Safe Haskell | Safe-Inferred |
---|---|
Language | GHC2021 |
AtCoder.Math
Description
Math module. It contains number-theoretic algorithms.
Since: 1.0.0.0
Modulus operations
Arguments
:: HasCallStack | |
=> Int | x |
-> Int | n |
-> Int | m |
-> Int | xnmodm |
Returns xnmodm.
Constraints
- 0≤n
- 1≤m<231
Complexity
- O(logn)
Example
>>>
let m = 998244353
>>>
powMod 10 60 m -- 10^60 mod m
526662729
Since: 1.0.0.0
Arguments
:: HasCallStack | |
=> Int | x |
-> Int | m |
-> Int | x−1modm |
Returns an integer y such that 0≤y<m and xy≡1(modm).
Constraints
- gcd(x,m)=1
- 1≤m
Complexity
- O(logm)
Example
>>>
let m = 998244353
>>>
(invMod 2 m) * 2 `mod` m -- (2^(-1) mod m) * 2 mod m
1
Since: 1.0.0.0
Chinese Remainder Theorem
crt :: HasCallStack => Vector Int -> Vector Int -> (Int, Int) Source #
Given two arrays r,m with length n, it solves the modular equation system
x≡r[i](modm[i]),∀i∈{0,1,⋯,n−1}.
If there is no solution, it returns (0,0). Otherwise, all the solutions can be written as the form x≡y(modz), using integers y,z (0≤y<z=lcm(m[i])). It returns this (y,z) as a pair. If n=0, it returns (0,1).
Constraints
- |r|=|m|
- 1≤m[i]
- lcm(m[i]) is in
Int
bounds.
Complexity
- O(nloglcm(m[i]))
Example
crt
calculates y such that y≡ri(modm)i,∀i∈{0,1,⋯,n−1}:
>>>
import Data.Vector.Unboxed qualified as VU
>>>
let rs = VU.fromList @Int [6, 7, 8, 9]
>>>
let ms = VU.fromList @Int [2, 3, 4, 5]
>>>
crt rs ms
(4,60)
The property can be checked as follows:
>>>
let (y, {- lcm ms -} _) = crt rs ms
>>>
VU.zipWith mod rs ms
[0,1,0,4]
>>>
VU.zipWith mod rs ms == VU.map (y `mod`) ms
True
Since: 1.0.0.0
Floor sum
Returns n−1∑i=0⌊a×i+bm⌋.
Constraints
- 0≤n
- 1≤m
Complexity
- O(logm)
Example
floorSum
calculates the number of points surrounded by a line
y=a×x+bm and x,y axes in O(logm) time:
>>>
floorSum 5 1 1 1 -- floorSum n {- line information -} m a b
15
y ^ 6 | 5 | o line: y = x + 1 4 | o o The number of `o` is 15 3 | o o o 2 | o o o o 1 | o o o o --+-----------------> x 0 1 2 3 4 5 n = 5
Since: 1.0.0.0