aivika-lattice-0.6.2: Nested discrete event simulation module for the Aivika library using lattice
CopyrightCopyright (c) 2016-2017 David Sorokin <david.sorokin@gmail.com>
LicenseBSD3
MaintainerDavid Sorokin <david.sorokin@gmail.com>
Stabilityexperimental
Safe HaskellNone
LanguageHaskell2010

Simulation.Aivika.Lattice.Estimate

Description

Tested with: GHC 8.0.1

The module defines the Estimate monad transformer which is destined for estimating computations within lattice nodes. Such computations are separated from the Event computations. An idea is that the forward-traversing Event computations provide with something that can be observed, while the Estimate computations estimate the received information and they can be backward-traversing.

Synopsis

Estimate Monad

data Estimate m a Source #

A value in the Estimate monad transformer represents something that can be estimated within lattice nodes.

Instances

Instances details
MonadTrans Estimate Source # 
Instance details

Defined in Simulation.Aivika.Lattice.Internal.Estimate

Methods

lift :: Monad m => m a -> Estimate m a #

Monad m => ParameterLift Estimate m Source # 
Instance details

Defined in Simulation.Aivika.Lattice.Internal.Estimate

Methods

liftParameter :: Parameter m a -> Estimate m a #

Monad m => MonadCompTrans Estimate m Source # 
Instance details

Defined in Simulation.Aivika.Lattice.Internal.Estimate

Methods

liftComp :: m a -> Estimate m a #

Monad m => EstimateLift Estimate m Source # 
Instance details

Defined in Simulation.Aivika.Lattice.Internal.Estimate

Methods

liftEstimate :: Estimate m a -> Estimate m a Source #

Monad m => Monad (Estimate m) Source # 
Instance details

Defined in Simulation.Aivika.Lattice.Internal.Estimate

Methods

(>>=) :: Estimate m a -> (a -> Estimate m b) -> Estimate m b #

(>>) :: Estimate m a -> Estimate m b -> Estimate m b #

return :: a -> Estimate m a #

Functor m => Functor (Estimate m) Source # 
Instance details

Defined in Simulation.Aivika.Lattice.Internal.Estimate

Methods

fmap :: (a -> b) -> Estimate m a -> Estimate m b #

(<$) :: a -> Estimate m b -> Estimate m a #

MonadFix m => MonadFix (Estimate m) Source # 
Instance details

Defined in Simulation.Aivika.Lattice.Internal.Estimate

Methods

mfix :: (a -> Estimate m a) -> Estimate m a #

Applicative m => Applicative (Estimate m) Source # 
Instance details

Defined in Simulation.Aivika.Lattice.Internal.Estimate

Methods

pure :: a -> Estimate m a #

(<*>) :: Estimate m (a -> b) -> Estimate m a -> Estimate m b #

liftA2 :: (a -> b -> c) -> Estimate m a -> Estimate m b -> Estimate m c #

(*>) :: Estimate m a -> Estimate m b -> Estimate m b #

(<*) :: Estimate m a -> Estimate m b -> Estimate m a #

MonadIO m => MonadIO (Estimate m) Source # 
Instance details

Defined in Simulation.Aivika.Lattice.Internal.Estimate

Methods

liftIO :: IO a -> Estimate m a #

Observable (Ref LIO) (Estimate LIO) Source #

An instance of the specified type class.

Instance details

Defined in Simulation.Aivika.Lattice.Ref.Base.Strict

Methods

readObservable :: Ref LIO a -> Estimate LIO a #

Observable (Ref LIO) (Estimate LIO) Source #

An instance of the specified type class.

Instance details

Defined in Simulation.Aivika.Lattice.Ref.Base.Lazy

Methods

readObservable :: Ref LIO a -> Estimate LIO a #

class EstimateLift t m where Source #

A type class to lift the Estimate computations into other computations.

Methods

liftEstimate :: Estimate m a -> t m a Source #

Lift the specified Estimate computation into another computation.

Instances

Instances details
Monad m => EstimateLift Estimate m Source # 
Instance details

Defined in Simulation.Aivika.Lattice.Internal.Estimate

Methods

liftEstimate :: Estimate m a -> Estimate m a Source #

runEstimateInStartTime :: MonadDES m => Estimate m a -> Simulation m a Source #

Run the Estimate computation in the start time and return the estimate.

estimateTime :: MonadDES m => Estimate m Double Source #

Like time estimates the current modeling time. It is more effcient than latticeTime.

Computations within Lattice

foldEstimate Source #

Arguments

:: (a -> a -> Estimate LIO a)

reduce in the intermediate nodes of the lattice

-> Estimate LIO a

estimate the computation in the final time point and beyond it

-> Simulation LIO (Estimate LIO a) 

Fold the estimation of the specified computation.

memoEstimate Source #

Arguments

:: (Estimate LIO a -> Estimate LIO a)

estimate in the intermediate time point of the lattice

-> Estimate LIO a

estimate in the final time point of the lattice or beyond it

-> Simulation LIO (Estimate LIO a) 

Estimate the computation in the lattice nodes.

estimateUpSide :: Estimate LIO a -> Estimate LIO a Source #

Estimate the computation in the up side node of the lattice, where latticeTimeIndex is increased by 1 but latticeMemberIndex remains the same.

It is merely equivalent to the following definition:

estimateUpSide = shiftEstimate 1 0

estimateDownSide :: Estimate LIO a -> Estimate LIO a Source #

Estimate the computation in the down side node of the lattice, where the both latticeTimeIndex and latticeMemberIndex are increased by 1.

It is merely equivalent to the following definition:

estimateDownSide = shiftEstimate 1 1

estimateFuture Source #

Arguments

:: Int

a positive shift of the lattice time index

-> Int

a shift of the lattice member index

-> Estimate LIO a

the source computation

-> Estimate LIO a 

Like shiftEstimate but only the first argument must be possitive.

shiftEstimate Source #

Arguments

:: Int

a shift of the lattice time index

-> Int

a shift of the lattice member index

-> Estimate LIO a

the source computation

-> Estimate LIO a 

Estimate the computation in the shifted lattice node, where the first parameter specifies the latticeTimeIndex shift of any sign, but the second parameter specifies the latticeMemberIndex shift af any sign too.

It allows looking into the future or past computations. The lattice is constructed in such a way that we can define the past Estimate computation in terms of the future Estimate computation. That is the point.

Regarding the Event computation, it is quite different. The future Event computation depends strongly on the past Event computations. But we can update Ref references within the corresponding discrete event simulation and then read them within the Estimate computation, because Ref is Observable.

estimateAt Source #

Arguments

:: Int

the lattice time index

-> Int

the lattice member index

-> Estimate LIO a

the computation

-> Estimate LIO a 

Estimate the computation at the specified latticeTimeIndex and latticeMemberIndex.

Error Handling

catchEstimate :: (MonadException m, Exception e) => Estimate m a -> (e -> Estimate m a) -> Estimate m a Source #

Exception handling within Estimate computations.

finallyEstimate :: MonadException m => Estimate m a -> Estimate m b -> Estimate m a Source #

A computation with finalization part like the finally function.

throwEstimate :: (MonadException m, Exception e) => e -> Estimate m a Source #

Like the standard throw function.

Debugging

traceEstimate :: String -> Estimate LIO a -> Estimate LIO a Source #

Show the debug message with the current simulation time and lattice node indices.