Processing math: 100%
ac-library-hs-1.2.3.0: Data structures and algorithms
Safe HaskellSafe-Inferred
LanguageGHC2021

AtCoder.Extra.DynLazySegTree.Persistent

Description

A dynamic, persistent, lazily propagated segment tree that covers a half-open interval [l0,r0). Nodes are instantinated as needed, with the required capacity being approximately 8qlog2L, where q is the number of mutable operations and L is the length of the interval.

Example

Expand
>>> import AtCoder.Extra.DynLazySegTree.Persistent qualified as Seg
>>> import AtCoder.Extra.Monoid.Affine1 (Affine1 (..))
>>> import AtCoder.Extra.Monoid.Affine1 qualified as Affine1
>>> import Data.Semigroup (Sum (..))
>>> import Data.Vector.Unboxed qualified as VU

Create a DynLazySegTree over [0,4) with some initial capacity:

>>> let len = 4; q = 3
>>> seg <- Seg.new @_ @(Affine1 Int) @(Sum Int) (Seg.recommendedCapacity len q) 0 4

Different from the LazySegTree module, it requires explicit root handle:

>>> -- [0, 0, 0, 0]
>>> root <- Seg.newRoot seg

Each modification returns a new handle:

>>> root1 <- Seg.write seg root 1 $ Sum 10
>>> root2 <- Seg.write seg root1 2 $ Sum 20
>>> -- [0, 10, 20, 0]
>>> Seg.prod seg root2 0 3
Sum {getSum = 30}
>>> -- [0, 10, 20, 0] -> [0, 21, 41, 1]
>>> root3 <- Seg.applyIn seg root2 1 4 $ Affine1.new 2 1
>>> Seg.maxRight seg root3 (<= (Sum 62))
3

If multiple tree roots are allocated, copyInterval and copyIntervalWith can be used.

Since: 1.2.1.0

Synopsis

Dynamic, lazily propagated segment tree

data DynLazySegTree s f a Source #

A dynamic, lazily propagated segment tree that covers a half-open interval [l0,r0). The nodes are instantinated as needed.

Since: 1.2.1.0

Constructors

DynLazySegTree 

Fields

  • capacityLdst :: !Int

    The maximum number of nodes allocated

    Since: 1.2.1.0

  • isPersistentLdst :: !Bool

    Whether the data is persistent or not

    Since: 1.2.1.0

  • l0Ldst :: !Int

    Left index boundary (inclusive)

    Since: 1.2.1.0

  • r0Ldst :: !Int

    Right index boundary (exclusive)

    Since: 1.2.1.0

  • initialProdLdst :: !(Int -> Int -> a)

    Initial monoid value assignment g:(l,r)a

    Since: 1.2.1.0

  • poolLdst :: !(Pool s ())

    Pool for free slot management.

    Since: 1.2.1.0

  • lLdst :: !(MVector s Index)

    Decomposed node storage: left children

    Since: 1.2.1.0

  • rLdst :: !(MVector s Index)

    Decomposed node storage: right children

    Since: 1.2.1.0

  • xLdst :: !(MVector s a)

    Decomposed node storage: monoid value

    Since: 1.2.1.0

  • lazyLdst :: !(MVector s f)

    Decomposed node storage: lazily propagated monoid action

    Since: 1.2.1.0

Re-exports

class Monoid f => SegAct f a where Source #

Typeclass reprentation of the LazySegTree properties. User can implement either segAct or segActWithLength.

Instances should satisfy the follwing properties:

Left monoid action
segAct (f2 <> f1) x = segAct f2 (segAct f1 x)
Identity map
segAct mempty x = x
Endomorphism
segAct f (x1 <> x2) = (segAct f x1) <> (segAct f x2)

If you implement SegAct via segActWithLength, satisfy one more propety:

Linear left monoid action
segActWithLength len f (stimes len a) = stimes len (segAct f a).

Invariant

In SegAct instances, new semigroup values are always given from the left: new <> old. The order is important for non-commutative monoid implementations.

Example instance

Expand

Take Affine1 as an example of type F.

{-# LANGUAGE TypeFamilies #-}

import AtCoder.LazySegTree qualified as LST
import AtCoder.LazySegTree (SegAct (..))
import Data.Monoid
import Data.Vector.Generic qualified as VG
import Data.Vector.Generic.Mutable qualified as VGM
import Data.Vector.Unboxed qualified as VU
import Data.Vector.Unboxed.Mutable qualified as VUM

-- | f x = a * x + b. It's implemented as a newtype of `(a, a)` for easy Unbox deriving.
newtype Affine1 a = Affine1 (Affine1 a)
  deriving newtype (Eq, Ord, Show)

-- | This type alias makes the Unbox deriving easier, described velow.
type Affine1Repr a = (a, a)

instance (Num a) => Semigroup (Affine1 a) where
  {-# INLINE (<>) #-}
  (Affine1 (!a1, !b1)) <> (Affine1 (!a2, !b2)) = Affine1 (a1 * a2, a1 * b2 + b1)

instance (Num a) => Monoid (Affine1 a) where
  {-# INLINE mempty #-}
  mempty = Affine1 (1, 0)

instance (Num a) => SegAct (Affine1 a) (Sum a) where
  {-# INLINE segActWithLength #-}
  segActWithLength len (Affine1 (!a, !b)) !x = a * x + b * fromIntegral len

Deriving Unbox is very easy for such a newtype (though the efficiency is not the maximum):

newtype instance VU.MVector s (Affine1 a) = MV_Affine1 (VU.MVector s (Affine1 a))
newtype instance VU.Vector (Affine1 a) = V_Affine1 (VU.Vector (Affine1 a))
deriving instance (VU.Unbox a) => VGM.MVector VUM.MVector (Affine1 a)
deriving instance (VU.Unbox a) => VG.Vector VU.Vector (Affine1 a)
instance (VU.Unbox a) => VU.Unbox (Affine1 a)

Example contest template

Expand

Define your monoid action F and your acted monoid X:

{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE TypeFamilies #-}

import AtCoder.LazySegTree qualified as LST
import AtCoder.LazySegTree (SegAct (..))
import Data.Vector.Generic qualified as VG
import Data.Vector.Generic.Mutable qualified as VGM
import Data.Vector.Unboxed qualified as VU
import Data.Vector.Unboxed.Mutable qualified as VUM

{- ORMOLU_DISABLE -}
-- | F is a custom monoid action, defined as a newtype of FRepr.
newtype F = F FRepr deriving newtype (Eq, Ord, Show) ; unF :: F -> FRepr ; unF (F x) = x ; newtype instance VU.MVector s F = MV_F (VU.MVector s FRepr) ; newtype instance VU.Vector F = V_F (VU.Vector FRepr) ; deriving instance VGM.MVector VUM.MVector F ; deriving instance VG.Vector VU.Vector F ; instance VU.Unbox F ;
{- ORMOLU_ENABLE -}

-- | Affine: f x = a * x + b
type FRepr = (Int, Int)

instance Semigroup F where
  -- new <> old
  {-# INLINE (<>) #-}
  (F (!a1, !b1)) <> (F (!a2, !b2)) = F (a1 * a2, a1 * b2 + b1)

instance Monoid F where
  {-# INLINE mempty #-}
  mempty = F (1, 0)

{- ORMOLU_DISABLE -}
-- | X is a custom acted monoid, defined as a newtype of XRepr.
newtype X = X XRepr deriving newtype (Eq, Ord, Show) ; unX :: X -> XRepr ; unX (X x) = x; newtype instance VU.MVector s X = MV_X (VU.MVector s XRepr) ; newtype instance VU.Vector X = V_X (VU.Vector XRepr) ; deriving instance VGM.MVector VUM.MVector X ; deriving instance VG.Vector VU.Vector X ; instance VU.Unbox X ;
{- ORMOLU_ENABLE -}

-- | Acted Int (same as `Sum Int`).
type XRepr = Int

deriving instance Num X; -- in our case X is a Num.

instance Semigroup X where
  {-# INLINE (<>) #-}
  (X x1) <> (X x2) = X $! x1 + x2

instance Monoid X where
  {-# INLINE mempty #-}
  mempty = X 0

instance SegAct F X where
  -- {-# INLINE segAct #-}
  -- segAct len (F (!a, !b)) (X x) = X $! a * x + b
  {-# INLINE segActWithLength #-}
  segActWithLength len (F (!a, !b)) (X x) = X $! a * x + len * b

It's tested as below:

expect :: (Eq a, Show a) => String -> a -> a -> ()
expect msg a b
  | a == b = ()
  | otherwise = error $ msg ++ ": expected " ++ show a ++ ", found " ++ show b

main :: IO ()
main = do
  seg <- LST.build _ F @X $ VU.map X $ VU.fromList [1, 2, 3, 4]
  LST.applyIn seg 1 3 $ F (2, 1) -- [1, 5, 7, 4]
  LST.write seg 3 $ X 10 -- [1, 5, 7, 10]
  LST.modify seg (+ (X 1)) 0   -- [2, 5, 7, 10]
  !_ <- (expect "test 1" (X 5)) <$> LST.read seg 1
  !_ <- (expect "test 2" (X 14)) <$> LST.prod seg 0 3 -- reads an interval [0, 3)
  !_ <- (expect "test 3" (X 24)) <$> LST.allProd seg
  !_ <- (expect "test 4" 2) <$> LST.maxRight seg 0 (<= (X 10)) -- sum [0, 2) = 7 <= 10
  !_ <- (expect "test 5" 3) <$> LST.minLeft seg 4 (<= (X 10)) -- sum [3, 4) = 10 <= 10
  putStrLn "=> test passed!"

Since: 1.0.0.0

Minimal complete definition

Nothing

Methods

segAct :: f -> a -> a Source #

Lazy segment tree action f(x).

Since: 1.0.0.0

segActWithLength :: Int -> f -> a -> a Source #

Lazy segment tree action f(x) with the target monoid's length.

If you implement SegAct with this function, you don't have to store the monoid's length, since it's given externally.

Since: 1.0.0.0

Instances

Instances details
SegAct () a Source #

Since: 1.2.0.0

Instance details

Defined in AtCoder.LazySegTree

Methods

segAct :: () -> a -> a Source #

segActWithLength :: Int -> () -> a -> a Source #

Monoid a => SegAct (RangeSet a) a Source #

Since: 1.0.0.0

Instance details

Defined in AtCoder.Extra.Monoid.RangeSet

Methods

segAct :: RangeSet a -> a -> a Source #

segActWithLength :: Int -> RangeSet a -> a -> a Source #

Num a => SegAct (Affine1 (Sum a)) (Sum a) Source #

Since: 1.0.0.0

Instance details

Defined in AtCoder.Extra.Monoid.Affine1

Methods

segAct :: Affine1 (Sum a) -> Sum a -> Sum a Source #

segActWithLength :: Int -> Affine1 (Sum a) -> Sum a -> Sum a Source #

Num a => SegAct (Affine1 a) (V2 a) Source #

Since: 1.2.2.0

Instance details

Defined in AtCoder.Extra.Monoid.Affine1

Methods

segAct :: Affine1 a -> V2 a -> V2 a Source #

segActWithLength :: Int -> Affine1 a -> V2 a -> V2 a Source #

Num a => SegAct (Affine1 a) (Sum a) Source #

Since: 1.0.0.0

Instance details

Defined in AtCoder.Extra.Monoid.Affine1

Methods

segAct :: Affine1 a -> Sum a -> Sum a Source #

segActWithLength :: Int -> Affine1 a -> Sum a -> Sum a Source #

Num a => SegAct (Mat2x2 a) (V2 a) Source #

Since: 1.1.0.0

Instance details

Defined in AtCoder.Extra.Monoid.Mat2x2

Methods

segAct :: Mat2x2 a -> V2 a -> V2 a Source #

segActWithLength :: Int -> Mat2x2 a -> V2 a -> V2 a Source #

(Num a, Monoid (Max a)) => SegAct (RangeAdd (Max a)) (Max a) Source #

Since: 1.1.0.0

Instance details

Defined in AtCoder.Extra.Monoid.RangeAdd

Methods

segAct :: RangeAdd (Max a) -> Max a -> Max a Source #

segActWithLength :: Int -> RangeAdd (Max a) -> Max a -> Max a Source #

(Num a, Monoid (Min a)) => SegAct (RangeAdd (Min a)) (Min a) Source #

Since: 1.1.0.0

Instance details

Defined in AtCoder.Extra.Monoid.RangeAdd

Methods

segAct :: RangeAdd (Min a) -> Min a -> Min a Source #

segActWithLength :: Int -> RangeAdd (Min a) -> Min a -> Min a Source #

Num a => SegAct (RangeAdd (Sum a)) (Sum a) Source #

Since: 1.2.0.0

Instance details

Defined in AtCoder.Extra.Monoid.RangeAdd

Methods

segAct :: RangeAdd (Sum a) -> Sum a -> Sum a Source #

segActWithLength :: Int -> RangeAdd (Sum a) -> Sum a -> Sum a Source #

Num a => SegAct (Dual (Affine1 (Sum a))) (Sum a) Source #

Since: 1.0.0.0

Instance details

Defined in AtCoder.Extra.Monoid.Affine1

Methods

segAct :: Dual (Affine1 (Sum a)) -> Sum a -> Sum a Source #

segActWithLength :: Int -> Dual (Affine1 (Sum a)) -> Sum a -> Sum a Source #

Num a => SegAct (Dual (Affine1 a)) (V2 a) Source #

Since: 1.2.2.0

Instance details

Defined in AtCoder.Extra.Monoid.Affine1

Methods

segAct :: Dual (Affine1 a) -> V2 a -> V2 a Source #

segActWithLength :: Int -> Dual (Affine1 a) -> V2 a -> V2 a Source #

Num a => SegAct (Dual (Affine1 a)) (Sum a) Source #

Since: 1.0.0.0

Instance details

Defined in AtCoder.Extra.Monoid.Affine1

Methods

segAct :: Dual (Affine1 a) -> Sum a -> Sum a Source #

segActWithLength :: Int -> Dual (Affine1 a) -> Sum a -> Sum a Source #

Num a => SegAct (Dual (Mat2x2 a)) (V2 a) Source #

Since: 1.1.0.0

Instance details

Defined in AtCoder.Extra.Monoid.Mat2x2

Methods

segAct :: Dual (Mat2x2 a) -> V2 a -> V2 a Source #

segActWithLength :: Int -> Dual (Mat2x2 a) -> V2 a -> V2 a Source #

newtype Index Source #

Strongly typed index of pool items. User has to explicitly corece on raw index use.

Constructors

Index 

Fields

Instances

Instances details
Show Index Source # 
Instance details

Defined in AtCoder.Extra.Pool

Methods

showsPrec :: Int -> Index -> ShowS #

show :: Index -> String #

showList :: [Index] -> ShowS #

Eq Index Source # 
Instance details

Defined in AtCoder.Extra.Pool

Methods

(==) :: Index -> Index -> Bool #

(/=) :: Index -> Index -> Bool #

Ord Index Source # 
Instance details

Defined in AtCoder.Extra.Pool

Methods

compare :: Index -> Index -> Ordering #

(<) :: Index -> Index -> Bool #

(<=) :: Index -> Index -> Bool #

(>) :: Index -> Index -> Bool #

(>=) :: Index -> Index -> Bool #

max :: Index -> Index -> Index #

min :: Index -> Index -> Index #

Prim Index Source # 
Instance details

Defined in AtCoder.Extra.Pool

Unbox Index Source # 
Instance details

Defined in AtCoder.Extra.Pool

Vector Vector Index Source # 
Instance details

Defined in AtCoder.Extra.Pool

MVector MVector Index Source # 
Instance details

Defined in AtCoder.Extra.Pool

newtype Vector Index Source # 
Instance details

Defined in AtCoder.Extra.Pool

newtype Vector Index = V_Index (Vector Index)
newtype MVector s Index Source # 
Instance details

Defined in AtCoder.Extra.Pool

newtype MVector s Index = MV_Index (MVector s Index)

Constructors

new Source #

Arguments

:: (HasCallStack, PrimMonad m, Monoid f, Unbox f, Monoid a, Unbox a) 
=> Int

Capacity n

-> Int

Left index boundary l0

-> Int

Right index boundary r0

-> m (DynLazySegTree (PrimState m) f a)

Dynamic, persistent, lazily propagated segment tree

O(n) Creates a DynLazySegTree of capacity n for interval [l0,r0) with mempty as initial leaf values.

Since: 1.2.1.0

buildWith Source #

Arguments

:: (HasCallStack, PrimMonad m, Monoid f, Unbox f, Monoid a, Unbox a) 
=> Int

Capacity n

-> Int

Left index boundary l0

-> Int

Right index boundary r0

-> (Int -> Int -> a)

Initial monoid value assignment g:(l,r)a

-> m (DynLazySegTree (PrimState m) f a)

Dynamic, persistent, lazily propagated segment tree

O(n) Creates a DynLazySegTree of capacity n for interval [l0,r0) with initial value assignment g(l,r).

Since: 1.2.1.0

recommendedCapacity :: Int -> Int -> Int Source #

O(1) Returns recommended capacity for L and q: about 8qlog2L.

Since: 1.2.1.0

newRoot :: (HasCallStack, PrimMonad m, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree (PrimState m) f a -> m Index Source #

O(1) Creates a new root in [l0,r0).

Since: 1.2.1.0

newSeq :: (HasCallStack, PrimMonad m, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree (PrimState m) f a -> Vector a -> m Index Source #

O(n) Creates a new root node with contiguous leaf values.

Constraints

  • [l0,r0)=[0,L): The index boundary of the segment tree must match the sequence.

Since: 1.2.1.0

Accessing elements

write :: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree (PrimState m) f a -> Index -> Int -> a -> m Index Source #

O(logL) Writes to the monoid value of the node at i.

Constraints

  • l0i<r0

Since: 1.2.1.0

modify :: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree (PrimState m) f a -> Index -> (a -> a) -> Int -> m Index Source #

O(logL) Modifies the monoid value of the node at i.

Constraints

  • l0i<r0

Since: 1.2.1.0

modifyM :: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree (PrimState m) f a -> Index -> (a -> m a) -> Int -> m Index Source #

O(logL) Modifies the monoid value of the node at i.

Constraints

  • l0i<r0

Since: 1.2.1.0

Products

prod :: (HasCallStack, PrimMonad m, SegAct f a, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree (PrimState m) f a -> Index -> Int -> Int -> m a Source #

O(logL) Returns the monoid product in [l,r).

Constraints

  • l0lrr0

Since: 1.2.1.0

allProd :: (HasCallStack, PrimMonad m, SegAct f a, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree (PrimState m) f a -> Index -> m a Source #

O(logL) Returns the monoid product in [l0,r0).

Since: 1.2.1.0

Applications

applyAt :: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree (PrimState m) f a -> Index -> Int -> f -> m Index Source #

O(logL) Applies a monoid action f to the node at index i.

Constraints

  • l0i<r0
  • The root is not null

Since: 1.2.1.0

applyIn :: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree (PrimState m) f a -> Index -> Int -> Int -> f -> m Index Source #

O(logL) Applies a monoid action f to an interval [l,r).

Constraints

  • l0lrr0
  • The root is not null

Since: 1.2.1.0

applyAll :: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree (PrimState m) f a -> Index -> f -> m Index Source #

O(logL) Applies a monoid action f to the interval [l0,r0).

Since: 1.2.1.0

Tree operations

copyInterval :: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree (PrimState m) f a -> Index -> Index -> Int -> Int -> m Index Source #

O(logL) Given two trees a and b, copies b[l,r) to a[l,r).

Constraints

  • l0lrr0

Since: 1.2.1.0

copyIntervalWith :: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree (PrimState m) f a -> Index -> Index -> Int -> Int -> f -> m Index Source #

O(logL) Given two trees a and b, copies b[l,r) to a[l,r), applying a monoid action f.

Constraints

  • l0lrr0

Since: 1.2.1.0

resetInterval :: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree (PrimState m) f a -> Index -> Int -> Int -> m Index Source #

O(logL) Resets an interval [l,r) to initial monoid values.

Constraints

  • l0lrr0

Since: 1.2.1.0

Binary searches

maxRight :: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree (PrimState m) f a -> Index -> (a -> Bool) -> m Int Source #

O(logL) Returns the maximum r[l0,r0) where f(al0al0+1ar1) holds.

Since: 1.2.1.0

maxRightM :: (HasCallStack, PrimMonad m, SegAct f a, Eq f, Monoid f, Unbox f, Monoid a, Unbox a) => DynLazySegTree (PrimState m) f a -> Index -> (a -> m Bool) -> m Int Source #

O(logL) Returns the maximum r[l0,r0) where f(al0al0+1ar1) holds.

Since: 1.2.1.0

Clear

clear :: PrimMonad m => DynLazySegTree (PrimState m) f a -> m () Source #

O(logL) Claers all the nodes from the storage.

Since: 1.2.2.0