x16\x00\x17\x00\x18\x00\x0d\x00\x1a\x00\x01\x00\x10\x00\x15\x00\x12\x00\x1b\x00\x14\x00\x01\x00\x21\x00\x17\x00\x1a\x00\x1e\x00\x1f\x00\x1b\x00\x1c\x00\x1d\x00\x10\x00\x0b\x00\x12\x00\x0d\x00\x14\x00\x20\x00\x10\x00\x05\x00\x12\x00\x01\x00\x14\x00\x1b\x00\x1c\x00\x17\x00\x0c\x00\x07\x00\x17\x00\x1b\x00\x1c\x00\x1d\x00\x0f\x00\x0d\x00\x02\x00\x03\x00\x10\x00\x14\x00\x12\x00\x01\x00\x18\x00\x17\x00\x18\x00\x17\x00\x1a\x00\x00\x00\x01\x00\x1b\x00\x1c\x00\x1d\x00\x16\x00\x0d\x00\x0e\x00\x19\x00\x10\x00\x0f\x00\x12\x00\x01\x00\x18\x00\x11\x00\x1a\x00\x17\x00\x04\x00\x05\x00\x0f\x00\x1b\x00\x1c\x00\x1d\x00\x18\x00\x0d\x00\x1a\x00\x13\x00\x10\x00\x1a\x00\x12\x00\x01\x00\x0e\x00\x02\x00\x03\x00\x17\x00\x04\x00\x05\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x1b\x00\x0d\x00\x1b\x00\x13\x00\x10\x00\x04\x00\x12\x00\x01\x00\x14\x00\x0c\x00\x0d\x00\x17\x00\x05\x00\x01\x00\x0c\x00\x1b\x00\x1c\x00\x1d\x00\x01\x00\x0d\x00\x0c\x00\x01\x00\x10\x00\x01\x00\x12\x00\x0c\x00\x0d\x00\x0f\x00\x10\x00\x17\x00\x12\x00\x06\x00\x15\x00\x1b\x00\x1c\x00\x1d\x00\x10\x00\x0e\x00\x12\x00\x1b\x00\x1c\x00\x07\x00\x08\x00\x09\x00\x11\x00\x0b\x00\x11\x00\x1b\x00\x1c\x00\x0f\x00\x10\x00\xff\xff\x12\x00\x13\x00\x14\x00\xff\xff\x16\x00\x17\x00\x18\x00\xff\xff\x1a\x00\x07\x00\x08\x00\x09\x00\xff\xff\x0b\x00\xff\xff\xff\xff\xff\xff\x0f\x00\x10\x00\xff\xff\x12\x00\x13\x00\x14\x00\xff\xff\x16\x00\x17\x00\x18\x00\xff\xff\x1a\x00\x09\x00\x0a\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0f\x00\x10\x00\xff\xff\x12\x00\x13\x00\x14\x00\xff\xff\x16\x00\x17\x00\x18\x00\xff\xff\x1a\x00\x09\x00\x0a\x00\x17\x00\x18\x00\x19\x00\x1a\x00\x0f\x00\x10\x00\xff\xff\x12\x00\x13\x00\x14\x00\x09\x00\x16\x00\x17\x00\x18\x00\xff\xff\x1a\x00\x0f\x00\x10\x00\xff\xff\x12\x00\x13\x00\x14\x00\xff\xff\x16\x00\x17\x00\x18\x00\xff\xff\x1a\x00\x12\x00\x13\x00\x14\x00\xff\xff\x16\x00\x17\x00\x18\x00\xff\xff\x1a\x00\x12\x00\x13\x00\x14\x00\xff\xff\x16\x00\x17\x00\x18\x00\xff\xff\x1a\x00\x12\x00\x13\x00\x14\x00\xff\xff\x16\x00\x17\x00\x18\x00\xff\xff\x1a\x00\x12\x00\x13\x00\x14\x00\xff\xff\x16\x00\x17\x00\x18\x00\x14\x00\x1a\x00\x16\x00\x17\x00\x18\x00\xff\xff\x1a\x00\x17\x00\x18\x00\x19\x00\x1a\x00\x17\x00\x18\x00\x19\x00\x1a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#
happyTable :: HappyAddr
happyTable :: HappyAddr
happyTable = Addr# -> HappyAddr
HappyA# Addr#
"\x00\x00\x4e\x00\x16\x00\x4a\x00\x2a\x00\x5d\x00\x04\x00\x0e\x00\x0f\x00\x10\x00\x08\x00\x11\x00\x12\x00\x13\x00\x17\x00\x14\x00\x16\x00\x18\x00\x4b\x00\x19\x00\x5e\x00\x2b\x00\x16\x00\xff\xff\x1a\x00\x4f\x00\x0d\x00\x0e\x00\x1b\x00\x1c\x00\x1d\x00\x18\x00\x51\x00\x19\x00\x17\x00\x31\x00\x08\x00\x18\x00\x5b\x00\x19\x00\x16\x00\x2b\x00\x1b\x00\x1c\x00\x1a\x00\x5c\x00\x3b\x00\x09\x00\x1b\x00\x1c\x00\x1d\x00\x2d\x00\x17\x00\x05\x00\x06\x00\x18\x00\x48\x00\x19\x00\x16\x00\x21\x00\x1d\x00\x13\x00\x1a\x00\x14\x00\x04\x00\x02\x00\x1b\x00\x1c\x00\x1d\x00\x46\x00\x17\x00\x34\x00\x47\x00\x18\x00\x2d\x00\x19\x00\x16\x00\x31\x00\x2e\x00\x14\x00\x1a\x00\x0a\x00\x0b\x00\x2d\x00\x1b\x00\x1c\x00\x1d\x00\x42\x00\x17\x00\x14\x00\x40\x00\x18\x00\x04\x00\x19\x00\x16\x00\x3e\x00\x09\x00\x06\x00\x1a\x00\x1e\x00\x0b\x00\x57\x00\x1b\x00\x1c\x00\x1d\x00\x42\x00\x17\x00\x3d\x00\x5a\x00\x18\x00\x59\x00\x19\x00\x16\x00\x2b\x00\x43\x00\x44\x00\x1a\x00\x58\x00\x16\x00\x60\x00\x1b\x00\x1c\x00\x1d\x00\x02\x00\x17\x00\x62\x00\x16\x00\x18\x00\x2b\x00\x19\x00\x5e\x00\x44\x00\x2d\x00\x18\x00\x1a\x00\x19\x00\x1f\x00\x34\x00\x1b\x00\x1c\x00\x1d\x00\x18\x00\x4c\x00\x19\x00\x1b\x00\x1c\x00\x21\x00\x22\x00\x23\x00\x48\x00\x24\x00\x54\x00\x1b\x00\x1c\x00\x25\x00\x26\x00\x00\x00\x27\x00\x0f\x00\x10\x00\x00\x00\x11\x00\x28\x00\x13\x00\x00\x00\x14\x00\x51\x00\x22\x00\x23\x00\x00\x00\x24\x00\x00\x00\x00\x00\x00\x00\x25\x00\x26\x00\x00\x00\x27\x00\x0f\x00\x10\x00\x00\x00\x11\x00\x28\x00\x13\x00\x00\x00\x14\x00\x52\x00\x53\x00\x36\x00\x37\x00\x38\x00\x39\x00\x25\x00\x26\x00\x00\x00\x27\x00\x0f\x00\x10\x00\x00\x00\x11\x00\x28\x00\x13\x00\x00\x00\x14\x00\x52\x00\x60\x00\x2e\x00\x13\x00\x2f\x00\x14\x00\x25\x00\x26\x00\x00\x00\x27\x00\x0f\x00\x10\x00\x4f\x00\x11\x00\x28\x00\x13\x00\x00\x00\x14\x00\x25\x00\x26\x00\x00\x00\x27\x00\x0f\x00\x10\x00\x00\x00\x11\x00\x28\x00\x13\x00\x00\x00\x14\x00\x32\x00\x0f\x00\x10\x00\x00\x00\x11\x00\x12\x00\x13\x00\x00\x00\x14\x00\x4b\x00\x0f\x00\x10\x00\x00\x00\x11\x00\x12\x00\x13\x00\x00\x00\x14\x00\x3b\x00\x0f\x00\x10\x00\x00\x00\x11\x00\x12\x00\x13\x00\x00\x00\x14\x00\x55\x00\x0f\x00\x10\x00\x00\x00\x11\x00\x12\x00\x13\x00\x39\x00\x14\x00\x11\x00\x12\x00\x13\x00\x00\x00\x14\x00\x2e\x00\x13\x00\x40\x00\x14\x00\x2e\x00\x13\x00\x3e\x00\x14\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyReduceArr :: Array
StartCode
(Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn)
happyReduceArr = (StartCode, StartCode)
-> [(StartCode,
Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn)]
-> Array
StartCode
(Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn)
forall i e. Ix i => (i, i) -> [(i, e)] -> Array i e
Happy_Data_Array.array (StartCode
1, StartCode
63) [
(StartCode
1 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_1),
(StartCode
2 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_2),
(StartCode
3 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_3),
(StartCode
4 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_4),
(StartCode
5 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_5),
(StartCode
6 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_6),
(StartCode
7 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_7),
(StartCode
8 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_8),
(StartCode
9 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_9),
(StartCode
10 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_10),
(StartCode
11 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_11),
(StartCode
12 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_12),
(StartCode
13 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_13),
(StartCode
14 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_14),
(StartCode
15 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_15),
(StartCode
16 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_16),
(StartCode
17 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_17),
(StartCode
18 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_18),
(StartCode
19 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_19),
(StartCode
20 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_20),
(StartCode
21 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_21),
(StartCode
22 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_22),
(StartCode
23 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_23),
(StartCode
24 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_24),
(StartCode
25 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_25),
(StartCode
26 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_26),
(StartCode
27 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_27),
(StartCode
28 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_28),
(StartCode
29 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_29),
(StartCode
30 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_30),
(StartCode
31 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_31),
(StartCode
32 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_32),
(StartCode
33 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_33),
(StartCode
34 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_34),
(StartCode
35 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_35),
(StartCode
36 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_36),
(StartCode
37 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_37),
(StartCode
38 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_38),
(StartCode
39 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_39),
(StartCode
40 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_40),
(StartCode
41 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_41),
(StartCode
42 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_42),
(StartCode
43 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_43),
(StartCode
44 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_44),
(StartCode
45 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_45),
(StartCode
46 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_46),
(StartCode
47 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_47),
(StartCode
48 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_48),
(StartCode
49 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_49),
(StartCode
50 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_50),
(StartCode
51 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_51),
(StartCode
52 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_52),
(StartCode
53 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_53),
(StartCode
54 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_54),
(StartCode
55 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_55),
(StartCode
56 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_56),
(StartCode
57 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_57),
(StartCode
58 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_58),
(StartCode
59 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_59),
(StartCode
60 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_60),
(StartCode
61 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_61),
(StartCode
62 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_62),
(StartCode
63 , Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_63)
]
happy_n_terms :: StartCode
happy_n_terms = StartCode
34 :: Int
happy_n_nonterms :: StartCode
happy_n_nonterms = StartCode
27 :: Int
happyReduce_1 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_1 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_1 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
5# Int#
0# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_1
happyReduction_1 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_1 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> Maybe (AlexPosn, Code)
happyOut5 HappyAbsSyn
happy_x_1 of { Maybe (AlexPosn, Code)
happy_var_1 ->
case HappyAbsSyn -> [Directive]
happyOut6 HappyAbsSyn
happy_x_2 of { [Directive]
happy_var_2 ->
case HappyAbsSyn -> Scanner
happyOut10 HappyAbsSyn
happy_x_4 of { Scanner
happy_var_4 ->
case HappyAbsSyn -> Maybe (AlexPosn, Code)
happyOut5 HappyAbsSyn
happy_x_5 of { Maybe (AlexPosn, Code)
happy_var_5 ->
(Maybe (AlexPosn, Code), [Directive], Scanner,
Maybe (AlexPosn, Code))
-> HappyAbsSyn
happyIn4
((Maybe (AlexPosn, Code)
happy_var_1,[Directive]
happy_var_2,Scanner
happy_var_4,Maybe (AlexPosn, Code)
happy_var_5)
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}}
happyReduce_2 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_2 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_2 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
1# HappyAbsSyn -> HappyAbsSyn
happyReduction_2
happyReduction_2 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_2 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { Token
happy_var_1 ->
Maybe (AlexPosn, Code) -> HappyAbsSyn
happyIn5
(case Token
happy_var_1 of T AlexPosn
pos (CodeT Code
code) ->
(AlexPosn, Code) -> Maybe (AlexPosn, Code)
forall k1. k1 -> Maybe k1
Just (AlexPosn
pos,Code
code)
)}
happyReduce_3 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_3 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_3 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
1# HappyAbsSyn
happyReduction_3
happyReduction_3 :: HappyAbsSyn
happyReduction_3 = Maybe (AlexPosn, Code) -> HappyAbsSyn
happyIn5
(Maybe (AlexPosn, Code)
forall k1. Maybe k1
Nothing
)
happyReduce_4 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_4 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_4 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
2# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_4
happyReduction_4 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_4 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Directive
happyOut7 HappyAbsSyn
happy_x_1 of { Directive
happy_var_1 ->
case HappyAbsSyn -> [Directive]
happyOut6 HappyAbsSyn
happy_x_2 of { [Directive]
happy_var_2 ->
[Directive] -> HappyAbsSyn
happyIn6
(Directive
happy_var_1 Directive -> [Directive] -> [Directive]
forall k1. k1 -> [k1] -> [k1]
: [Directive]
happy_var_2
)}}
happyReduce_5 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_5 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_5 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
2# HappyAbsSyn
happyReduction_5
happyReduction_5 :: HappyAbsSyn
happyReduction_5 = [Directive] -> HappyAbsSyn
happyIn6
([]
)
happyReduce_6 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_6 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_6 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
3# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_6
happyReduction_6 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_6 HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (T AlexPosn
_ (StringT Code
happy_var_2)) ->
Directive -> HappyAbsSyn
happyIn7
(Code -> Directive
WrapperDirective Code
happy_var_2
)}
happyReduce_7 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_7 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_7 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
4# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> p -> HappyAbsSyn
happyReduction_7
happyReduction_7 :: p -> p -> HappyAbsSyn
happyReduction_7 p
happy_x_2
p
happy_x_1
= () -> HappyAbsSyn
happyIn8
(()
)
happyReduce_8 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_8 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_8 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
4# HappyAbsSyn
happyReduction_8
happyReduction_8 :: HappyAbsSyn
happyReduction_8 = () -> HappyAbsSyn
happyIn8
(()
)
happyReduce_9 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_9 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_9 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
5# HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_9
happyReduction_9 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_9 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P () -> (() -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (T AlexPosn
_ (SMacDefT Code
happy_var_1)) ->
case HappyAbsSyn -> CharSet
happyOut27 HappyAbsSyn
happy_x_2 of { CharSet
happy_var_2 ->
( Code -> CharSet -> P ()
newSMac Code
happy_var_1 CharSet
happy_var_2)}})
) (\()
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (() -> HappyAbsSyn
happyIn9 ()
r))
happyReduce_10 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_10 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_10 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
5# HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_10
happyReduction_10 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_10 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P () -> (() -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (T AlexPosn
_ (RMacDefT Code
happy_var_1)) ->
case HappyAbsSyn -> RExp
happyOut22 HappyAbsSyn
happy_x_2 of { RExp
happy_var_2 ->
( Code -> RExp -> P ()
newRMac Code
happy_var_1 RExp
happy_var_2)}})
) (\()
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (() -> HappyAbsSyn
happyIn9 ()
r))
happyReduce_11 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_11 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_11 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
6# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_11
happyReduction_11 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_11 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (T AlexPosn
_ (BindT Code
happy_var_1)) ->
case HappyAbsSyn -> [RECtx]
happyOut11 HappyAbsSyn
happy_x_2 of { [RECtx]
happy_var_2 ->
Scanner -> HappyAbsSyn
happyIn10
(Code -> [RECtx] -> Scanner
Scanner Code
happy_var_1 [RECtx]
happy_var_2
)}}
happyReduce_12 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_12 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_12 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
7# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_12
happyReduction_12 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_12 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> [RECtx]
happyOut12 HappyAbsSyn
happy_x_1 of { [RECtx]
happy_var_1 ->
case HappyAbsSyn -> [RECtx]
happyOut11 HappyAbsSyn
happy_x_2 of { [RECtx]
happy_var_2 ->
[RECtx] -> HappyAbsSyn
happyIn11
([RECtx]
happy_var_1 [RECtx] -> [RECtx] -> [RECtx]
forall a. [a] -> [a] -> [a]
++ [RECtx]
happy_var_2
)}}
happyReduce_13 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_13 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_13 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
7# HappyAbsSyn
happyReduction_13
happyReduction_13 :: HappyAbsSyn
happyReduction_13 = [RECtx] -> HappyAbsSyn
happyIn11
([]
)
happyReduce_14 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_14 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_14 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
8# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_14
happyReduction_14 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_14 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> [(Code, StartCode)]
happyOut15 HappyAbsSyn
happy_x_1 of { [(Code, StartCode)]
happy_var_1 ->
case HappyAbsSyn -> RECtx
happyOut13 HappyAbsSyn
happy_x_2 of { RECtx
happy_var_2 ->
[RECtx] -> HappyAbsSyn
happyIn12
([ [(Code, StartCode)] -> RECtx -> RECtx
replaceCodes [(Code, StartCode)]
happy_var_1 RECtx
happy_var_2 ]
)}}
happyReduce_15 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_15 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_15 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
8# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_15
happyReduction_15 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_15 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> [(Code, StartCode)]
happyOut15 HappyAbsSyn
happy_x_1 of { [(Code, StartCode)]
happy_var_1 ->
case HappyAbsSyn -> [RECtx]
happyOut14 HappyAbsSyn
happy_x_3 of { [RECtx]
happy_var_3 ->
[RECtx] -> HappyAbsSyn
happyIn12
((RECtx -> RECtx) -> [RECtx] -> [RECtx]
forall a b. (a -> b) -> [a] -> [b]
map ([(Code, StartCode)] -> RECtx -> RECtx
replaceCodes [(Code, StartCode)]
happy_var_1) [RECtx]
happy_var_3
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_16 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_16 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_16 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
8# HappyAbsSyn -> HappyAbsSyn
happyReduction_16
happyReduction_16 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_16 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> RECtx
happyOut13 HappyAbsSyn
happy_x_1 of { RECtx
happy_var_1 ->
[RECtx] -> HappyAbsSyn
happyIn12
([ RECtx
happy_var_1 ]
)}
happyReduce_17 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_17 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_17 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
9# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_17
happyReduction_17 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_17 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> (Maybe CharSet, RExp, RightContext RExp)
happyOut19 HappyAbsSyn
happy_x_1 of { (Maybe CharSet, RExp, RightContext RExp)
happy_var_1 ->
case HappyAbsSyn -> Maybe Code
happyOut18 HappyAbsSyn
happy_x_2 of { Maybe Code
happy_var_2 ->
RECtx -> HappyAbsSyn
happyIn13
(let (Maybe CharSet
l,RExp
e,RightContext RExp
r) = (Maybe CharSet, RExp, RightContext RExp)
happy_var_1 in
[(Code, StartCode)]
-> Maybe CharSet
-> RExp
-> RightContext RExp
-> Maybe Code
-> RECtx
RECtx [] Maybe CharSet
l RExp
e RightContext RExp
r Maybe Code
happy_var_2
)}}
happyReduce_18 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_18 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_18 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
10# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_18
happyReduction_18 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_18 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> RECtx
happyOut13 HappyAbsSyn
happy_x_1 of { RECtx
happy_var_1 ->
case HappyAbsSyn -> [RECtx]
happyOut14 HappyAbsSyn
happy_x_2 of { [RECtx]
happy_var_2 ->
[RECtx] -> HappyAbsSyn
happyIn14
(RECtx
happy_var_1 RECtx -> [RECtx] -> [RECtx]
forall k1. k1 -> [k1] -> [k1]
: [RECtx]
happy_var_2
)}}
happyReduce_19 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_19 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_19 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
10# HappyAbsSyn
happyReduction_19
happyReduction_19 :: HappyAbsSyn
happyReduction_19 = [RECtx] -> HappyAbsSyn
happyIn14
([]
)
happyReduce_20 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_20 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_20 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
11# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_20
happyReduction_20 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_20 p
happy_x_3
HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> [(Code, StartCode)]
happyOut16 HappyAbsSyn
happy_x_2 of { [(Code, StartCode)]
happy_var_2 ->
[(Code, StartCode)] -> HappyAbsSyn
happyIn15
([(Code, StartCode)]
happy_var_2
)}
happyReduce_21 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_21 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_21 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
12# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_21
happyReduction_21 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_21 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Code
happyOut17 HappyAbsSyn
happy_x_1 of { Code
happy_var_1 ->
case HappyAbsSyn -> [(Code, StartCode)]
happyOut16 HappyAbsSyn
happy_x_3 of { [(Code, StartCode)]
happy_var_3 ->
[(Code, StartCode)] -> HappyAbsSyn
happyIn16
((Code
happy_var_1,StartCode
0) (Code, StartCode) -> [(Code, StartCode)] -> [(Code, StartCode)]
forall k1. k1 -> [k1] -> [k1]
: [(Code, StartCode)]
happy_var_3
)}}
happyReduce_22 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_22 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_22 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
12# HappyAbsSyn -> HappyAbsSyn
happyReduction_22
happyReduction_22 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_22 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Code
happyOut17 HappyAbsSyn
happy_x_1 of { Code
happy_var_1 ->
[(Code, StartCode)] -> HappyAbsSyn
happyIn16
([(Code
happy_var_1,StartCode
0)]
)}
happyReduce_23 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_23 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_23 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
13# HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn
happyReduction_23
happyReduction_23 :: p -> HappyAbsSyn
happyReduction_23 p
happy_x_1
= Code -> HappyAbsSyn
happyIn17
(Code
"0"
)
happyReduce_24 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_24 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_24 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
13# HappyAbsSyn -> HappyAbsSyn
happyReduction_24
happyReduction_24 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_24 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (T AlexPosn
_ (IdT Code
happy_var_1)) ->
Code -> HappyAbsSyn
happyIn17
(Code
happy_var_1
)}
happyReduce_25 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_25 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_25 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
14# HappyAbsSyn -> HappyAbsSyn
happyReduction_25
happyReduction_25 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_25 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { Token
happy_var_1 ->
Maybe Code -> HappyAbsSyn
happyIn18
(case Token
happy_var_1 of T AlexPosn
_ (CodeT Code
code) -> Code -> Maybe Code
forall k1. k1 -> Maybe k1
Just Code
code
)}
happyReduce_26 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_26 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_26 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
14# HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn
happyReduction_26
happyReduction_26 :: p -> HappyAbsSyn
happyReduction_26 p
happy_x_1
= Maybe Code -> HappyAbsSyn
happyIn18
(Maybe Code
forall k1. Maybe k1
Nothing
)
happyReduce_27 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_27 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_27 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
15# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_27
happyReduction_27 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_27 HappyAbsSyn
happy_x_3
HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CharSet
happyOut20 HappyAbsSyn
happy_x_1 of { CharSet
happy_var_1 ->
case HappyAbsSyn -> RExp
happyOut22 HappyAbsSyn
happy_x_2 of { RExp
happy_var_2 ->
case HappyAbsSyn -> RightContext RExp
happyOut21 HappyAbsSyn
happy_x_3 of { RightContext RExp
happy_var_3 ->
(Maybe CharSet, RExp, RightContext RExp) -> HappyAbsSyn
happyIn19
((CharSet -> Maybe CharSet
forall k1. k1 -> Maybe k1
Just CharSet
happy_var_1,RExp
happy_var_2,RightContext RExp
happy_var_3)
)}}}
happyReduce_28 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_28 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_28 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
15# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_28
happyReduction_28 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_28 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> RExp
happyOut22 HappyAbsSyn
happy_x_1 of { RExp
happy_var_1 ->
case HappyAbsSyn -> RightContext RExp
happyOut21 HappyAbsSyn
happy_x_2 of { RightContext RExp
happy_var_2 ->
(Maybe CharSet, RExp, RightContext RExp) -> HappyAbsSyn
happyIn19
((Maybe CharSet
forall k1. Maybe k1
Nothing,RExp
happy_var_1,RightContext RExp
happy_var_2)
)}}
happyReduce_29 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_29 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_29 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
16# HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn
happyReduction_29
happyReduction_29 :: p -> HappyAbsSyn
happyReduction_29 p
happy_x_1
= CharSet -> HappyAbsSyn
happyIn20
(Char -> CharSet
charSetSingleton Char
'\n'
)
happyReduce_30 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_30 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_30 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
16# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_30
happyReduction_30 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_30 p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CharSet
happyOut27 HappyAbsSyn
happy_x_1 of { CharSet
happy_var_1 ->
CharSet -> HappyAbsSyn
happyIn20
(CharSet
happy_var_1
)}
happyReduce_31 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_31 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_31 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
17# HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn
happyReduction_31
happyReduction_31 :: p -> HappyAbsSyn
happyReduction_31 p
happy_x_1
= RightContext RExp -> HappyAbsSyn
happyIn21
(RExp -> RightContext RExp
forall r. r -> RightContext r
RightContextRExp (CharSet -> RExp
Ch (Char -> CharSet
charSetSingleton Char
'\n'))
)
happyReduce_32 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_32 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_32 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
17# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_32
happyReduction_32 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_32 HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> RExp
happyOut22 HappyAbsSyn
happy_x_2 of { RExp
happy_var_2 ->
RightContext RExp -> HappyAbsSyn
happyIn21
(RExp -> RightContext RExp
forall r. r -> RightContext r
RightContextRExp RExp
happy_var_2
)}
happyReduce_33 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_33 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_33 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
17# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_33
happyReduction_33 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_33 HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { Token
happy_var_2 ->
RightContext RExp -> HappyAbsSyn
happyIn21
(Code -> RightContext RExp
forall r. Code -> RightContext r
RightContextCode (case Token
happy_var_2 of
T AlexPosn
_ (CodeT Code
code) -> Code
code)
)}
happyReduce_34 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_34 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_34 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
17# HappyAbsSyn
happyReduction_34
happyReduction_34 :: HappyAbsSyn
happyReduction_34 = RightContext RExp -> HappyAbsSyn
happyIn21
(RightContext RExp
forall r. RightContext r
NoRightContext
)
happyReduce_35 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_35 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_35 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
18# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_35
happyReduction_35 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_35 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> RExp
happyOut23 HappyAbsSyn
happy_x_1 of { RExp
happy_var_1 ->
case HappyAbsSyn -> RExp
happyOut22 HappyAbsSyn
happy_x_3 of { RExp
happy_var_3 ->
RExp -> HappyAbsSyn
happyIn22
(RExp
happy_var_1 RExp -> RExp -> RExp
:| RExp
happy_var_3
)}}
happyReduce_36 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_36 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_36 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
18# HappyAbsSyn -> HappyAbsSyn
happyReduction_36
happyReduction_36 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_36 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> RExp
happyOut23 HappyAbsSyn
happy_x_1 of { RExp
happy_var_1 ->
RExp -> HappyAbsSyn
happyIn22
(RExp
happy_var_1
)}
happyReduce_37 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_37 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_37 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
19# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_37
happyReduction_37 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_37 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> RExp
happyOut23 HappyAbsSyn
happy_x_1 of { RExp
happy_var_1 ->
case HappyAbsSyn -> RExp
happyOut24 HappyAbsSyn
happy_x_2 of { RExp
happy_var_2 ->
RExp -> HappyAbsSyn
happyIn23
(RExp
happy_var_1 RExp -> RExp -> RExp
:%% RExp
happy_var_2
)}}
happyReduce_38 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_38 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_38 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
19# HappyAbsSyn -> HappyAbsSyn
happyReduction_38
happyReduction_38 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_38 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> RExp
happyOut24 HappyAbsSyn
happy_x_1 of { RExp
happy_var_1 ->
RExp -> HappyAbsSyn
happyIn23
(RExp
happy_var_1
)}
happyReduce_39 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_39 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_39 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
20# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_39
happyReduction_39 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_39 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> RExp
happyOut26 HappyAbsSyn
happy_x_1 of { RExp
happy_var_1 ->
case HappyAbsSyn -> RExp -> RExp
happyOut25 HappyAbsSyn
happy_x_2 of { RExp -> RExp
happy_var_2 ->
RExp -> HappyAbsSyn
happyIn24
(RExp -> RExp
happy_var_2 RExp
happy_var_1
)}}
happyReduce_40 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_40 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_40 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
20# HappyAbsSyn -> HappyAbsSyn
happyReduction_40
happyReduction_40 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_40 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> RExp
happyOut26 HappyAbsSyn
happy_x_1 of { RExp
happy_var_1 ->
RExp -> HappyAbsSyn
happyIn24
(RExp
happy_var_1
)}
happyReduce_41 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_41 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_41 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
21# HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn
happyReduction_41
happyReduction_41 :: p -> HappyAbsSyn
happyReduction_41 p
happy_x_1
= (RExp -> RExp) -> HappyAbsSyn
happyIn25
(RExp -> RExp
Star
)
happyReduce_42 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_42 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_42 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
21# HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn
happyReduction_42
happyReduction_42 :: p -> HappyAbsSyn
happyReduction_42 p
happy_x_1
= (RExp -> RExp) -> HappyAbsSyn
happyIn25
(RExp -> RExp
Plus
)
happyReduce_43 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_43 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_43 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
21# HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn
happyReduction_43
happyReduction_43 :: p -> HappyAbsSyn
happyReduction_43 p
happy_x_1
= (RExp -> RExp) -> HappyAbsSyn
happyIn25
(RExp -> RExp
Ques
)
happyReduce_44 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_44 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_44 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
21# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_44
happyReduction_44 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_44 p
happy_x_3
HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (T AlexPosn
_ (CharT Char
happy_var_2)) ->
(RExp -> RExp) -> HappyAbsSyn
happyIn25
(StartCode -> Maybe (Maybe StartCode) -> RExp -> RExp
repeat_rng (Char -> StartCode
digit Char
happy_var_2) Maybe (Maybe StartCode)
forall k1. Maybe k1
Nothing
)}
happyReduce_45 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_45 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_45 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
21# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_45
happyReduction_45 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_45 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (T AlexPosn
_ (CharT Char
happy_var_2)) ->
(RExp -> RExp) -> HappyAbsSyn
happyIn25
(StartCode -> Maybe (Maybe StartCode) -> RExp -> RExp
repeat_rng (Char -> StartCode
digit Char
happy_var_2) (Maybe StartCode -> Maybe (Maybe StartCode)
forall k1. k1 -> Maybe k1
Just Maybe StartCode
forall k1. Maybe k1
Nothing)
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}
happyReduce_46 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_46 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_46 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
5# Int#
21# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_46
happyReduction_46 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_46 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_2 of { (T AlexPosn
_ (CharT Char
happy_var_2)) ->
case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_4 of { (T AlexPosn
_ (CharT Char
happy_var_4)) ->
(RExp -> RExp) -> HappyAbsSyn
happyIn25
(StartCode -> Maybe (Maybe StartCode) -> RExp -> RExp
repeat_rng (Char -> StartCode
digit Char
happy_var_2) (Maybe StartCode -> Maybe (Maybe StartCode)
forall k1. k1 -> Maybe k1
Just (StartCode -> Maybe StartCode
forall k1. k1 -> Maybe k1
Just (Char -> StartCode
digit Char
happy_var_4)))
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_47 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_47 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_47 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
22# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> p -> HappyAbsSyn
happyReduction_47
happyReduction_47 :: p -> p -> HappyAbsSyn
happyReduction_47 p
happy_x_2
p
happy_x_1
= RExp -> HappyAbsSyn
happyIn26
(RExp
Eps
)
happyReduce_48 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_48 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_48 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
22# HappyAbsSyn -> HappyAbsSyn
happyReduction_48
happyReduction_48 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_48 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (T AlexPosn
_ (StringT Code
happy_var_1)) ->
RExp -> HappyAbsSyn
happyIn26
((RExp -> RExp -> RExp) -> RExp -> [RExp] -> RExp
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr RExp -> RExp -> RExp
(:%%) RExp
Eps
((Char -> RExp) -> Code -> [RExp]
forall a b. (a -> b) -> [a] -> [b]
map (CharSet -> RExp
Ch (CharSet -> RExp) -> (Char -> CharSet) -> Char -> RExp
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> CharSet
charSetSingleton) Code
happy_var_1)
)}
happyReduce_49 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_49 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_49 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
22# HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_49
happyReduction_49 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_49 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P RExp -> (RExp -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (T AlexPosn
_ (RMacT Code
happy_var_1)) ->
( Code -> P RExp
lookupRMac Code
happy_var_1)})
) (\RExp
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (RExp -> HappyAbsSyn
happyIn26 RExp
r))
happyReduce_50 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_50 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_50 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
22# HappyAbsSyn -> HappyAbsSyn
happyReduction_50
happyReduction_50 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_50 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CharSet
happyOut27 HappyAbsSyn
happy_x_1 of { CharSet
happy_var_1 ->
RExp -> HappyAbsSyn
happyIn26
(CharSet -> RExp
Ch CharSet
happy_var_1
)}
happyReduce_51 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_51 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_51 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
22# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_51
happyReduction_51 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_51 p
happy_x_3
HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> RExp
happyOut22 HappyAbsSyn
happy_x_2 of { RExp
happy_var_2 ->
RExp -> HappyAbsSyn
happyIn26
(RExp
happy_var_2
)}
happyReduce_52 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_52 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_52 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
23# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_52
happyReduction_52 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_52 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CharSet
happyOut27 HappyAbsSyn
happy_x_1 of { CharSet
happy_var_1 ->
case HappyAbsSyn -> CharSet
happyOut28 HappyAbsSyn
happy_x_3 of { CharSet
happy_var_3 ->
CharSet -> HappyAbsSyn
happyIn27
(CharSet
happy_var_1 CharSet -> CharSet -> CharSet
`charSetMinus` CharSet
happy_var_3
)}}
happyReduce_53 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_53 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_53 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
23# HappyAbsSyn -> HappyAbsSyn
happyReduction_53
happyReduction_53 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_53 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CharSet
happyOut28 HappyAbsSyn
happy_x_1 of { CharSet
happy_var_1 ->
CharSet -> HappyAbsSyn
happyIn27
(CharSet
happy_var_1
)}
happyReduce_54 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_54 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_54 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
24# HappyAbsSyn -> HappyAbsSyn
happyReduction_54
happyReduction_54 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_54 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (T AlexPosn
_ (CharT Char
happy_var_1)) ->
CharSet -> HappyAbsSyn
happyIn28
(Char -> CharSet
charSetSingleton Char
happy_var_1
)}
happyReduce_55 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_55 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_55 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
24# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_55
happyReduction_55 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_55 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { (T AlexPosn
_ (CharT Char
happy_var_1)) ->
case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_3 of { (T AlexPosn
_ (CharT Char
happy_var_3)) ->
CharSet -> HappyAbsSyn
happyIn28
(Char -> Char -> CharSet
charSetRange Char
happy_var_1 Char
happy_var_3
)}}
happyReduce_56 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_56 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_56 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
24# HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_56
happyReduction_56 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_56 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CharSet -> (CharSet -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> (AlexPosn, Code)
happyOut30 HappyAbsSyn
happy_x_1 of { (AlexPosn, Code)
happy_var_1 ->
( (AlexPosn, Code) -> P CharSet
lookupSMac (AlexPosn, Code)
happy_var_1)})
) (\CharSet
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CharSet -> HappyAbsSyn
happyIn28 CharSet
r))
happyReduce_57 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_57 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_57 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
24# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_57
happyReduction_57 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_57 p
happy_x_3
HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> [CharSet]
happyOut29 HappyAbsSyn
happy_x_2 of { [CharSet]
happy_var_2 ->
CharSet -> HappyAbsSyn
happyIn28
((CharSet -> CharSet -> CharSet) -> CharSet -> [CharSet] -> CharSet
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr CharSet -> CharSet -> CharSet
charSetUnion CharSet
emptyCharSet [CharSet]
happy_var_2
)}
happyReduce_58 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_58 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_58 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
24# HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_58
happyReduction_58 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_58 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CharSet -> (CharSet -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { Token
happy_var_1 ->
case HappyAbsSyn -> [CharSet]
happyOut29 HappyAbsSyn
happy_x_3 of { [CharSet]
happy_var_3 ->
( do { CharSet
dot <- (AlexPosn, Code) -> P CharSet
lookupSMac (Token -> AlexPosn
tokPosn Token
happy_var_1, Code
".");
CharSet -> P CharSet
forall (m :: * -> *) a. Monad m => a -> m a
return (CharSet
dot CharSet -> CharSet -> CharSet
`charSetMinus`
(CharSet -> CharSet -> CharSet) -> CharSet -> [CharSet] -> CharSet
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr CharSet -> CharSet -> CharSet
charSetUnion CharSet
emptyCharSet [CharSet]
happy_var_3) })}})
) (\CharSet
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CharSet -> HappyAbsSyn
happyIn28 CharSet
r))
happyReduce_59 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_59 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_59 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
24# HappyStk HappyAbsSyn -> Token -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_59
happyReduction_59 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_59 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CharSet -> (CharSet -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { Token
happy_var_1 ->
case HappyAbsSyn -> CharSet
happyOut28 HappyAbsSyn
happy_x_2 of { CharSet
happy_var_2 ->
( do { CharSet
dot <- (AlexPosn, Code) -> P CharSet
lookupSMac (Token -> AlexPosn
tokPosn Token
happy_var_1, Code
".");
CharSet -> P CharSet
forall (m :: * -> *) a. Monad m => a -> m a
return (CharSet
dot CharSet -> CharSet -> CharSet
`charSetMinus` CharSet
happy_var_2) })}})
) (\CharSet
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CharSet -> HappyAbsSyn
happyIn28 CharSet
r))
happyReduce_60 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_60 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_60 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
25# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_60
happyReduction_60 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_60 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CharSet
happyOut27 HappyAbsSyn
happy_x_1 of { CharSet
happy_var_1 ->
case HappyAbsSyn -> [CharSet]
happyOut29 HappyAbsSyn
happy_x_2 of { [CharSet]
happy_var_2 ->
[CharSet] -> HappyAbsSyn
happyIn29
(CharSet
happy_var_1 CharSet -> [CharSet] -> [CharSet]
forall k1. k1 -> [k1] -> [k1]
: [CharSet]
happy_var_2
)}}
happyReduce_61 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_61 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_61 = Int#
-> HappyAbsSyn
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
25# HappyAbsSyn
happyReduction_61
happyReduction_61 :: HappyAbsSyn
happyReduction_61 = [CharSet] -> HappyAbsSyn
happyIn29
([]
)
happyReduce_62 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_62 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_62 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
26# HappyAbsSyn -> HappyAbsSyn
happyReduction_62
happyReduction_62 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_62 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { Token
happy_var_1 ->
(AlexPosn, Code) -> HappyAbsSyn
happyIn30
((Token -> AlexPosn
tokPosn Token
happy_var_1, Code
".")
)}
happyReduce_63 :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_63 :: Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_63 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
26# HappyAbsSyn -> HappyAbsSyn
happyReduction_63
happyReduction_63 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_63 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> Token
happyOutTok HappyAbsSyn
happy_x_1 of { Token
happy_var_1 ->
(AlexPosn, Code) -> HappyAbsSyn
happyIn30
(case Token
happy_var_1 of T AlexPosn
p (SMacT Code
s) -> (AlexPosn
p, Code
s)
)}
happyNewToken :: Int# -> Happy_IntList -> HappyStk HappyAbsSyn -> P HappyAbsSyn
happyNewToken Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk
= (Token -> P HappyAbsSyn) -> P HappyAbsSyn
forall a. (Token -> P a) -> P a
lexer(\Token
tk ->
let cont :: Int# -> P HappyAbsSyn
cont Int#
i = Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyDoAction Int#
i Token
tk Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk in
case Token
tk of {
T AlexPosn
_ Tkn
EOFT -> Int#
-> Token
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyDoAction Int#
33# Token
tk Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk;
T AlexPosn
_ (SpecialT Char
'.') -> Int# -> P HappyAbsSyn
cont Int#
1#;
T AlexPosn
_ (SpecialT Char
';') -> Int# -> P HappyAbsSyn
cont Int#
2#;
T AlexPosn
_ (SpecialT Char
'<') -> Int# -> P HappyAbsSyn
cont Int#
3#;
T AlexPosn
_ (SpecialT Char
'>') -> Int# -> P HappyAbsSyn
cont Int#
4#;
T AlexPosn
_ (SpecialT Char
',') -> Int# -> P HappyAbsSyn
cont Int#
5#;
T AlexPosn
_ (SpecialT Char
'$') -> Int# -> P HappyAbsSyn
cont Int#
6#;
T AlexPosn
_ (SpecialT Char
'|') -> Int# -> P HappyAbsSyn
cont Int#
7#;
T AlexPosn
_ (SpecialT Char
'*') -> Int# -> P HappyAbsSyn
cont Int#
8#;
T AlexPosn
_ (SpecialT Char
'+') -> Int# -> P HappyAbsSyn
cont Int#
9#;
T AlexPosn
_ (SpecialT Char
'?') -> Int# -> P HappyAbsSyn
cont Int#
10#;
T AlexPosn
_ (SpecialT Char
'{') -> Int# -> P HappyAbsSyn
cont Int#
11#;
T AlexPosn
_ (SpecialT Char
'}') -> Int# -> P HappyAbsSyn
cont Int#
12#;
T AlexPosn
_ (SpecialT Char
'(') -> Int# -> P HappyAbsSyn
cont Int#
13#;
T AlexPosn
_ (SpecialT Char
')') -> Int# -> P HappyAbsSyn
cont Int#
14#;
T AlexPosn
_ (SpecialT Char
'#') -> Int# -> P HappyAbsSyn
cont Int#
15#;
T AlexPosn
_ (SpecialT Char
'~') -> Int# -> P HappyAbsSyn
cont Int#
16#;
T AlexPosn
_ (SpecialT Char
'-') -> Int# -> P HappyAbsSyn
cont Int#
17#;
T AlexPosn
_ (SpecialT Char
'[') -> Int# -> P HappyAbsSyn
cont Int#
18#;
T AlexPosn
_ (SpecialT Char
']') -> Int# -> P HappyAbsSyn
cont Int#
19#;
T AlexPosn
_ (SpecialT Char
'^') -> Int# -> P HappyAbsSyn
cont Int#
20#;
T AlexPosn
_ (SpecialT Char
'/') -> Int# -> P HappyAbsSyn
cont Int#
21#;
T AlexPosn
_ Tkn
ZeroT -> Int# -> P HappyAbsSyn
cont Int#
22#;
T AlexPosn
_ (StringT Code
happy_dollar_dollar) -> Int# -> P HappyAbsSyn
cont Int#
23#;
T AlexPosn
_ (BindT Code
happy_dollar_dollar) -> Int# -> P HappyAbsSyn
cont Int#
24#;
T AlexPosn
_ (IdT Code
happy_dollar_dollar) -> Int# -> P HappyAbsSyn
cont Int#
25#;
T AlexPosn
_ (CodeT Code
_) -> Int# -> P HappyAbsSyn
cont Int#
26#;
T AlexPosn
_ (CharT Char
happy_dollar_dollar) -> Int# -> P HappyAbsSyn
cont Int#
27#;
T AlexPosn
_ (SMacT Code
_) -> Int# -> P HappyAbsSyn
cont Int#
28#;
T AlexPosn
_ (RMacT Code
happy_dollar_dollar) -> Int# -> P HappyAbsSyn
cont Int#
29#;
T AlexPosn
_ (SMacDefT Code
happy_dollar_dollar) -> Int# -> P HappyAbsSyn
cont Int#
30#;
T AlexPosn
_ (RMacDefT Code
happy_dollar_dollar) -> Int# -> P HappyAbsSyn
cont Int#
31#;
T AlexPosn
_ Tkn
WrapperT -> Int# -> P HappyAbsSyn
cont Int#
32#;
Token
_ -> (Token, [Code]) -> P HappyAbsSyn
forall a. (Token, [Code]) -> P a
happyError' (Token
tk, [])
})
happyError_ :: [Code] -> Int# -> Token -> P a
happyError_ [Code]
explist Int#
33# Token
tk = (Token, [Code]) -> P a
forall a. (Token, [Code]) -> P a
happyError' (Token
tk, [Code]
explist)
happyError_ [Code]
explist Int#
_ Token
tk = (Token, [Code]) -> P a
forall a. (Token, [Code]) -> P a
happyError' (Token
tk, [Code]
explist)
happyThen :: () => P a -> (a -> P b) -> P b
happyThen :: P a -> (a -> P b) -> P b
happyThen = (P a -> (a -> P b) -> P b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=))
happyReturn :: () => a -> P a
happyReturn :: a -> P a
happyReturn = (a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return)
happyParse :: () => Happy_GHC_Exts.Int# -> P (HappyAbsSyn )
happyNewToken :: () => Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyDoAction :: () => Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduceArr :: () => Happy_Data_Array.Array Int (Happy_GHC_Exts.Int# -> Token -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ))
happyThen1 :: () => P a -> (a -> P b) -> P b
happyThen1 :: P a -> (a -> P b) -> P b
happyThen1 = P a -> (a -> P b) -> P b
forall a b. P a -> (a -> P b) -> P b
happyThen
happyReturn1 :: () => a -> P a
happyReturn1 :: a -> P a
happyReturn1 = a -> P a
forall a. a -> P a
happyReturn
happyError' :: () => ((Token), [String]) -> P a
happyError' :: (Token, [Code]) -> P a
happyError' (Token, [Code])
tk = (\(Token
tokens, [Code]
explist) -> P a
forall a. P a
happyError) (Token, [Code])
tk
parse :: P (Maybe (AlexPosn, Code), [Directive], Scanner,
Maybe (AlexPosn, Code))
parse = P (Maybe (AlexPosn, Code), [Directive], Scanner,
Maybe (AlexPosn, Code))
happySomeParser where
happySomeParser :: P (Maybe (AlexPosn, Code), [Directive], Scanner,
Maybe (AlexPosn, Code))
happySomeParser = P HappyAbsSyn
-> (HappyAbsSyn
-> P (Maybe (AlexPosn, Code), [Directive], Scanner,
Maybe (AlexPosn, Code)))
-> P (Maybe (AlexPosn, Code), [Directive], Scanner,
Maybe (AlexPosn, Code))
forall a b. P a -> (a -> P b) -> P b
happyThen (Int# -> P HappyAbsSyn
happyParse Int#
0#) (\HappyAbsSyn
x -> (Maybe (AlexPosn, Code), [Directive], Scanner,
Maybe (AlexPosn, Code))
-> P (Maybe (AlexPosn, Code), [Directive], Scanner,
Maybe (AlexPosn, Code))
forall a. a -> P a
happyReturn (HappyAbsSyn
-> (Maybe (AlexPosn, Code), [Directive], Scanner,
Maybe (AlexPosn, Code))
happyOut4 HappyAbsSyn
x))
happySeq :: a -> b -> b
happySeq = a -> b -> b
forall a b. a -> b -> b
happyDontSeq
happyError :: P a
happyError :: P a
happyError = Code -> P a
forall a. Code -> P a
failP Code
"parse error"
digit :: Char -> StartCode
digit Char
c = Char -> StartCode
ord Char
c StartCode -> StartCode -> StartCode
forall a. Num a => a -> a -> a
- Char -> StartCode
ord Char
'0'
repeat_rng :: Int -> Maybe (Maybe Int) -> (RExp->RExp)
repeat_rng :: StartCode -> Maybe (Maybe StartCode) -> RExp -> RExp
repeat_rng StartCode
n (Maybe (Maybe StartCode)
Nothing) RExp
re = (RExp -> RExp -> RExp) -> RExp -> [RExp] -> RExp
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr RExp -> RExp -> RExp
(:%%) RExp
Eps (StartCode -> RExp -> [RExp]
forall a. StartCode -> a -> [a]
replicate StartCode
n RExp
re)
repeat_rng StartCode
n (Just Maybe StartCode
Nothing) RExp
re = (RExp -> RExp -> RExp) -> RExp -> [RExp] -> RExp
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr RExp -> RExp -> RExp
(:%%) (RExp -> RExp
Star RExp
re) (StartCode -> RExp -> [RExp]
forall a. StartCode -> a -> [a]
replicate StartCode
n RExp
re)
repeat_rng StartCode
n (Just (Just StartCode
m)) RExp
re = RExp
intl RExp -> RExp -> RExp
:%% RExp
rst
where
intl :: RExp
intl = StartCode -> Maybe (Maybe StartCode) -> RExp -> RExp
repeat_rng StartCode
n Maybe (Maybe StartCode)
forall k1. Maybe k1
Nothing RExp
re
rst :: RExp
rst = (RExp -> RExp -> RExp) -> RExp -> [RExp] -> RExp
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (\RExp
re RExp
re'->RExp -> RExp
Ques(RExp
re RExp -> RExp -> RExp
:%% RExp
re')) RExp
Eps (StartCode -> RExp -> [RExp]
forall a. StartCode -> a -> [a]
replicate (StartCode
mStartCode -> StartCode -> StartCode
forall a. Num a => a -> a -> a
-StartCode
n) RExp
re)
replaceCodes :: [(Code, StartCode)] -> RECtx -> RECtx
replaceCodes [(Code, StartCode)]
codes RECtx
rectx = RECtx
rectx{ reCtxStartCodes :: [(Code, StartCode)]
reCtxStartCodes = [(Code, StartCode)]
codes }
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "<built-in>" #-}
{-# LINE 1 "<command-line>" #-}
{-# LINE 10 "<command-line>" #-}
# 1 "/usr/include/stdc-predef.h" 1 3 4
# 17 "/usr/include/stdc-predef.h" 3 4
{-# LINE 10 "<command-line>" #-}
{-# LINE 1 "/opt/ghc/8.6.3/lib/ghc-8.6.3/include/ghcversion.h" #-}
{-# LINE 10 "<command-line>" #-}
{-# LINE 1 "/tmp/ghc780_0/ghc_2.h" #-}
{-# LINE 10 "<command-line>" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
#if __GLASGOW_HASKELL__ > 706
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool)
#else
#define LT(n,m) (n Happy_GHC_Exts.<# m)
#define GTE(n,m) (n Happy_GHC_Exts.>=# m)
#define EQ(n,m) (n Happy_GHC_Exts.==# m)
#endif
{-# LINE 43 "templates/GenericTemplate.hs" #-}
data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList
{-# LINE 65 "templates/GenericTemplate.hs" #-}
{-# LINE 75 "templates/GenericTemplate.hs" #-}
{-# LINE 84 "templates/GenericTemplate.hs" #-}
infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)
happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) =
(happyTcHack j (happyTcHack st)) (happyReturn1 ans)
happyDoAction i tk st
=
case action of
0# ->
happyFail (happyExpListPerState ((Happy_GHC_Exts.I# (st)) :: Int)) i tk st
-1# ->
happyAccept i tk st
n | LT(n,(0# :: Happy_GHC_Exts.Int#)) ->
(happyReduceArr Happy_Data_Array.! rule) i tk st
where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
n ->
happyShift new_state i tk st
where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
where off = happyAdjustOffset (indexShortOffAddr happyActOffsets st)
off_i = (off Happy_GHC_Exts.+# i)
check = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#))
then EQ(indexShortOffAddr happyCheck off_i, i)
else False
action
| check = indexShortOffAddr happyTable off_i
| otherwise = indexShortOffAddr happyDefActions st
indexShortOffAddr (HappyA# arr) off =
Happy_GHC_Exts.narrow16Int# i
where
i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
low = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
off' = off Happy_GHC_Exts.*# 2#
{-# INLINE happyLt #-}
happyLt x y = LT(x,y)
readArrayBit arr bit =
Bits.testBit (Happy_GHC_Exts.I# (indexShortOffAddr arr ((unbox_int bit) `Happy_GHC_Exts.iShiftRA#` 4#))) (bit `mod` 16)
where unbox_int (Happy_GHC_Exts.I# x) = x
data HappyAddr = HappyA# Happy_GHC_Exts.Addr#
{-# LINE 180 "templates/GenericTemplate.hs" #-}
happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)
happyShift new_state i tk st sts stk =
happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)
happySpecReduce_0 i fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
= happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)
happySpecReduce_1 i fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
= let r = fn v1 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_2 i fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
= let r = fn v1 v2 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_3 i fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
= let r = fn v1 v2 v3 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happyReduce k i fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
= case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
sts1@((HappyCons (st1@(action)) (_))) ->
let r = fn stk in
happyDoSeq r (happyGoto nt j tk st1 sts1 r)
happyMonadReduce k nt fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
case happyDrop k (HappyCons (st) (sts)) of
sts1@((HappyCons (st1@(action)) (_))) ->
let drop_stk = happyDropStk k stk in
happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))
happyMonad2Reduce k nt fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
case happyDrop k (HappyCons (st) (sts)) of
sts1@((HappyCons (st1@(action)) (_))) ->
let drop_stk = happyDropStk k stk
off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st1)
off_i = (off Happy_GHC_Exts.+# nt)
new_state = indexShortOffAddr happyTable off_i
in
happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))
happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t
happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs
happyGoto nt j tk st =
happyDoAction j tk new_state
where off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st)
off_i = (off Happy_GHC_Exts.+# nt)
new_state = indexShortOffAddr happyTable off_i
happyFail explist 0# tk old_st _ stk@(x `HappyStk` _) =
let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
happyError_ explist i tk
happyFail explist i tk (action) sts stk =
happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)
notHappyAtAll :: a
notHappyAtAll = error "Internal Happy error\n"
happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
{-# INLINE happyTcHack #-}
happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq a b = a `seq` b
happyDontSeq a b = b
{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}
{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}