Safe Haskell | Safe-Inferred |
---|---|
Language | GHC2021 |
AtCoder.FenwickTree
Description
A Fenwick tree, also known as binary indexed tree. Given an array of length n, it processes the following queries in O(logn) time.
- Updating an element
- Calculating the sum of the elements of an interval
Example
Create a FenwickTree
with new
:
>>>
import AtCoder.FenwickTree qualified as FT
>>>
ft <- FT.new @_ @Int 4 -- [0, 0, 0, 0]
>>>
FT.nFt ft
4
It can perform point add
and range sum
in O(logn) time:
>>>
FT.add ft 0 3 -- [3, 0, 0, 0]
>>>
FT.sum ft 0 3
3
>>>
FT.add ft 2 3 -- [3, 0, 3, 0]
>>>
FT.sum ft 0 3
6
Create a FenwickTree
with initial values using build
:
>>>
ft <- FT.build @_ @Int $ VU.fromList [3, 0, 3, 0]
>>>
FT.add ft 1 2 -- [3, 2, 3, 0]
>>>
FT.sum ft 0 3
8
Since: 1.0.0.0
Synopsis
- data FenwickTree s a
- new :: (HasCallStack, PrimMonad m, Num a, Unbox a) => Int -> m (FenwickTree (PrimState m) a)
- build :: (PrimMonad m, Num a, Unbox a) => Vector a -> m (FenwickTree (PrimState m) a)
- add :: (HasCallStack, PrimMonad m, Num a, Unbox a) => FenwickTree (PrimState m) a -> Int -> a -> m ()
- sum :: (HasCallStack, PrimMonad m, Num a, Unbox a) => FenwickTree (PrimState m) a -> Int -> Int -> m a
- sumMaybe :: (HasCallStack, PrimMonad m, Num a, Unbox a) => FenwickTree (PrimState m) a -> Int -> Int -> m (Maybe a)
Fenwick tree
data FenwickTree s a Source #
A Fenwick tree.
Since: 1.0.0.0
Constructors
new :: (HasCallStack, PrimMonad m, Num a, Unbox a) => Int -> m (FenwickTree (PrimState m) a) Source #
Creates an array [a0,a1,⋯,an−1] of length n. All the elements are initialized to 0.
Constraints
- 0≤n
Complexity
- O(n)
Since: 1.0.0.0
Adding
add :: (HasCallStack, PrimMonad m, Num a, Unbox a) => FenwickTree (PrimState m) a -> Int -> a -> m () Source #
Adds x to p-th value of the array.
Constraints
- 0≤l<n
Complexity
- O(logn)
Since: 1.0.0.0
Accessor
sum :: (HasCallStack, PrimMonad m, Num a, Unbox a) => FenwickTree (PrimState m) a -> Int -> Int -> m a Source #
Calculates the sum in a half-open interval [l,r).
Constraints
- 0≤l≤r≤n
Complexity
- O(logn)
Since: 1.0.0.0