Processing math: 100%
ac-library-hs-1.2.3.0: Data structures and algorithms
Safe HaskellSafe-Inferred
LanguageGHC2021

AtCoder.Extra.SegTree2d.Dense

Description

Two-dimensional segment tree for commutative monoids in [0,w)×[0,h).

Internals

Expand

Take a 2x4 matrix as an example:

5 6 7 8
1 2 3 4

Extend each row as a segment tree:

 - 22 11 15  5  6  7  8
 - 10  3  7  1  2  3  4

Then extend each column as a segment tree:

 -  -  -  -  -  -  -  -
 - 30 14 22  6  8 10 12
 - 26 11 15  5  6  7  8
 - 10  3  7  1  2  3  4

Example

Expand

Create a two-dimensional segment tree for size (w, h) = (4, 2):

>>> import AtCoder.Extra.SegTree2d.Dense qualified as Seg
>>> import Data.Semigroup (Sum (..))
>>> import Data.Vector.Unboxed qualified as VU
>>> seg <- Seg.build @_ @(Sum Int) 4 2 $ VU.fromList [0, 1, 2, 3, 4, 5, 6, 7]

Get monoid product in [x1,x2)×[y1,y2) with prod:

>>> Seg.prod seg {- x -} 1 4 {- y -} 0 1
Sum {getSum = 6}

Monoid values can be altered:

>>> Seg.write seg 1 1 20
>>> Seg.prod seg {- x -} 0 2 {- y -} 0 2
Sum {getSum = 25}
>>> Seg.allProd seg
Sum {getSum = 43}

Since: 1.2.3.0

Synopsis

DenseSegTree2d

data DenseSegTree2d s a Source #

Two-dimensional segment tree.

Since: 1.2.3.0

Constructors

DenseSegTree2d 

Fields

Constructors

new Source #

Arguments

:: (PrimMonad m, Monoid a, Unbox a) 
=> Int

Width

-> Int

Height

-> m (DenseSegTree2d (PrimState m) a)

Dense, two-dimensional segment tree

O(hw) Creates a DenseSegTree2d for [0,w)×[0,h) from w and h.

Since: 1.2.3.0

build Source #

Arguments

:: (HasCallStack, PrimMonad m, Monoid a, Unbox a) 
=> Int

Width

-> Int

Height

-> Vector a

Vector of monoid values

-> m (DenseSegTree2d (PrimState m) a)

Dense, two-dimensional segment tree

O(hw) Creates a DenseSegTree2d from width, height and one-dimensional vector of monoid values.

Since: 1.2.3.0

build' Source #

Arguments

:: (HasCallStack, PrimMonad m, Monoid a, Unbox a) 
=> Vector (Vector a)

Two-dimensional vector of monoid values

-> m (DenseSegTree2d (PrimState m) a)

Dense, two-dimensional segment tree

O(hw) Creates a DenseSegTree2d from a two-dimensional vector of monoid values. The vector must be indexed by y first then x: vec V.! y VU.! x.

Constraints

  • The length of the monoid value vector must be hw.

Since: 1.2.3.0

Read

read :: (HasCallStack, PrimMonad m, Monoid a, Unbox a) => DenseSegTree2d (PrimState m) a -> Int -> Int -> m a Source #

O(1) Returns the monoid value at (x,y).

Since: 1.2.3.0

readMaybe :: (HasCallStack, PrimMonad m, Monoid a, Unbox a) => DenseSegTree2d (PrimState m) a -> Int -> Int -> m (Maybe a) Source #

O(1) Returns the monoid value at (x,y), or Nothing if the point is out of the bounds.

Since: 1.2.3.0

Write

write :: (HasCallStack, PrimMonad m, Monoid a, Unbox a) => DenseSegTree2d (PrimState m) a -> Int -> Int -> a -> m () Source #

O(loghlogw) Writes to the k-th original point's monoid value.

Since: 1.2.3.0

modify :: (HasCallStack, PrimMonad m, Monoid a, Unbox a) => DenseSegTree2d (PrimState m) a -> (a -> a) -> Int -> Int -> m () Source #

O(loghlogw) Given f, modofies the monoid value at (x,y).

Since: 1.2.3.0

modifyM :: (HasCallStack, PrimMonad m, Monoid a, Unbox a) => DenseSegTree2d (PrimState m) a -> (a -> m a) -> Int -> Int -> m () Source #

O(loghlogw) Given f, modofies the monoid value at (x,y).

Since: 1.2.3.0

Monoid product

prod :: (HasCallStack, PrimMonad m, Monoid a, Unbox a) => DenseSegTree2d (PrimState m) a -> Int -> Int -> Int -> Int -> m a Source #

O(loghlogw) Returns monoid product Πp[x1,x2)×[y1,y2)ap.

Since: 1.2.3.0

allProd :: (HasCallStack, PrimMonad m, Monoid a, Unbox a) => DenseSegTree2d (PrimState m) a -> m a Source #

O(1) Returns monoid product Πp[0,w)×[0,h)ap.

Since: 1.2.3.0