Processing math: 100%
ac-library-hs-1.2.3.0: Data structures and algorithms
Safe HaskellSafe-Inferred
LanguageGHC2021

AtCoder.Extra.LazyKdTree

Description

Static, k-dimensional tree (k=2) with lazily propagated monoid actions and commutative monoids.

  • Point coordinates are fixed on build.
  • Multiple points can exist at the same coordinate.

Examples

Expand
>>> import AtCoder.Extra.LazyKdTree qualified as LKT
>>> import AtCoder.Extra.Monoid.Affine1 (Affine1)
>>> import AtCoder.Extra.Monoid.Affine1 qualified as Affine1
>>> import Data.Semigroup (Sum (..))
>>> import Data.Vector.Unboxed qualified as VU
>>> let xyws = VU.fromList [(0, 0, Sum 1), (1, 1, Sum 2), (4, 2, Sum 3)]
>>> lkt <- LKT.build3 @_ @(Affine1 Int) @(Sum Int) xyws
>>> -- Get monoid product in [0, 2) x [0, 2)
>>> LKT.prod lkt 0 2 0 2
Sum {getSum = 3}
>>> LKT.applyIn lkt 0 2 0 2 $ Affine1.new 2 1
>>> LKT.prod lkt 0 2 0 2
Sum {getSum = 8}
>>> LKT.write lkt 0 $ Sum 10
>>> LKT.prod lkt 0 2 0 2
Sum {getSum = 15}

Since: 1.2.2.0

Synopsis

K-dimensional tree

data LazyKdTree s f a Source #

Static, k-dimensional tree (k=2) with lazily propagated monoid actions and commutative monoids.

Since: 1.2.2.0

Constructors

LazyKdTree 

Fields

  • nLkt :: !Int

    The number of points in the k-d tree.

    Since: 1.2.2.0

  • logLkt :: !Int

    log2(n+1)

    Since: 1.2.2.0

  • incRectsLkt :: !(Vector (Int, Int, Int, Int))

    Rectangle information: inclusive (closed) ranges [x1,x2)×[y1,y2).

    Since: 1.2.2.0

  • dataLkt :: !(MVector s a)

    Rectangle information: monoid values.

    Since: 1.2.2.0

  • lazyLkt :: !(MVector s f)

    Rectangle information: lazily propagated monoid actions for children.

    Since: 1.2.2.0

  • sizeLkt :: !(Vector Int)

    Rectangle information: the number of vertices in the rectangle.

    Since: 1.2.2.0

  • posLkt :: !(Vector Int)

    Maps original vertices into the belonging rectangle index.

    Since: 1.2.2.0

Re-exports

class Monoid f => SegAct f a where Source #

Typeclass reprentation of the LazySegTree properties. User can implement either segAct or segActWithLength.

Instances should satisfy the follwing properties:

Left monoid action
segAct (f2 <> f1) x = segAct f2 (segAct f1 x)
Identity map
segAct mempty x = x
Endomorphism
segAct f (x1 <> x2) = (segAct f x1) <> (segAct f x2)

If you implement SegAct via segActWithLength, satisfy one more propety:

Linear left monoid action
segActWithLength len f (stimes len a) = stimes len (segAct f a).

Invariant

In SegAct instances, new semigroup values are always given from the left: new <> old. The order is important for non-commutative monoid implementations.

Example instance

Expand

Take Affine1 as an example of type F.

{-# LANGUAGE TypeFamilies #-}

import AtCoder.LazySegTree qualified as LST
import AtCoder.LazySegTree (SegAct (..))
import Data.Monoid
import Data.Vector.Generic qualified as VG
import Data.Vector.Generic.Mutable qualified as VGM
import Data.Vector.Unboxed qualified as VU
import Data.Vector.Unboxed.Mutable qualified as VUM

-- | f x = a * x + b. It's implemented as a newtype of `(a, a)` for easy Unbox deriving.
newtype Affine1 a = Affine1 (Affine1 a)
  deriving newtype (Eq, Ord, Show)

-- | This type alias makes the Unbox deriving easier, described velow.
type Affine1Repr a = (a, a)

instance (Num a) => Semigroup (Affine1 a) where
  {-# INLINE (<>) #-}
  (Affine1 (!a1, !b1)) <> (Affine1 (!a2, !b2)) = Affine1 (a1 * a2, a1 * b2 + b1)

instance (Num a) => Monoid (Affine1 a) where
  {-# INLINE mempty #-}
  mempty = Affine1 (1, 0)

instance (Num a) => SegAct (Affine1 a) (Sum a) where
  {-# INLINE segActWithLength #-}
  segActWithLength len (Affine1 (!a, !b)) !x = a * x + b * fromIntegral len

Deriving Unbox is very easy for such a newtype (though the efficiency is not the maximum):

newtype instance VU.MVector s (Affine1 a) = MV_Affine1 (VU.MVector s (Affine1 a))
newtype instance VU.Vector (Affine1 a) = V_Affine1 (VU.Vector (Affine1 a))
deriving instance (VU.Unbox a) => VGM.MVector VUM.MVector (Affine1 a)
deriving instance (VU.Unbox a) => VG.Vector VU.Vector (Affine1 a)
instance (VU.Unbox a) => VU.Unbox (Affine1 a)

Example contest template

Expand

Define your monoid action F and your acted monoid X:

{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE TypeFamilies #-}

import AtCoder.LazySegTree qualified as LST
import AtCoder.LazySegTree (SegAct (..))
import Data.Vector.Generic qualified as VG
import Data.Vector.Generic.Mutable qualified as VGM
import Data.Vector.Unboxed qualified as VU
import Data.Vector.Unboxed.Mutable qualified as VUM

{- ORMOLU_DISABLE -}
-- | F is a custom monoid action, defined as a newtype of FRepr.
newtype F = F FRepr deriving newtype (Eq, Ord, Show) ; unF :: F -> FRepr ; unF (F x) = x ; newtype instance VU.MVector s F = MV_F (VU.MVector s FRepr) ; newtype instance VU.Vector F = V_F (VU.Vector FRepr) ; deriving instance VGM.MVector VUM.MVector F ; deriving instance VG.Vector VU.Vector F ; instance VU.Unbox F ;
{- ORMOLU_ENABLE -}

-- | Affine: f x = a * x + b
type FRepr = (Int, Int)

instance Semigroup F where
  -- new <> old
  {-# INLINE (<>) #-}
  (F (!a1, !b1)) <> (F (!a2, !b2)) = F (a1 * a2, a1 * b2 + b1)

instance Monoid F where
  {-# INLINE mempty #-}
  mempty = F (1, 0)

{- ORMOLU_DISABLE -}
-- | X is a custom acted monoid, defined as a newtype of XRepr.
newtype X = X XRepr deriving newtype (Eq, Ord, Show) ; unX :: X -> XRepr ; unX (X x) = x; newtype instance VU.MVector s X = MV_X (VU.MVector s XRepr) ; newtype instance VU.Vector X = V_X (VU.Vector XRepr) ; deriving instance VGM.MVector VUM.MVector X ; deriving instance VG.Vector VU.Vector X ; instance VU.Unbox X ;
{- ORMOLU_ENABLE -}

-- | Acted Int (same as `Sum Int`).
type XRepr = Int

deriving instance Num X; -- in our case X is a Num.

instance Semigroup X where
  {-# INLINE (<>) #-}
  (X x1) <> (X x2) = X $! x1 + x2

instance Monoid X where
  {-# INLINE mempty #-}
  mempty = X 0

instance SegAct F X where
  -- {-# INLINE segAct #-}
  -- segAct len (F (!a, !b)) (X x) = X $! a * x + b
  {-# INLINE segActWithLength #-}
  segActWithLength len (F (!a, !b)) (X x) = X $! a * x + len * b

It's tested as below:

expect :: (Eq a, Show a) => String -> a -> a -> ()
expect msg a b
  | a == b = ()
  | otherwise = error $ msg ++ ": expected " ++ show a ++ ", found " ++ show b

main :: IO ()
main = do
  seg <- LST.build _ F @X $ VU.map X $ VU.fromList [1, 2, 3, 4]
  LST.applyIn seg 1 3 $ F (2, 1) -- [1, 5, 7, 4]
  LST.write seg 3 $ X 10 -- [1, 5, 7, 10]
  LST.modify seg (+ (X 1)) 0   -- [2, 5, 7, 10]
  !_ <- (expect "test 1" (X 5)) <$> LST.read seg 1
  !_ <- (expect "test 2" (X 14)) <$> LST.prod seg 0 3 -- reads an interval [0, 3)
  !_ <- (expect "test 3" (X 24)) <$> LST.allProd seg
  !_ <- (expect "test 4" 2) <$> LST.maxRight seg 0 (<= (X 10)) -- sum [0, 2) = 7 <= 10
  !_ <- (expect "test 5" 3) <$> LST.minLeft seg 4 (<= (X 10)) -- sum [3, 4) = 10 <= 10
  putStrLn "=> test passed!"

Since: 1.0.0.0

Minimal complete definition

Nothing

Methods

segAct :: f -> a -> a Source #

Lazy segment tree action f(x).

Since: 1.0.0.0

segActWithLength :: Int -> f -> a -> a Source #

Lazy segment tree action f(x) with the target monoid's length.

If you implement SegAct with this function, you don't have to store the monoid's length, since it's given externally.

Since: 1.0.0.0

Instances

Instances details
SegAct () a Source #

Since: 1.2.0.0

Instance details

Defined in AtCoder.LazySegTree

Methods

segAct :: () -> a -> a Source #

segActWithLength :: Int -> () -> a -> a Source #

Monoid a => SegAct (RangeSet a) a Source #

Since: 1.0.0.0

Instance details

Defined in AtCoder.Extra.Monoid.RangeSet

Methods

segAct :: RangeSet a -> a -> a Source #

segActWithLength :: Int -> RangeSet a -> a -> a Source #

Num a => SegAct (Affine1 (Sum a)) (Sum a) Source #

Since: 1.0.0.0

Instance details

Defined in AtCoder.Extra.Monoid.Affine1

Methods

segAct :: Affine1 (Sum a) -> Sum a -> Sum a Source #

segActWithLength :: Int -> Affine1 (Sum a) -> Sum a -> Sum a Source #

Num a => SegAct (Affine1 a) (V2 a) Source #

Since: 1.2.2.0

Instance details

Defined in AtCoder.Extra.Monoid.Affine1

Methods

segAct :: Affine1 a -> V2 a -> V2 a Source #

segActWithLength :: Int -> Affine1 a -> V2 a -> V2 a Source #

Num a => SegAct (Affine1 a) (Sum a) Source #

Since: 1.0.0.0

Instance details

Defined in AtCoder.Extra.Monoid.Affine1

Methods

segAct :: Affine1 a -> Sum a -> Sum a Source #

segActWithLength :: Int -> Affine1 a -> Sum a -> Sum a Source #

Num a => SegAct (Mat2x2 a) (V2 a) Source #

Since: 1.1.0.0

Instance details

Defined in AtCoder.Extra.Monoid.Mat2x2

Methods

segAct :: Mat2x2 a -> V2 a -> V2 a Source #

segActWithLength :: Int -> Mat2x2 a -> V2 a -> V2 a Source #

(Num a, Monoid (Max a)) => SegAct (RangeAdd (Max a)) (Max a) Source #

Since: 1.1.0.0

Instance details

Defined in AtCoder.Extra.Monoid.RangeAdd

Methods

segAct :: RangeAdd (Max a) -> Max a -> Max a Source #

segActWithLength :: Int -> RangeAdd (Max a) -> Max a -> Max a Source #

(Num a, Monoid (Min a)) => SegAct (RangeAdd (Min a)) (Min a) Source #

Since: 1.1.0.0

Instance details

Defined in AtCoder.Extra.Monoid.RangeAdd

Methods

segAct :: RangeAdd (Min a) -> Min a -> Min a Source #

segActWithLength :: Int -> RangeAdd (Min a) -> Min a -> Min a Source #

Num a => SegAct (RangeAdd (Sum a)) (Sum a) Source #

Since: 1.2.0.0

Instance details

Defined in AtCoder.Extra.Monoid.RangeAdd

Methods

segAct :: RangeAdd (Sum a) -> Sum a -> Sum a Source #

segActWithLength :: Int -> RangeAdd (Sum a) -> Sum a -> Sum a Source #

Num a => SegAct (Dual (Affine1 (Sum a))) (Sum a) Source #

Since: 1.0.0.0

Instance details

Defined in AtCoder.Extra.Monoid.Affine1

Methods

segAct :: Dual (Affine1 (Sum a)) -> Sum a -> Sum a Source #

segActWithLength :: Int -> Dual (Affine1 (Sum a)) -> Sum a -> Sum a Source #

Num a => SegAct (Dual (Affine1 a)) (V2 a) Source #

Since: 1.2.2.0

Instance details

Defined in AtCoder.Extra.Monoid.Affine1

Methods

segAct :: Dual (Affine1 a) -> V2 a -> V2 a Source #

segActWithLength :: Int -> Dual (Affine1 a) -> V2 a -> V2 a Source #

Num a => SegAct (Dual (Affine1 a)) (Sum a) Source #

Since: 1.0.0.0

Instance details

Defined in AtCoder.Extra.Monoid.Affine1

Methods

segAct :: Dual (Affine1 a) -> Sum a -> Sum a Source #

segActWithLength :: Int -> Dual (Affine1 a) -> Sum a -> Sum a Source #

Num a => SegAct (Dual (Mat2x2 a)) (V2 a) Source #

Since: 1.1.0.0

Instance details

Defined in AtCoder.Extra.Monoid.Mat2x2

Methods

segAct :: Dual (Mat2x2 a) -> V2 a -> V2 a Source #

segActWithLength :: Int -> Dual (Mat2x2 a) -> V2 a -> V2 a Source #

Constructors

new Source #

Arguments

:: (HasCallStack, PrimMonad m, Monoid f, Unbox f, Monoid a, Unbox a) 
=> Vector Int

x coordnates

-> Vector Int

y coordnates

-> m (LazyKdTree (PrimState m) f a)

LazyKdTree

O(nlogn) Creates a LazyKdTree from xs and ys.

Constraints

  • (|mathrm{xs}| = |mathrm{ys}|

Since: 1.2.3.0

build Source #

Arguments

:: (HasCallStack, PrimMonad m, Monoid f, Unbox f, Semigroup a, Unbox a) 
=> Vector Int

x coordnates

-> Vector Int

y coordnates

-> Vector a

monoid values

-> m (LazyKdTree (PrimState m) f a)

LazyKdTree

O(nlogn) Creates a LazyKdTree from xs, ys and ws vectors.

Constraints

  • |xs|=|ys|=|vs|.

Since: 1.2.2.0

build2 Source #

Arguments

:: (HasCallStack, PrimMonad m, Monoid f, Unbox f, Semigroup a, Unbox a) 
=> Vector (Int, Int)

(x,y) coordinates

-> Vector a

Monoid values

-> m (LazyKdTree (PrimState m) f a)

LazyKdTree

O(nlogn) Creates a LazyKdTree from xys and ws vectors.

Constraints

  • |xys|=|vs|.

Since: 1.2.2.0

build3 Source #

Arguments

:: (HasCallStack, PrimMonad m, Monoid f, Unbox f, Semigroup a, Unbox a) 
=> Vector (Int, Int, a)

(x,y,v) tuples

-> m (LazyKdTree (PrimState m) f a)

LazyKdTree

O(nlogn) Creates a LazyKdTree from a xyws vector.

Since: 1.2.2.0

Write

write Source #

Arguments

:: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Unbox f, Semigroup a, Unbox a) 
=> LazyKdTree (PrimState m) f a

LazyKdTree

-> Int

Original vertex index.

-> a

Monoid value

-> m ()

Monadic tuple

O(logn) Writes to the k-th point's monoid value.

Since: 1.2.2.0

modify Source #

Arguments

:: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Unbox f, Semigroup a, Unbox a) 
=> LazyKdTree (PrimState m) f a

LazyKdTree

-> (a -> a)

Creates a new monoid value from the old one.

-> Int

Original vertex index.

-> m ()

Monadic tuple

O(logn) Modifies the k-th point's monoid value.

Since: 1.2.2.0

modifyM Source #

Arguments

:: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Unbox f, Semigroup a, Unbox a) 
=> LazyKdTree (PrimState m) f a

LazyKdTree

-> (a -> m a)

Creates a new monoid value from the old one.

-> Int

Original vertex index.

-> m ()

Monadic tuple

O(logn) Modifies the k-th point's monoid value.

Since: 1.2.2.0

Monoid products

prod Source #

Arguments

:: (HasCallStack, PrimMonad m, Eq f, SegAct f a, Eq f, Unbox f, Monoid a, Unbox a) 
=> LazyKdTree (PrimState m) f a

LazyKdTree

-> Int

x1

-> Int

x2

-> Int

y1

-> Int

y2

-> m a

Πp[x1,x2)×[y1,y2)ap

O(n) Returns monoid product Πp[x1,x2)×[y1,y2)ap.

Since: 1.2.2.0

allProd Source #

Arguments

:: (PrimMonad m, Monoid a, Unbox a) 
=> LazyKdTree (PrimState m) f a

LazyKdTree

-> m a

Πp[,)×[,)ap

O(1) Returns monoid product Πp[,)×[,)ap.

Since: 1.2.2.0

Apply

applyIn Source #

Arguments

:: (HasCallStack, PrimMonad m, Eq f, SegAct f a, Unbox f, Monoid a, Unbox a) 
=> LazyKdTree (PrimState m) f a

LazyKdTree

-> Int

x1

-> Int

x2

-> Int

y1

-> Int

y2

-> f

f

-> m ()

Monadic tuple

O(logn) Applies a monoid action to points in [x1,x2)×[y1,y2).

Since: 1.2.2.0