Safe Haskell | Safe-Inferred |
---|---|
Language | GHC2021 |
AtCoder.Extra.LazyKdTree
Description
Static, k-dimensional tree (k=2) with lazily propagated monoid actions and commutative monoids.
- Point coordinates are fixed on
build
. - Multiple points can exist at the same coordinate.
Examples
>>>
import AtCoder.Extra.LazyKdTree qualified as LKT
>>>
import AtCoder.Extra.Monoid.Affine1 (Affine1)
>>>
import AtCoder.Extra.Monoid.Affine1 qualified as Affine1
>>>
import Data.Semigroup (Sum (..))
>>>
import Data.Vector.Unboxed qualified as VU
>>>
let xyws = VU.fromList [(0, 0, Sum 1), (1, 1, Sum 2), (4, 2, Sum 3)]
>>>
lkt <- LKT.build3 @_ @(Affine1 Int) @(Sum Int) xyws
>>>
-- Get monoid product in [0, 2) x [0, 2)
>>>
LKT.prod lkt 0 2 0 2
Sum {getSum = 3}
>>>
LKT.applyIn lkt 0 2 0 2 $ Affine1.new 2 1
>>>
LKT.prod lkt 0 2 0 2
Sum {getSum = 8}
>>>
LKT.write lkt 0 $ Sum 10
>>>
LKT.prod lkt 0 2 0 2
Sum {getSum = 15}
Since: 1.2.2.0
Synopsis
- data LazyKdTree s f a = LazyKdTree {}
- class Monoid f => SegAct f a where
- segAct :: f -> a -> a
- segActWithLength :: Int -> f -> a -> a
- new :: (HasCallStack, PrimMonad m, Monoid f, Unbox f, Monoid a, Unbox a) => Vector Int -> Vector Int -> m (LazyKdTree (PrimState m) f a)
- build :: (HasCallStack, PrimMonad m, Monoid f, Unbox f, Semigroup a, Unbox a) => Vector Int -> Vector Int -> Vector a -> m (LazyKdTree (PrimState m) f a)
- build2 :: (HasCallStack, PrimMonad m, Monoid f, Unbox f, Semigroup a, Unbox a) => Vector (Int, Int) -> Vector a -> m (LazyKdTree (PrimState m) f a)
- build3 :: (HasCallStack, PrimMonad m, Monoid f, Unbox f, Semigroup a, Unbox a) => Vector (Int, Int, a) -> m (LazyKdTree (PrimState m) f a)
- write :: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Unbox f, Semigroup a, Unbox a) => LazyKdTree (PrimState m) f a -> Int -> a -> m ()
- modify :: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Unbox f, Semigroup a, Unbox a) => LazyKdTree (PrimState m) f a -> (a -> a) -> Int -> m ()
- modifyM :: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Unbox f, Semigroup a, Unbox a) => LazyKdTree (PrimState m) f a -> (a -> m a) -> Int -> m ()
- prod :: (HasCallStack, PrimMonad m, Eq f, SegAct f a, Eq f, Unbox f, Monoid a, Unbox a) => LazyKdTree (PrimState m) f a -> Int -> Int -> Int -> Int -> m a
- allProd :: (PrimMonad m, Monoid a, Unbox a) => LazyKdTree (PrimState m) f a -> m a
- applyIn :: (HasCallStack, PrimMonad m, Eq f, SegAct f a, Unbox f, Monoid a, Unbox a) => LazyKdTree (PrimState m) f a -> Int -> Int -> Int -> Int -> f -> m ()
K-dimensional tree
data LazyKdTree s f a Source #
Static, k-dimensional tree (k=2) with lazily propagated monoid actions and commutative monoids.
Since: 1.2.2.0
Constructors
LazyKdTree | |
Fields
|
Re-exports
class Monoid f => SegAct f a where Source #
Typeclass reprentation of the LazySegTree
properties. User can implement either segAct
or
segActWithLength
.
Instances should satisfy the follwing properties:
- Left monoid action
segAct
(f2<>
f1) x =segAct
f2 (segAct
f1 x)- Identity map
segAct
mempty
x = x- Endomorphism
segAct
f (x1<>
x2) = (segAct
f x1)<>
(segAct
f x2)
If you implement SegAct
via segActWithLength
, satisfy one more propety:
- Linear left monoid action
.segActWithLength
len f (stimes len a) =stimes
len (segAct
f a)
Invariant
In SegAct
instances, new semigroup values are always given from the left: new
. The
order is important for non-commutative monoid implementations.<>
old
Example instance
Take Affine1
as an example of type F.
{-# LANGUAGE TypeFamilies #-} import AtCoder.LazySegTree qualified as LST import AtCoder.LazySegTree (SegAct (..)) import Data.Monoid import Data.Vector.Generic qualified as VG import Data.Vector.Generic.Mutable qualified as VGM import Data.Vector.Unboxed qualified as VU import Data.Vector.Unboxed.Mutable qualified as VUM -- | f x = a * x + b. It's implemented as a newtype of `(a, a)` for easyUnbox
deriving. newtypeAffine1
a =Affine1
(Affine1
a) deriving newtype (Eq
,Ord
,Show
) -- | This type alias makes theUnbox
deriving easier, described velow. typeAffine1Repr
a = (a, a) instance (Num
a) =>Semigroup
(Affine1
a) where {-# INLINE (<>
) #-} (Affine1
(!a1, !b1))<>
(Affine1
(!a2, !b2)) =Affine1
(a1 * a2, a1 * b2 + b1) instance (Num
a) =>Monoid
(Affine1
a) where {-# INLINEmempty
#-}mempty
=Affine1
(1, 0) instance (Num
a) =>SegAct
(Affine1
a) (Sum
a) where {-# INLINE segActWithLength #-}segActWithLength
len (Affine1
(!a, !b)) !x = a * x + b * fromIntegral len
Deriving Unbox
is very easy for such a newtype (though the efficiency is
not the maximum):
newtype instance VU.MVector s (Affine1
a) = MV_Affine1 (VU.MVector s (Affine1
a)) newtype instance VU.Vector (Affine1
a) = V_Affine1 (VU.Vector (Affine1
a)) deriving instance (VU.Unbox a) => VGM.MVector VUM.MVector (Affine1
a) deriving instance (VU.Unbox a) => VG.Vector VU.Vector (Affine1
a) instance (VU.Unbox a) => VU.Unbox (Affine1
a)
Example contest template
Define your monoid action F
and your acted monoid X
:
{-# LANGUAGE DerivingStrategies #-} {-# LANGUAGE TypeFamilies #-} import AtCoder.LazySegTree qualified as LST import AtCoder.LazySegTree (SegAct (..)) import Data.Vector.Generic qualified as VG import Data.Vector.Generic.Mutable qualified as VGM import Data.Vector.Unboxed qualified as VU import Data.Vector.Unboxed.Mutable qualified as VUM {- ORMOLU_DISABLE -} -- |F
is a custom monoid action, defined as a newtype ofFRepr
. newtype F = F FRepr deriving newtype (Eq, Ord, Show) ; unF :: F -> FRepr ; unF (F x) = x ; newtype instance VU.MVector s F = MV_F (VU.MVector s FRepr) ; newtype instance VU.Vector F = V_F (VU.Vector FRepr) ; deriving instance VGM.MVector VUM.MVector F ; deriving instance VG.Vector VU.Vector F ; instance VU.Unbox F ; {- ORMOLU_ENABLE -} -- | Affine: f x = a * x + b type FRepr = (Int, Int) instance Semigroup F where --new <> old
{-# INLINE (<>) #-} (F (!a1, !b1)) <> (F (!a2, !b2)) = F (a1 * a2, a1 * b2 + b1) instance Monoid F where {-# INLINE mempty #-} mempty = F (1, 0) {- ORMOLU_DISABLE -} -- |X
is a custom acted monoid, defined as a newtype ofXRepr
. newtype X = X XRepr deriving newtype (Eq, Ord, Show) ; unX :: X -> XRepr ; unX (X x) = x; newtype instance VU.MVector s X = MV_X (VU.MVector s XRepr) ; newtype instance VU.Vector X = V_X (VU.Vector XRepr) ; deriving instance VGM.MVector VUM.MVector X ; deriving instance VG.Vector VU.Vector X ; instance VU.Unbox X ; {- ORMOLU_ENABLE -} -- | ActedInt
(same as `Sum Int`). type XRepr = Int deriving instance Num X; -- in our caseX
is aNum
. instance Semigroup X where {-# INLINE (<>) #-} (X x1) <> (X x2) = X $! x1 + x2 instance Monoid X where {-# INLINE mempty #-} mempty = X 0 instance SegAct F X where -- {-# INLINE segAct #-} -- segAct len (F (!a, !b)) (X x) = X $! a * x + b {-# INLINE segActWithLength #-} segActWithLength len (F (!a, !b)) (X x) = X $! a * x + len * b
It's tested as below:
expect :: (Eq a, Show a) => String -> a -> a -> ()
expect msg a b
| a == b = ()
| otherwise = error $ msg ++ ": expected " ++ show a ++ ", found " ++ show b
main :: IO ()
main = do
seg <- LST.build _
F @X $ VU.map X $ VU.fromList [1, 2, 3, 4]
LST.applyIn seg 1 3 $ F (2, 1) -- [1, 5, 7, 4]
LST.write seg 3 $ X 10 -- [1, 5, 7, 10]
LST.modify seg (+ (X 1)) 0 -- [2, 5, 7, 10]
!_ <- (expect "test 1" (X 5)) <$> LST.read seg 1
!_ <- (expect "test 2" (X 14)) <$> LST.prod seg 0 3 -- reads an interval [0, 3)
!_ <- (expect "test 3" (X 24)) <$> LST.allProd seg
!_ <- (expect "test 4" 2) <$> LST.maxRight seg 0 (<= (X 10)) -- sum [0, 2) = 7 <= 10
!_ <- (expect "test 5" 3) <$> LST.minLeft seg 4 (<= (X 10)) -- sum [3, 4) = 10 <= 10
putStrLn "=> test passed!"
Since: 1.0.0.0
Minimal complete definition
Nothing
Methods
segAct :: f -> a -> a Source #
Lazy segment tree action f(x).
Since: 1.0.0.0
segActWithLength :: Int -> f -> a -> a Source #
Lazy segment tree action f(x) with the target monoid's length.
If you implement SegAct
with this function, you don't have to store the monoid's length,
since it's given externally.
Since: 1.0.0.0
Instances
SegAct () a Source # | Since: 1.2.0.0 |
Defined in AtCoder.LazySegTree | |
Monoid a => SegAct (RangeSet a) a Source # | Since: 1.0.0.0 |
Defined in AtCoder.Extra.Monoid.RangeSet | |
Num a => SegAct (Affine1 (Sum a)) (Sum a) Source # | Since: 1.0.0.0 |
Num a => SegAct (Affine1 a) (V2 a) Source # | Since: 1.2.2.0 |
Num a => SegAct (Affine1 a) (Sum a) Source # | Since: 1.0.0.0 |
Num a => SegAct (Mat2x2 a) (V2 a) Source # | Since: 1.1.0.0 |
(Num a, Monoid (Max a)) => SegAct (RangeAdd (Max a)) (Max a) Source # | Since: 1.1.0.0 |
(Num a, Monoid (Min a)) => SegAct (RangeAdd (Min a)) (Min a) Source # | Since: 1.1.0.0 |
Num a => SegAct (RangeAdd (Sum a)) (Sum a) Source # | Since: 1.2.0.0 |
Num a => SegAct (Dual (Affine1 (Sum a))) (Sum a) Source # | Since: 1.0.0.0 |
Num a => SegAct (Dual (Affine1 a)) (V2 a) Source # | Since: 1.2.2.0 |
Num a => SegAct (Dual (Affine1 a)) (Sum a) Source # | Since: 1.0.0.0 |
Num a => SegAct (Dual (Mat2x2 a)) (V2 a) Source # | Since: 1.1.0.0 |
Constructors
Arguments
:: (HasCallStack, PrimMonad m, Monoid f, Unbox f, Monoid a, Unbox a) | |
=> Vector Int | x coordnates |
-> Vector Int | y coordnates |
-> m (LazyKdTree (PrimState m) f a) |
Arguments
:: (HasCallStack, PrimMonad m, Monoid f, Unbox f, Semigroup a, Unbox a) | |
=> Vector (Int, Int) | (x,y) coordinates |
-> Vector a | Monoid values |
-> m (LazyKdTree (PrimState m) f a) |
Arguments
:: (HasCallStack, PrimMonad m, Monoid f, Unbox f, Semigroup a, Unbox a) | |
=> Vector (Int, Int, a) | (x,y,v) tuples |
-> m (LazyKdTree (PrimState m) f a) |
O(nlogn) Creates a LazyKdTree
from a xyws
vector.
Since: 1.2.2.0
Write
Arguments
:: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Unbox f, Semigroup a, Unbox a) | |
=> LazyKdTree (PrimState m) f a | |
-> Int | Original vertex index. |
-> a | Monoid value |
-> m () | Monadic tuple |
O(logn) Writes to the k-th point's monoid value.
Since: 1.2.2.0
Arguments
:: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Unbox f, Semigroup a, Unbox a) | |
=> LazyKdTree (PrimState m) f a | |
-> (a -> a) | Creates a new monoid value from the old one. |
-> Int | Original vertex index. |
-> m () | Monadic tuple |
O(logn) Modifies the k-th point's monoid value.
Since: 1.2.2.0
Arguments
:: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Unbox f, Semigroup a, Unbox a) | |
=> LazyKdTree (PrimState m) f a | |
-> (a -> m a) | Creates a new monoid value from the old one. |
-> Int | Original vertex index. |
-> m () | Monadic tuple |
O(logn) Modifies the k-th point's monoid value.
Since: 1.2.2.0
Monoid products
Arguments
:: (HasCallStack, PrimMonad m, Eq f, SegAct f a, Eq f, Unbox f, Monoid a, Unbox a) | |
=> LazyKdTree (PrimState m) f a | |
-> Int | x1 |
-> Int | x2 |
-> Int | y1 |
-> Int | y2 |
-> m a | Πp∈[x1,x2)×[y1,y2)ap |
O(√n) Returns monoid product Πp∈[x1,x2)×[y1,y2)ap.
Since: 1.2.2.0
Arguments
:: (PrimMonad m, Monoid a, Unbox a) | |
=> LazyKdTree (PrimState m) f a | |
-> m a | Πp∈[−∞,∞)×[−∞,∞)ap |
O(1) Returns monoid product Πp∈[−∞,∞)×[−∞,∞)ap.
Since: 1.2.2.0