Math.Algebra.Field.Base
- newtype Q = Q Rational
- newtype Fp n = Fp Integer
- class Fractional fq => FiniteField fq where
- type F2 = Fp T2
- f2 :: [F2]
- type F3 = Fp T3
- f3 :: [F3]
- type F5 = Fp T5
- f5 :: [F5]
- type F7 = Fp T7
- f7 :: [F7]
- type F11 = Fp T11
- type F13 = Fp T13
- type F17 = Fp T17
- type F19 = Fp T19
- type F23 = Fp T23
- type F29 = Fp T29
- type F31 = Fp T31
- type F37 = Fp T37
- type F41 = Fp T41
- type F43 = Fp T43
- type F47 = Fp T47
- type F53 = Fp T53
- type F59 = Fp T59
- type F61 = Fp T61
- type F67 = Fp T67
- type F71 = Fp T71
- type F73 = Fp T73
- type F79 = Fp T79
- type F83 = Fp T83
- type F89 = Fp T89
- type F97 = Fp T97
Documentation
Q is just the rationals, but with a better show function than the Prelude version
Instances
Eq Q | |
Fractional Q | |
Num Q | |
Ord Q | |
Show Q | |
HopfAlgebra Q (SL2 ABCD) | |
Bialgebra Q (SL2 ABCD) | |
Coalgebra Q (SL2 ABCD) | |
Algebra Q (SL2 ABCD) | |
IntegerAsType n => PolynomialAsType Q (Sqrt n) | |
HopfAlgebra (LaurentPoly Q) (SL2q String) | |
Bialgebra (LaurentPoly Q) (SL2q String) | |
Bialgebra (LaurentPoly Q) (M2q String) | |
Coalgebra (LaurentPoly Q) (SL2q String) | |
Coalgebra (LaurentPoly Q) (M2q String) | |
Algebra (LaurentPoly Q) (SL2q String) | |
Algebra (LaurentPoly Q) (M2q String) | |
Algebra (LaurentPoly Q) (Aq02 String) | |
Algebra (LaurentPoly Q) (Aq20 String) | |
Comodule (LaurentPoly Q) (M2q String) (Aq20 String) |
Instances
Eq (Fp n) | |
IntegerAsType n => Fractional (Fp n) | |
IntegerAsType n => Num (Fp n) | |
Ord (Fp n) | |
Show (Fp n) | |
IntegerAsType p => FiniteField (Fp p) |
class Fractional fq => FiniteField fq whereSource
Instances
FiniteField J9 | |
FiniteField F9 | |
IntegerAsType p => FiniteField (Fp p) | |
(FiniteField k, PolynomialAsType k poly) => FiniteField (ExtensionField k poly) |