Processing math: 100%
ac-library-hs-1.2.0.0: Data structures and algorithms
Safe HaskellSafe-Inferred
LanguageGHC2021

AtCoder.Math

Description

Math module. It contains number-theoretic algorithms.

Since: 1.0.0.0

Synopsis

Modulus operations

powMod Source #

Arguments

:: HasCallStack 
=> Int

x

-> Int

n

-> Int

m

-> Int

xnmodm

Returns xnmodm.

Constraints

  • 0n
  • 1m<231

Complexity

  • O(logn)

Example

>>> let m = 998244353
>>> powMod 10 60 m -- 10^60 mod m
526662729

Since: 1.0.0.0

invMod Source #

Arguments

:: HasCallStack 
=> Int

x

-> Int

m

-> Int

x1modm

Returns an integer y such that 0y<m and xy1(modm).

Constraints

  • gcd(x,m)=1
  • 1m

Complexity

  • O(logm)

Example

>>> let m = 998244353
>>> (invMod 2 m) * 2 `mod` m -- (2^(-1) mod m) * 2 mod m
1

Since: 1.0.0.0

Chinese Remainder Theorem

crt :: HasCallStack => Vector Int -> Vector Int -> (Int, Int) Source #

Given two arrays r,m with length n, it solves the modular equation system

xr[i](modm[i]),i{0,1,,n1}.

If there is no solution, it returns (0,0). Otherwise, all the solutions can be written as the form xy(modz), using integers y,z (0y<z=lcm(m[i])). It returns this (y,z) as a pair. If n=0, it returns (0,1).

Constraints

  • |r|=|m|
  • 1m[i]
  • lcm(m[i]) is in Int bounds.

Complexity

  • O(nloglcm(m[i]))

Example

Expand

crt calculates y such that yri(modm)i,i{0,1,,n1}:

>>> import Data.Vector.Unboxed qualified as VU
>>> let rs = VU.fromList @Int [6, 7, 8, 9]
>>> let ms = VU.fromList @Int [2, 3, 4, 5]
>>> crt rs ms
(4,60)

The property can be checked as follows:

>>> let (y, {- lcm ms -} _) = crt rs ms
>>> VU.zipWith mod rs ms
[0,1,0,4]
>>> VU.zipWith mod rs ms == VU.map (y `mod`) ms
True

Since: 1.0.0.0

Floor sum

floorSum Source #

Arguments

:: HasCallStack 
=> Int

n

-> Int

m

-> Int

a

-> Int

b

-> Int

n1i=0a×i+bm

Returns n1i=0a×i+bm.

Constraints

  • 0n
  • 1m

Complexity

  • O(logm)

Example

Expand

floorSum calculates the number of points surrounded by a line y=a×x+bm and x,y axes in O(logm) time:

>>> floorSum 5 1 1 1 -- floorSum n {- line information -} m a b
15
  y
  ^
6 |
5 |           o           line: y = x + 1
4 |        o  o           The number of `o` is 15
3 |     o  o  o
2 |  o  o  o  o
1 |  o  o  o  o
--+-----------------> x
  0  1  2  3  4  5
                 n = 5

Since: 1.0.0.0