Processing math: 100%
ac-library-hs-1.2.0.0: Data structures and algorithms
Safe HaskellSafe-Inferred
LanguageGHC2021

AtCoder.FenwickTree

Description

A Fenwick tree, also known as binary indexed tree. Given an array of length n, it processes the following queries in O(logn) time.

  • Updating an element
  • Calculating the sum of the elements of an interval

Example

Expand

Create a FenwickTree with new:

>>> import AtCoder.FenwickTree qualified as FT
>>> ft <- FT.new @_ @Int 4 -- [0, 0, 0, 0]
>>> FT.nFt ft
4

It can perform point add and range sum in O(logn) time:

>>> FT.add ft 0 3          -- [3, 0, 0, 0]
>>> FT.sum ft 0 3
3
>>> FT.add ft 2 3          -- [3, 0, 3, 0]
>>> FT.sum ft 0 3
6

Create a FenwickTree with initial values using build:

>>> ft <- FT.build @_ @Int $ VU.fromList [3, 0, 3, 0]
>>> FT.add ft 1 2          -- [3, 2, 3, 0]
>>> FT.sum ft 0 3
8

Since: 1.0.0.0

Synopsis

Fenwick tree

data FenwickTree s a Source #

A Fenwick tree.

Since: 1.0.0.0

Constructors

new :: (HasCallStack, PrimMonad m, Num a, Unbox a) => Int -> m (FenwickTree (PrimState m) a) Source #

Creates an array [a0,a1,,an1] of length n. All the elements are initialized to 0.

Constraints

  • 0n

Complexity

  • O(n)

Since: 1.0.0.0

build :: (PrimMonad m, Num a, Unbox a) => Vector a -> m (FenwickTree (PrimState m) a) Source #

Creates FenwickTree with initial values.

Complexity

  • O(n)

Since: 1.0.0.0

Adding

add :: (HasCallStack, PrimMonad m, Num a, Unbox a) => FenwickTree (PrimState m) a -> Int -> a -> m () Source #

Adds x to p-th value of the array.

Constraints

  • 0l<n

Complexity

  • O(logn)

Since: 1.0.0.0

Accessor

sum :: (HasCallStack, PrimMonad m, Num a, Unbox a) => FenwickTree (PrimState m) a -> Int -> Int -> m a Source #

Calculates the sum in a half-open interval [l,r).

Constraints

  • 0lrn

Complexity

  • O(logn)

Since: 1.0.0.0

sumMaybe :: (HasCallStack, PrimMonad m, Num a, Unbox a) => FenwickTree (PrimState m) a -> Int -> Int -> m (Maybe a) Source #

Total variant of sum. Calculates the sum in a half-open interval [l,r). It returns Nothing if the interval is invalid.

Complexity

  • O(logn)

Since: 1.0.0.0