{-# LANGUAGE CPP, BangPatterns, DeriveFunctor, GADTs, Rank2Types, RecursiveDo #-}
module Text.Earley.Generator.Internal where
import Control.Applicative
import Control.Monad
import Control.Monad.ST.Lazy
import Data.ListLike(ListLike)
import qualified Data.ListLike as ListLike
import Data.Maybe(mapMaybe)
import Data.STRef.Lazy
import Text.Earley.Grammar
#if !MIN_VERSION_base(4,8,0)
import Data.Monoid
#endif
import Data.Semigroup
data Rule s r e t a = Rule
{ ruleProd :: ProdR s r e t a
, ruleConts :: !(STRef s (STRef s [Cont s r e t a r]))
, ruleNulls :: !(Results s t a)
}
mkRule :: ProdR s r e t a -> ST s (Rule s r e t a)
mkRule p = mdo
c <- newSTRef =<< newSTRef mempty
computeNullsRef <- newSTRef $ do
writeSTRef computeNullsRef $ return []
ns <- unResults $ prodNulls p
writeSTRef computeNullsRef $ return ns
return ns
return $ Rule (removeNulls p) c (Results $ join $ readSTRef computeNullsRef)
prodNulls :: ProdR s r e t a -> Results s t a
prodNulls prod = case prod of
Terminal {} -> empty
NonTerminal r p -> ruleNulls r <**> prodNulls p
Pure a -> pure a
Alts as p -> mconcat (map prodNulls as) <**> prodNulls p
Many a p -> prodNulls (pure [] <|> pure <$> a) <**> prodNulls p
Named p _ -> prodNulls p
removeNulls :: ProdR s r e t a -> ProdR s r e t a
removeNulls prod = case prod of
Terminal {} -> prod
NonTerminal {} -> prod
Pure _ -> empty
Alts as (Pure f) -> alts (map removeNulls as) $ Pure f
Alts {} -> prod
Many {} -> prod
Named p n -> Named (removeNulls p) n
type ProdR s r e t a = Prod (Rule s r) e t a
resetConts :: Rule s r e t a -> ST s ()
resetConts r = writeSTRef (ruleConts r) =<< newSTRef mempty
newtype Results s t a = Results { unResults :: ST s [(a, [t])] }
deriving Functor
lazyResults :: ST s [(a, [t])] -> ST s (Results s t a)
lazyResults stas = mdo
resultsRef <- newSTRef $ do
as <- stas
writeSTRef resultsRef $ return as
return as
return $ Results $ join $ readSTRef resultsRef
instance Applicative (Results s t) where
pure = return
(<*>) = ap
instance Alternative (Results t s) where
empty = Results $ pure []
Results sxs <|> Results sys = Results $ (<|>) <$> sxs <*> sys
instance Monad (Results t s) where
return x = Results $ pure [(x, mempty)]
Results stxs >>= f = Results $ do
xs <- stxs
concat <$> mapM (\(x, ts) -> fmap (\(y, ts') -> (y, ts' ++ ts)) <$> unResults (f x)) xs
instance Semigroup (Results s t a) where
(<>) = (<|>)
instance Monoid (Results s t a) where
mempty = empty
mappend = (<|>)
data BirthPos
= Previous
| Current
deriving Eq
data State s r e t a where
State :: !(ProdR s r e t a)
-> !(a -> Results s t b)
-> !BirthPos
-> !(Conts s r e t b c)
-> State s r e t c
Final :: !(Results s t a) -> State s r e t a
data Cont s r e t a b where
Cont :: !(a -> Results s t b)
-> !(ProdR s r e t (b -> c))
-> !(c -> Results s t d)
-> !(Conts s r e t d e')
-> Cont s r e t a e'
FinalCont :: (a -> Results s t c) -> Cont s r e t a c
data Conts s r e t a c = Conts
{ conts :: !(STRef s [Cont s r e t a c])
, contsArgs :: !(STRef s (Maybe (STRef s (Results s t a))))
}
newConts :: STRef s [Cont s r e t a c] -> ST s (Conts s r e t a c)
newConts r = Conts r <$> newSTRef Nothing
contraMapCont :: (b -> Results s t a) -> Cont s r e t a c -> Cont s r e t b c
contraMapCont f (Cont g p args cs) = Cont (f >=> g) p args cs
contraMapCont f (FinalCont args) = FinalCont (f >=> args)
contToState :: BirthPos -> Results s t a -> Cont s r e t a c -> State s r e t c
contToState pos r (Cont g p args cs) = State p (\f -> fmap f (r >>= g) >>= args) pos cs
contToState _ r (FinalCont args) = Final $ r >>= args
simplifyCont :: Conts s r e t b a -> ST s [Cont s r e t b a]
simplifyCont Conts {conts = cont} = readSTRef cont >>= go False
where
go !_ [Cont g (Pure f) args cont'] = do
ks' <- simplifyCont cont'
go True $ map (contraMapCont $ \b -> fmap f (g b) >>= args) ks'
go True ks = do
writeSTRef cont ks
return ks
go False ks = return ks
initialState :: ProdR s a e t a -> ST s (State s a e t a)
initialState p = State p pure Previous <$> (newConts =<< newSTRef [FinalCont pure])
data Result s t a
= Ended (ST s [(a, [t])])
| Generated (ST s [(a, [t])]) (ST s (Result s t a))
deriving Functor
{-# INLINE safeHead #-}
safeHead :: ListLike i t => i -> Maybe t
safeHead ts
| ListLike.null ts = Nothing
| otherwise = Just $ ListLike.head ts
data GenerationEnv s e t a = GenerationEnv
{ results :: ![ST s [(a, [t])]]
, next :: ![State s a e t a]
, reset :: !(ST s ())
, tokens :: ![t]
}
{-# INLINE emptyGenerationEnv #-}
emptyGenerationEnv :: [t] -> GenerationEnv s e t a
emptyGenerationEnv ts = GenerationEnv
{ results = mempty
, next = mempty
, reset = return ()
, tokens = ts
}
generate :: [State s a e t a]
-> GenerationEnv s e t a
-> ST s (Result s t a)
generate [] env@GenerationEnv {next = []} = do
reset env
return $ Ended $ concat <$> sequence (results env)
generate [] env = do
reset env
return $ Generated (concat <$> sequence (results env))
$ generate (next env) $ emptyGenerationEnv $ tokens env
generate (st:ss) env = case st of
Final res -> generate ss env {results = unResults res : results env}
State pr args pos scont -> case pr of
Terminal f p -> generate ss env
{ next = [State p (\g -> Results (pure $ map (\(t, a) -> (g a, [t])) xs) >>= args) Previous scont | xs <- [mapMaybe (\t -> (,) t <$> f t) $ tokens env], not $ null xs]
++ next env
}
NonTerminal r p -> do
rkref <- readSTRef $ ruleConts r
ks <- readSTRef rkref
writeSTRef rkref (Cont pure p args scont : ks)
ns <- unResults $ ruleNulls r
let addNullState
| null ns = id
| otherwise = (:)
$ State p (\f -> f <$> Results (pure ns) >>= args) pos scont
if null ks then do
st' <- State (ruleProd r) pure Current <$> newConts rkref
generate (addNullState $ st' : ss)
env {reset = resetConts r >> reset env}
else
generate (addNullState ss) env
Pure a
| pos == Current -> generate ss env
| otherwise -> do
let argsRef = contsArgs scont
masref <- readSTRef argsRef
case masref of
Just asref -> do
modifySTRef asref $ mappend $ args a
generate ss env
Nothing -> do
asref <- newSTRef $ args a
writeSTRef argsRef $ Just asref
ks <- simplifyCont scont
res <- lazyResults $ join $ unResults <$> readSTRef asref
let kstates = map (contToState pos res) ks
generate (kstates ++ ss)
env {reset = writeSTRef argsRef Nothing >> reset env}
Alts as (Pure f) -> do
let args' = args . f
sts = [State a args' pos scont | a <- as]
generate (sts ++ ss) env
Alts as p -> do
scont' <- newConts =<< newSTRef [Cont pure p args scont]
let sts = [State a pure Previous scont' | a <- as]
generate (sts ++ ss) env
Many p q -> mdo
r <- mkRule $ pure [] <|> (:) <$> p <*> NonTerminal r (Pure id)
generate (State (NonTerminal r q) args pos scont : ss) env
Named pr' _ -> generate (State pr' args pos scont : ss) env
type Generator t a = forall s. ST s (Result s t a)
generator
:: (forall r. Grammar r (Prod r e t a))
-> [t]
-> Generator t a
generator g ts = do
let nt x = NonTerminal x $ pure id
s <- initialState =<< runGrammar (fmap nt . mkRule) g
generate [s] $ emptyGenerationEnv ts
language
:: Generator t a
-> [(a, [t])]
language gen = runST $ gen >>= go
where
go :: Result s t a -> ST s [(a, [t])]
go r = case r of
Ended mas -> mas
Generated mas k -> do
as <- mas
(as ++) <$> (go =<< k)
upTo
:: Int
-> Generator t a
-> [(a, [t])]
upTo len gen = runST $ gen >>= go 0
where
go :: Int -> Result s t a -> ST s [(a, [t])]
go curLen r | curLen <= len = case r of
Ended mas -> mas
Generated mas k -> do
as <- mas
(as ++) <$> (go (curLen + 1) =<< k)
go _ _ = return []
exactly
:: Int
-> Generator t a
-> [(a, [t])]
exactly len _ | len < 0 = []
exactly len gen = runST $ gen >>= go 0
where
go :: Int -> Result s t a -> ST s [(a, [t])]
go !curLen r = case r of
Ended mas
| curLen == len -> mas
| otherwise -> return []
Generated mas k
| curLen == len -> mas
| otherwise -> go (curLen + 1) =<< k