{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE TypeApplications #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
module Agda.TypeChecking.Substitute
( module Agda.TypeChecking.Substitute
, module Agda.TypeChecking.Substitute.Class
, module Agda.TypeChecking.Substitute.DeBruijn
, Substitution'(..), Substitution
) where
import Control.Arrow (first, second)
import Control.Monad (guard)
import Data.Coerce
import Data.Function
import qualified Data.List as List
import Data.Map (Map)
import Data.Maybe
import Data.HashMap.Strict (HashMap)
import Debug.Trace (trace)
import Language.Haskell.TH.Syntax (thenCmp)
import Agda.Interaction.Options
import Agda.Syntax.Common
import Agda.Syntax.Position
import Agda.Syntax.Internal
import Agda.Syntax.Internal.Pattern
import qualified Agda.Syntax.Abstract as A
import Agda.TypeChecking.Monad.Base
import Agda.TypeChecking.Monad.Options (typeInType)
import Agda.TypeChecking.Free as Free
import Agda.TypeChecking.CompiledClause
import Agda.TypeChecking.Positivity.Occurrence as Occ
import Agda.TypeChecking.Substitute.Class
import Agda.TypeChecking.Substitute.DeBruijn
import Agda.Utils.Empty
import Agda.Utils.Functor
import Agda.Utils.List
import Agda.Utils.List1 (List1, pattern (:|))
import qualified Agda.Utils.List1 as List1
import qualified Agda.Utils.Maybe.Strict as Strict
import Agda.Utils.Monad
import Agda.Utils.Permutation
import Agda.Utils.Pretty
import Agda.Utils.Size
import Agda.Utils.Tuple
import Agda.Utils.Impossible
{-# SPECIALIZE applyTermE :: (Empty -> Term -> Elims -> Term) -> Term -> Elims -> Term #-}
{-# SPECIALIZE applyTermE :: (Empty -> Term -> Elims -> Term) -> BraveTerm -> Elims -> BraveTerm #-}
applyTermE :: forall t. (Coercible Term t, Apply t, EndoSubst t)
=> (Empty -> Term -> Elims -> Term) -> t -> Elims -> t
applyTermE :: (Empty -> Term -> Elims -> Term) -> t -> Elims -> t
applyTermE Empty -> Term -> Elims -> Term
err' t
m [] = t
m
applyTermE Empty -> Term -> Elims -> Term
err' t
m Elims
es = Term -> t
coerce (Term -> t) -> Term -> t
forall a b. (a -> b) -> a -> b
$
case t -> Term
coerce t
m of
Var Int
i Elims
es' -> Int -> Elims -> Term
Var Int
i (Elims
es' Elims -> Elims -> Elims
forall a. [a] -> [a] -> [a]
++ Elims
es)
Def QName
f Elims
es' -> QName -> Elims -> Elims -> Term
defApp QName
f Elims
es' Elims
es
Con ConHead
c ConInfo
ci Elims
args -> (Empty -> Term -> Elims -> Term)
-> ConHead -> ConInfo -> Elims -> Elims -> Term
forall t.
(Coercible t Term, Apply t) =>
(Empty -> Term -> Elims -> Term)
-> ConHead -> ConInfo -> Elims -> Elims -> Term
conApp @t Empty -> Term -> Elims -> Term
err' ConHead
c ConInfo
ci Elims
args Elims
es
Lam ArgInfo
_ Abs Term
b ->
case Elims
es of
Apply Arg Term
a : Elims
es0 -> Abs t -> SubstArg t -> t
forall a. Subst a => Abs a -> SubstArg a -> a
lazyAbsApp (Abs Term -> Abs t
coerce Abs Term
b :: Abs t) (Term -> t
coerce (Term -> t) -> Term -> t
forall a b. (a -> b) -> a -> b
$ Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
a) t -> Elims -> Term
forall x. Coercible t x => x -> Elims -> Term
`app` Elims
es0
IApply Term
_ Term
_ Term
a : Elims
es0 -> Abs t -> SubstArg t -> t
forall a. Subst a => Abs a -> SubstArg a -> a
lazyAbsApp (Abs Term -> Abs t
coerce Abs Term
b :: Abs t) (Term -> t
coerce Term
a) t -> Elims -> Term
forall x. Coercible t x => x -> Elims -> Term
`app` Elims
es0
Elims
_ -> Empty -> Term
err Empty
forall a. HasCallStack => a
__IMPOSSIBLE__
MetaV MetaId
x Elims
es' -> MetaId -> Elims -> Term
MetaV MetaId
x (Elims
es' Elims -> Elims -> Elims
forall a. [a] -> [a] -> [a]
++ Elims
es)
Lit{} -> Empty -> Term
err Empty
forall a. HasCallStack => a
__IMPOSSIBLE__
Level{} -> Empty -> Term
err Empty
forall a. HasCallStack => a
__IMPOSSIBLE__
Pi Dom Type
_ Abs Type
_ -> Empty -> Term
err Empty
forall a. HasCallStack => a
__IMPOSSIBLE__
Sort Sort
s -> Sort -> Term
Sort (Sort -> Term) -> Sort -> Term
forall a b. (a -> b) -> a -> b
$ Sort
s Sort -> Elims -> Sort
forall t. Apply t => t -> Elims -> t
`applyE` Elims
es
Dummy String
s Elims
es' -> String -> Elims -> Term
Dummy String
s (Elims
es' Elims -> Elims -> Elims
forall a. [a] -> [a] -> [a]
++ Elims
es)
DontCare Term
mv -> Term -> Term
dontCare (Term -> Term) -> Term -> Term
forall a b. (a -> b) -> a -> b
$ Term
mv Term -> Elims -> Term
forall x. Coercible t x => x -> Elims -> Term
`app` Elims
es
where
app :: Coercible t x => x -> Elims -> Term
app :: x -> Elims -> Term
app x
t Elims
es = t -> Term
coerce (t -> Term) -> t -> Term
forall a b. (a -> b) -> a -> b
$ (x -> t
coerce x
t :: t) t -> Elims -> t
forall t. Apply t => t -> Elims -> t
`applyE` Elims
es
err :: Empty -> Term
err Empty
e = Empty -> Term -> Elims -> Term
err' Empty
e (t -> Term
coerce t
m) Elims
es
instance Apply Term where
applyE :: Term -> Elims -> Term
applyE = (Empty -> Term -> Elims -> Term) -> Term -> Elims -> Term
forall t.
(Coercible Term t, Apply t, EndoSubst t) =>
(Empty -> Term -> Elims -> Term) -> t -> Elims -> t
applyTermE Empty -> Term -> Elims -> Term
forall a. Empty -> a
absurd
instance Apply BraveTerm where
applyE :: BraveTerm -> Elims -> BraveTerm
applyE = (Empty -> Term -> Elims -> Term) -> BraveTerm -> Elims -> BraveTerm
forall t.
(Coercible Term t, Apply t, EndoSubst t) =>
(Empty -> Term -> Elims -> Term) -> t -> Elims -> t
applyTermE (\ Empty
_ Term
t Elims
es -> String -> Elims -> Term
Dummy String
"applyE" (Arg Term -> Elim' Term
forall a. Arg a -> Elim' a
Apply (Term -> Arg Term
forall a. a -> Arg a
defaultArg Term
t) Elim' Term -> Elims -> Elims
forall a. a -> [a] -> [a]
: Elims
es))
canProject :: QName -> Term -> Maybe (Arg Term)
canProject :: QName -> Term -> Maybe (Arg Term)
canProject QName
f Term
v =
case Term
v of
(Con (ConHead QName
_ IsRecord{} Induction
_ [Arg QName]
fs) ConInfo
_ Elims
vs) -> do
(Arg QName
fld, Int
i) <- (Arg QName -> Bool) -> [Arg QName] -> Maybe (Arg QName, Int)
forall a. (a -> Bool) -> [a] -> Maybe (a, Int)
findWithIndex ((QName
fQName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
==) (QName -> Bool) -> (Arg QName -> QName) -> Arg QName -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Arg QName -> QName
forall e. Arg e -> e
unArg) [Arg QName]
fs
Bool -> Maybe ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (Bool -> Maybe ()) -> Bool -> Maybe ()
forall a b. (a -> b) -> a -> b
$ Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ Arg QName -> Bool
forall a. LensRelevance a => a -> Bool
isIrrelevant Arg QName
fld
ArgInfo -> Arg Term -> Arg Term
forall a. LensArgInfo a => ArgInfo -> a -> a
setArgInfo (Arg QName -> ArgInfo
forall a. LensArgInfo a => a -> ArgInfo
getArgInfo Arg QName
fld) (Arg Term -> Arg Term)
-> (Elim' Term -> Maybe (Arg Term))
-> Elim' Term
-> Maybe (Arg Term)
forall (m :: * -> *) b c a.
Functor m =>
(b -> c) -> (a -> m b) -> a -> m c
<.> Elim' Term -> Maybe (Arg Term)
forall a. Elim' a -> Maybe (Arg a)
isApplyElim (Elim' Term -> Maybe (Arg Term))
-> Maybe (Elim' Term) -> Maybe (Arg Term)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Elims -> Maybe (Elim' Term)
forall a. [a] -> Maybe a
listToMaybe (Int -> Elims -> Elims
forall a. Int -> [a] -> [a]
drop Int
i Elims
vs)
Term
_ -> Maybe (Arg Term)
forall a. Maybe a
Nothing
conApp :: forall t. (Coercible t Term, Apply t) => (Empty -> Term -> Elims -> Term) -> ConHead -> ConInfo -> Elims -> Elims -> Term
conApp :: (Empty -> Term -> Elims -> Term)
-> ConHead -> ConInfo -> Elims -> Elims -> Term
conApp Empty -> Term -> Elims -> Term
fk ConHead
ch ConInfo
ci Elims
args [] = ConHead -> ConInfo -> Elims -> Term
Con ConHead
ch ConInfo
ci Elims
args
conApp Empty -> Term -> Elims -> Term
fk ConHead
ch ConInfo
ci Elims
args (a :: Elim' Term
a@Apply{} : Elims
es) = (Empty -> Term -> Elims -> Term)
-> ConHead -> ConInfo -> Elims -> Elims -> Term
forall t.
(Coercible t Term, Apply t) =>
(Empty -> Term -> Elims -> Term)
-> ConHead -> ConInfo -> Elims -> Elims -> Term
conApp @t Empty -> Term -> Elims -> Term
fk ConHead
ch ConInfo
ci (Elims
args Elims -> Elims -> Elims
forall a. [a] -> [a] -> [a]
++ [Elim' Term
a]) Elims
es
conApp Empty -> Term -> Elims -> Term
fk ConHead
ch ConInfo
ci Elims
args (a :: Elim' Term
a@IApply{} : Elims
es) = (Empty -> Term -> Elims -> Term)
-> ConHead -> ConInfo -> Elims -> Elims -> Term
forall t.
(Coercible t Term, Apply t) =>
(Empty -> Term -> Elims -> Term)
-> ConHead -> ConInfo -> Elims -> Elims -> Term
conApp @t Empty -> Term -> Elims -> Term
fk ConHead
ch ConInfo
ci (Elims
args Elims -> Elims -> Elims
forall a. [a] -> [a] -> [a]
++ [Elim' Term
a]) Elims
es
conApp Empty -> Term -> Elims -> Term
fk ch :: ConHead
ch@(ConHead QName
c DataOrRecord
_ Induction
_ [Arg QName]
fs) ConInfo
ci Elims
args ees :: Elims
ees@(Proj ProjOrigin
o QName
f : Elims
es) =
let failure :: forall a. a -> a
failure :: a -> a
failure a
err = (String -> a -> a) -> a -> String -> a
forall a b c. (a -> b -> c) -> b -> a -> c
flip String -> a -> a
forall a. String -> a -> a
trace a
err (String -> a) -> String -> a
forall a b. (a -> b) -> a -> b
$ [String] -> String
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat
[ String
"conApp: constructor ", QName -> String
forall a. Pretty a => a -> String
prettyShow QName
c
, [String] -> String
unlines ([String] -> String) -> [String] -> String
forall a b. (a -> b) -> a -> b
$ String
" with fields" String -> [String] -> [String]
forall a. a -> [a] -> [a]
: (Arg QName -> String) -> [Arg QName] -> [String]
forall a b. (a -> b) -> [a] -> [b]
map ((String
" " String -> String -> String
forall a. [a] -> [a] -> [a]
++) (String -> String) -> (Arg QName -> String) -> Arg QName -> String
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Arg QName -> String
forall a. Pretty a => a -> String
prettyShow) [Arg QName]
fs
, [String] -> String
unlines ([String] -> String) -> [String] -> String
forall a b. (a -> b) -> a -> b
$ String
" and args" String -> [String] -> [String]
forall a. a -> [a] -> [a]
: (Elim' Term -> String) -> Elims -> [String]
forall a b. (a -> b) -> [a] -> [b]
map ((String
" " String -> String -> String
forall a. [a] -> [a] -> [a]
++) (String -> String)
-> (Elim' Term -> String) -> Elim' Term -> String
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Elim' Term -> String
forall a. Pretty a => a -> String
prettyShow) Elims
args
, String
" projected by ", QName -> String
forall a. Pretty a => a -> String
prettyShow QName
f
]
isApply :: Elim' a -> Arg a
isApply Elim' a
e = Arg a -> Maybe (Arg a) -> Arg a
forall a. a -> Maybe a -> a
fromMaybe (Arg a -> Arg a
forall a. a -> a
failure Arg a
forall a. HasCallStack => a
__IMPOSSIBLE__) (Maybe (Arg a) -> Arg a) -> Maybe (Arg a) -> Arg a
forall a b. (a -> b) -> a -> b
$ Elim' a -> Maybe (Arg a)
forall a. Elim' a -> Maybe (Arg a)
isApplyElim Elim' a
e
stuck :: Empty -> Term
stuck Empty
err = Empty -> Term -> Elims -> Term
fk Empty
err (ConHead -> ConInfo -> Elims -> Term
Con ConHead
ch ConInfo
ci Elims
args) [ProjOrigin -> QName -> Elim' Term
forall a. ProjOrigin -> QName -> Elim' a
Proj ProjOrigin
o QName
f]
app :: Term -> Elims -> Term
app :: Term -> Elims -> Term
app Term
v Elims
es = t -> Term
coerce (t -> Term) -> t -> Term
forall a b. (a -> b) -> a -> b
$ t -> Elims -> t
forall t. Apply t => t -> Elims -> t
applyE (Term -> t
coerce Term
v :: t) Elims
es
in
case (Arg QName -> Bool) -> [Arg QName] -> Maybe (Arg QName, Int)
forall a. (a -> Bool) -> [a] -> Maybe (a, Int)
findWithIndex ((QName
fQName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
==) (QName -> Bool) -> (Arg QName -> QName) -> Arg QName -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Arg QName -> QName
forall e. Arg e -> e
unArg) [Arg QName]
fs of
Maybe (Arg QName, Int)
Nothing -> Term -> Term
forall a. a -> a
failure (Term -> Term) -> Term -> Term
forall a b. (a -> b) -> a -> b
$ Empty -> Term
stuck Empty
forall a. HasCallStack => a
__IMPOSSIBLE__ Term -> Elims -> Term
`app` Elims
es
Just (Arg QName
fld, Int
i) -> let
v :: Term
v = Term -> (Elim' Term -> Term) -> Maybe (Elim' Term) -> Term
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (Term -> Term
forall a. a -> a
failure (Term -> Term) -> Term -> Term
forall a b. (a -> b) -> a -> b
$ Empty -> Term
stuck Empty
forall a. HasCallStack => a
__IMPOSSIBLE__) (Arg QName -> Term -> Term
forall a. LensRelevance a => a -> Term -> Term
relToDontCare Arg QName
fld (Term -> Term) -> (Elim' Term -> Term) -> Elim' Term -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Arg Term -> Term
argToDontCare (Arg Term -> Term)
-> (Elim' Term -> Arg Term) -> Elim' Term -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Elim' Term -> Arg Term
forall a. Elim' a -> Arg a
isApply) (Maybe (Elim' Term) -> Term) -> Maybe (Elim' Term) -> Term
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe (Elim' Term)
forall a. [a] -> Maybe a
listToMaybe (Elims -> Maybe (Elim' Term)) -> Elims -> Maybe (Elim' Term)
forall a b. (a -> b) -> a -> b
$ Int -> Elims -> Elims
forall a. Int -> [a] -> [a]
drop Int
i Elims
args
in Term
v Term -> Elims -> Term
`app` Elims
es
defApp :: QName -> Elims -> Elims -> Term
defApp :: QName -> Elims -> Elims -> Term
defApp QName
f [] (Apply Arg Term
a : Elims
es) | Just Arg Term
v <- QName -> Term -> Maybe (Arg Term)
canProject QName
f (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
a)
= Arg Term -> Term
argToDontCare Arg Term
v Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
`applyE` Elims
es
defApp QName
f Elims
es0 Elims
es = QName -> Elims -> Term
Def QName
f (Elims -> Term) -> Elims -> Term
forall a b. (a -> b) -> a -> b
$ Elims
es0 Elims -> Elims -> Elims
forall a. [a] -> [a] -> [a]
++ Elims
es
argToDontCare :: Arg Term -> Term
argToDontCare :: Arg Term -> Term
argToDontCare (Arg ArgInfo
ai Term
v) = ArgInfo -> Term -> Term
forall a. LensRelevance a => a -> Term -> Term
relToDontCare ArgInfo
ai Term
v
relToDontCare :: LensRelevance a => a -> Term -> Term
relToDontCare :: a -> Term -> Term
relToDontCare a
ai Term
v
| Relevance
Irrelevant <- a -> Relevance
forall a. LensRelevance a => a -> Relevance
getRelevance a
ai = Term -> Term
dontCare Term
v
| Bool
otherwise = Term
v
instance Apply Sort where
applyE :: Sort -> Elims -> Sort
applyE Sort
s [] = Sort
s
applyE Sort
s Elims
es = case Sort
s of
MetaS MetaId
x Elims
es' -> MetaId -> Elims -> Sort
forall t. MetaId -> [Elim' t] -> Sort' t
MetaS MetaId
x (Elims -> Sort) -> Elims -> Sort
forall a b. (a -> b) -> a -> b
$ Elims
es' Elims -> Elims -> Elims
forall a. [a] -> [a] -> [a]
++ Elims
es
DefS QName
d Elims
es' -> QName -> Elims -> Sort
forall t. QName -> [Elim' t] -> Sort' t
DefS QName
d (Elims -> Sort) -> Elims -> Sort
forall a b. (a -> b) -> a -> b
$ Elims
es' Elims -> Elims -> Elims
forall a. [a] -> [a] -> [a]
++ Elims
es
Sort
_ -> Sort
forall a. HasCallStack => a
__IMPOSSIBLE__
instance TermSubst a => Apply (Tele a) where
apply :: Tele a -> Args -> Tele a
apply Tele a
tel [] = Tele a
tel
apply Tele a
EmptyTel Args
_ = Tele a
forall a. HasCallStack => a
__IMPOSSIBLE__
apply (ExtendTel a
_ Abs (Tele a)
tel) (Arg Term
t : Args
ts) = Abs (Tele a) -> SubstArg (Tele a) -> Tele a
forall a. Subst a => Abs a -> SubstArg a -> a
lazyAbsApp Abs (Tele a)
tel (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
t) Tele a -> Args -> Tele a
forall t. Apply t => t -> Args -> t
`apply` Args
ts
applyE :: Tele a -> Elims -> Tele a
applyE Tele a
t Elims
es = Tele a -> Args -> Tele a
forall t. Apply t => t -> Args -> t
apply Tele a
t (Args -> Tele a) -> Args -> Tele a
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
instance Apply Definition where
apply :: Definition -> Args -> Definition
apply (Defn ArgInfo
info QName
x Type
t [Polarity]
pol [Occurrence]
occ NumGeneralizableArgs
gens [Maybe Name]
gpars [LocalDisplayForm]
df MutualId
m CompiledRepresentation
c Maybe QName
inst Bool
copy Set QName
ma Bool
nc Bool
inj Bool
copat Blocked_
blk Language
lang Defn
d) Args
args =
ArgInfo
-> QName
-> Type
-> [Polarity]
-> [Occurrence]
-> NumGeneralizableArgs
-> [Maybe Name]
-> [LocalDisplayForm]
-> MutualId
-> CompiledRepresentation
-> Maybe QName
-> Bool
-> Set QName
-> Bool
-> Bool
-> Bool
-> Blocked_
-> Language
-> Defn
-> Definition
Defn ArgInfo
info QName
x (Type -> Args -> Type
piApply Type
t Args
args) ([Polarity] -> Args -> [Polarity]
forall t. Apply t => t -> Args -> t
apply [Polarity]
pol Args
args) ([Occurrence] -> Args -> [Occurrence]
forall t. Apply t => t -> Args -> t
apply [Occurrence]
occ Args
args) (NumGeneralizableArgs -> Args -> NumGeneralizableArgs
forall t. Apply t => t -> Args -> t
apply NumGeneralizableArgs
gens Args
args) (Int -> [Maybe Name] -> [Maybe Name]
forall a. Int -> [a] -> [a]
drop (Args -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Args
args) [Maybe Name]
gpars) [LocalDisplayForm]
df MutualId
m CompiledRepresentation
c Maybe QName
inst Bool
copy Set QName
ma Bool
nc Bool
inj Bool
copat Blocked_
blk Language
lang (Defn -> Args -> Defn
forall t. Apply t => t -> Args -> t
apply Defn
d Args
args)
applyE :: Definition -> Elims -> Definition
applyE Definition
t Elims
es = Definition -> Args -> Definition
forall t. Apply t => t -> Args -> t
apply Definition
t (Args -> Definition) -> Args -> Definition
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
instance Apply RewriteRule where
apply :: RewriteRule -> Args -> RewriteRule
apply RewriteRule
r Args
args =
let newContext :: Telescope
newContext = Telescope -> Args -> Telescope
forall t. Apply t => t -> Args -> t
apply (RewriteRule -> Telescope
rewContext RewriteRule
r) Args
args
sub :: Substitution' NLPat
sub = Int -> Substitution' NLPat -> Substitution' NLPat
forall a. Int -> Substitution' a -> Substitution' a
liftS (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
newContext) (Substitution' NLPat -> Substitution' NLPat)
-> Substitution' NLPat -> Substitution' NLPat
forall a b. (a -> b) -> a -> b
$ [NLPat] -> Substitution' NLPat
forall a. DeBruijn a => [a] -> Substitution' a
parallelS ([NLPat] -> Substitution' NLPat) -> [NLPat] -> Substitution' NLPat
forall a b. (a -> b) -> a -> b
$
[NLPat] -> [NLPat]
forall a. [a] -> [a]
reverse ([NLPat] -> [NLPat]) -> [NLPat] -> [NLPat]
forall a b. (a -> b) -> a -> b
$ (Arg Term -> NLPat) -> Args -> [NLPat]
forall a b. (a -> b) -> [a] -> [b]
map (Term -> NLPat
PTerm (Term -> NLPat) -> (Arg Term -> Term) -> Arg Term -> NLPat
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Arg Term -> Term
forall e. Arg e -> e
unArg) Args
args
in RewriteRule :: QName
-> Telescope
-> QName
-> PElims
-> Term
-> Type
-> Bool
-> RewriteRule
RewriteRule
{ rewName :: QName
rewName = RewriteRule -> QName
rewName RewriteRule
r
, rewContext :: Telescope
rewContext = Telescope
newContext
, rewHead :: QName
rewHead = RewriteRule -> QName
rewHead RewriteRule
r
, rewPats :: PElims
rewPats = Substitution' (SubstArg PElims) -> PElims -> PElims
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg PElims)
Substitution' NLPat
sub (RewriteRule -> PElims
rewPats RewriteRule
r)
, rewRHS :: Term
rewRHS = Substitution' NLPat -> Term -> Term
forall a. TermSubst a => Substitution' NLPat -> a -> a
applyNLPatSubst Substitution' NLPat
sub (RewriteRule -> Term
rewRHS RewriteRule
r)
, rewType :: Type
rewType = Substitution' NLPat -> Type -> Type
forall a. TermSubst a => Substitution' NLPat -> a -> a
applyNLPatSubst Substitution' NLPat
sub (RewriteRule -> Type
rewType RewriteRule
r)
, rewFromClause :: Bool
rewFromClause = RewriteRule -> Bool
rewFromClause RewriteRule
r
}
applyE :: RewriteRule -> Elims -> RewriteRule
applyE RewriteRule
t Elims
es = RewriteRule -> Args -> RewriteRule
forall t. Apply t => t -> Args -> t
apply RewriteRule
t (Args -> RewriteRule) -> Args -> RewriteRule
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
instance {-# OVERLAPPING #-} Apply [Occ.Occurrence] where
apply :: [Occurrence] -> Args -> [Occurrence]
apply [Occurrence]
occ Args
args = Int -> [Occurrence] -> [Occurrence]
forall a. Int -> [a] -> [a]
List.drop (Args -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Args
args) [Occurrence]
occ
applyE :: [Occurrence] -> Elims -> [Occurrence]
applyE [Occurrence]
t Elims
es = [Occurrence] -> Args -> [Occurrence]
forall t. Apply t => t -> Args -> t
apply [Occurrence]
t (Args -> [Occurrence]) -> Args -> [Occurrence]
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
instance {-# OVERLAPPING #-} Apply [Polarity] where
apply :: [Polarity] -> Args -> [Polarity]
apply [Polarity]
pol Args
args = Int -> [Polarity] -> [Polarity]
forall a. Int -> [a] -> [a]
List.drop (Args -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Args
args) [Polarity]
pol
applyE :: [Polarity] -> Elims -> [Polarity]
applyE [Polarity]
t Elims
es = [Polarity] -> Args -> [Polarity]
forall t. Apply t => t -> Args -> t
apply [Polarity]
t (Args -> [Polarity]) -> Args -> [Polarity]
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
instance Apply NumGeneralizableArgs where
apply :: NumGeneralizableArgs -> Args -> NumGeneralizableArgs
apply NumGeneralizableArgs
NoGeneralizableArgs Args
args = NumGeneralizableArgs
NoGeneralizableArgs
apply (SomeGeneralizableArgs Int
n) Args
args = Int -> NumGeneralizableArgs
SomeGeneralizableArgs (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Args -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Args
args)
applyE :: NumGeneralizableArgs -> Elims -> NumGeneralizableArgs
applyE NumGeneralizableArgs
t Elims
es = NumGeneralizableArgs -> Args -> NumGeneralizableArgs
forall t. Apply t => t -> Args -> t
apply NumGeneralizableArgs
t (Args -> NumGeneralizableArgs) -> Args -> NumGeneralizableArgs
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
instance {-# OVERLAPPING #-} Apply [NamedArg (Pattern' a)] where
apply :: [NamedArg (Pattern' a)] -> Args -> [NamedArg (Pattern' a)]
apply [NamedArg (Pattern' a)]
ps Args
args = Int -> [NamedArg (Pattern' a)] -> [NamedArg (Pattern' a)]
forall t x.
(Eq t, Num t) =>
t -> [NamedArg (Pattern' x)] -> [NamedArg (Pattern' x)]
loop (Args -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Args
args) [NamedArg (Pattern' a)]
ps
where
loop :: t -> [NamedArg (Pattern' x)] -> [NamedArg (Pattern' x)]
loop t
0 [NamedArg (Pattern' x)]
ps = [NamedArg (Pattern' x)]
ps
loop t
n [] = [NamedArg (Pattern' x)]
forall a. HasCallStack => a
__IMPOSSIBLE__
loop t
n (NamedArg (Pattern' x)
p : [NamedArg (Pattern' x)]
ps) =
let recurse :: [NamedArg (Pattern' x)]
recurse = t -> [NamedArg (Pattern' x)] -> [NamedArg (Pattern' x)]
loop (t
n t -> t -> t
forall a. Num a => a -> a -> a
- t
1) [NamedArg (Pattern' x)]
ps
in case NamedArg (Pattern' x) -> Pattern' x
forall a. NamedArg a -> a
namedArg NamedArg (Pattern' x)
p of
VarP{} -> [NamedArg (Pattern' x)]
recurse
DotP{} -> [NamedArg (Pattern' x)]
forall a. HasCallStack => a
__IMPOSSIBLE__
LitP{} -> [NamedArg (Pattern' x)]
forall a. HasCallStack => a
__IMPOSSIBLE__
ConP{} -> [NamedArg (Pattern' x)]
forall a. HasCallStack => a
__IMPOSSIBLE__
DefP{} -> [NamedArg (Pattern' x)]
forall a. HasCallStack => a
__IMPOSSIBLE__
ProjP{} -> [NamedArg (Pattern' x)]
forall a. HasCallStack => a
__IMPOSSIBLE__
IApplyP{} -> [NamedArg (Pattern' x)]
recurse
applyE :: [NamedArg (Pattern' a)] -> Elims -> [NamedArg (Pattern' a)]
applyE [NamedArg (Pattern' a)]
t Elims
es = [NamedArg (Pattern' a)] -> Args -> [NamedArg (Pattern' a)]
forall t. Apply t => t -> Args -> t
apply [NamedArg (Pattern' a)]
t (Args -> [NamedArg (Pattern' a)])
-> Args -> [NamedArg (Pattern' a)]
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
instance Apply Projection where
apply :: Projection -> Args -> Projection
apply Projection
p Args
args = Projection
p
{ projIndex :: Int
projIndex = Projection -> Int
projIndex Projection
p Int -> Int -> Int
forall a. Num a => a -> a -> a
- Args -> Int
forall a. Sized a => a -> Int
size Args
args
, projLams :: ProjLams
projLams = Projection -> ProjLams
projLams Projection
p ProjLams -> Args -> ProjLams
forall t. Apply t => t -> Args -> t
`apply` Args
args
}
applyE :: Projection -> Elims -> Projection
applyE Projection
t Elims
es = Projection -> Args -> Projection
forall t. Apply t => t -> Args -> t
apply Projection
t (Args -> Projection) -> Args -> Projection
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
instance Apply ProjLams where
apply :: ProjLams -> Args -> ProjLams
apply (ProjLams [Arg String]
lams) Args
args = [Arg String] -> ProjLams
ProjLams ([Arg String] -> ProjLams) -> [Arg String] -> ProjLams
forall a b. (a -> b) -> a -> b
$ Int -> [Arg String] -> [Arg String]
forall a. Int -> [a] -> [a]
List.drop (Args -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Args
args) [Arg String]
lams
applyE :: ProjLams -> Elims -> ProjLams
applyE ProjLams
t Elims
es = ProjLams -> Args -> ProjLams
forall t. Apply t => t -> Args -> t
apply ProjLams
t (Args -> ProjLams) -> Args -> ProjLams
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
instance Apply Defn where
apply :: Defn -> Args -> Defn
apply Defn
d [] = Defn
d
apply Defn
d args :: Args
args@(Arg Term
arg1:Args
args1) = case Defn
d of
Axiom{} -> Defn
d
DataOrRecSig Int
n -> Int -> Defn
DataOrRecSig (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Args -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Args
args)
GeneralizableVar{} -> Defn
d
AbstractDefn Defn
d -> Defn -> Defn
AbstractDefn (Defn -> Defn) -> Defn -> Defn
forall a b. (a -> b) -> a -> b
$ Defn -> Args -> Defn
forall t. Apply t => t -> Args -> t
apply Defn
d Args
args
Function{ funClauses :: Defn -> [Clause]
funClauses = [Clause]
cs, funCompiled :: Defn -> Maybe CompiledClauses
funCompiled = Maybe CompiledClauses
cc, funCovering :: Defn -> [Clause]
funCovering = [Clause]
cov, funInv :: Defn -> FunctionInverse
funInv = FunctionInverse
inv
, funExtLam :: Defn -> Maybe ExtLamInfo
funExtLam = Maybe ExtLamInfo
extLam
, funProjection :: Defn -> Maybe Projection
funProjection = Maybe Projection
Nothing } ->
Defn
d { funClauses :: [Clause]
funClauses = [Clause] -> Args -> [Clause]
forall t. Apply t => t -> Args -> t
apply [Clause]
cs Args
args
, funCompiled :: Maybe CompiledClauses
funCompiled = Maybe CompiledClauses -> Args -> Maybe CompiledClauses
forall t. Apply t => t -> Args -> t
apply Maybe CompiledClauses
cc Args
args
, funCovering :: [Clause]
funCovering = [Clause] -> Args -> [Clause]
forall t. Apply t => t -> Args -> t
apply [Clause]
cov Args
args
, funInv :: FunctionInverse
funInv = FunctionInverse -> Args -> FunctionInverse
forall t. Apply t => t -> Args -> t
apply FunctionInverse
inv Args
args
, funExtLam :: Maybe ExtLamInfo
funExtLam = (System -> System) -> ExtLamInfo -> ExtLamInfo
modifySystem (System -> Args -> System
forall t. Apply t => t -> Args -> t
`apply` Args
args) (ExtLamInfo -> ExtLamInfo) -> Maybe ExtLamInfo -> Maybe ExtLamInfo
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe ExtLamInfo
extLam
}
Function{ funClauses :: Defn -> [Clause]
funClauses = [Clause]
cs, funCompiled :: Defn -> Maybe CompiledClauses
funCompiled = Maybe CompiledClauses
cc, funCovering :: Defn -> [Clause]
funCovering = [Clause]
cov, funInv :: Defn -> FunctionInverse
funInv = FunctionInverse
inv
, funExtLam :: Defn -> Maybe ExtLamInfo
funExtLam = Maybe ExtLamInfo
extLam
, funProjection :: Defn -> Maybe Projection
funProjection = Just Projection
p0} ->
case Projection
p0 Projection -> Args -> Projection
forall t. Apply t => t -> Args -> t
`apply` Args
args of
p :: Projection
p@Projection{ projIndex :: Projection -> Int
projIndex = Int
n }
| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> Defn
d { funProjection :: Maybe Projection
funProjection = Maybe Projection
forall a. HasCallStack => a
__IMPOSSIBLE__ }
| Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0 -> Defn
d { funProjection :: Maybe Projection
funProjection = Projection -> Maybe Projection
forall a. a -> Maybe a
Just Projection
p }
| Bool
otherwise ->
Defn
d { funClauses :: [Clause]
funClauses = [Clause] -> Args -> [Clause]
forall t. Apply t => t -> Args -> t
apply [Clause]
cs Args
args'
, funCompiled :: Maybe CompiledClauses
funCompiled = Maybe CompiledClauses -> Args -> Maybe CompiledClauses
forall t. Apply t => t -> Args -> t
apply Maybe CompiledClauses
cc Args
args'
, funCovering :: [Clause]
funCovering = [Clause] -> Args -> [Clause]
forall t. Apply t => t -> Args -> t
apply [Clause]
cov Args
args'
, funInv :: FunctionInverse
funInv = FunctionInverse -> Args -> FunctionInverse
forall t. Apply t => t -> Args -> t
apply FunctionInverse
inv Args
args'
, funProjection :: Maybe Projection
funProjection = if Bool
isVar0 then Projection -> Maybe Projection
forall a. a -> Maybe a
Just Projection
p{ projIndex :: Int
projIndex = Int
0 } else Maybe Projection
forall a. Maybe a
Nothing
, funExtLam :: Maybe ExtLamInfo
funExtLam = (System -> System) -> ExtLamInfo -> ExtLamInfo
modifySystem (\ System
_ -> System
forall a. HasCallStack => a
__IMPOSSIBLE__) (ExtLamInfo -> ExtLamInfo) -> Maybe ExtLamInfo -> Maybe ExtLamInfo
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe ExtLamInfo
extLam
}
where
larg :: Arg Term
larg = Arg Term -> Args -> Arg Term
forall a. a -> [a] -> a
last1 Arg Term
arg1 Args
args1
args' :: Args
args' = [Arg Term
larg]
isVar0 :: Bool
isVar0 = case Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
larg of Var Int
0 [] -> Bool
True; Term
_ -> Bool
False
Datatype{ dataPars :: Defn -> Int
dataPars = Int
np, dataClause :: Defn -> Maybe Clause
dataClause = Maybe Clause
cl } ->
Defn
d { dataPars :: Int
dataPars = Int
np Int -> Int -> Int
forall a. Num a => a -> a -> a
- Args -> Int
forall a. Sized a => a -> Int
size Args
args
, dataClause :: Maybe Clause
dataClause = Maybe Clause -> Args -> Maybe Clause
forall t. Apply t => t -> Args -> t
apply Maybe Clause
cl Args
args
}
Record{ recPars :: Defn -> Int
recPars = Int
np, recClause :: Defn -> Maybe Clause
recClause = Maybe Clause
cl, recTel :: Defn -> Telescope
recTel = Telescope
tel
} ->
Defn
d { recPars :: Int
recPars = Int
np Int -> Int -> Int
forall a. Num a => a -> a -> a
- Args -> Int
forall a. Sized a => a -> Int
size Args
args
, recClause :: Maybe Clause
recClause = Maybe Clause -> Args -> Maybe Clause
forall t. Apply t => t -> Args -> t
apply Maybe Clause
cl Args
args, recTel :: Telescope
recTel = Telescope -> Args -> Telescope
forall t. Apply t => t -> Args -> t
apply Telescope
tel Args
args
}
Constructor{ conPars :: Defn -> Int
conPars = Int
np } ->
Defn
d { conPars :: Int
conPars = Int
np Int -> Int -> Int
forall a. Num a => a -> a -> a
- Args -> Int
forall a. Sized a => a -> Int
size Args
args }
Primitive{ primClauses :: Defn -> [Clause]
primClauses = [Clause]
cs } ->
Defn
d { primClauses :: [Clause]
primClauses = [Clause] -> Args -> [Clause]
forall t. Apply t => t -> Args -> t
apply [Clause]
cs Args
args }
PrimitiveSort{} -> Defn
d
applyE :: Defn -> Elims -> Defn
applyE Defn
t Elims
es = Defn -> Args -> Defn
forall t. Apply t => t -> Args -> t
apply Defn
t (Args -> Defn) -> Args -> Defn
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
instance Apply PrimFun where
apply :: PrimFun -> Args -> PrimFun
apply (PrimFun QName
x Int
ar Args -> Int -> ReduceM (Reduced MaybeReducedArgs Term)
def) Args
args = QName
-> Int
-> (Args -> Int -> ReduceM (Reduced MaybeReducedArgs Term))
-> PrimFun
PrimFun QName
x (Int
ar Int -> Int -> Int
forall a. Num a => a -> a -> a
- Args -> Int
forall a. Sized a => a -> Int
size Args
args) ((Args -> Int -> ReduceM (Reduced MaybeReducedArgs Term))
-> PrimFun)
-> (Args -> Int -> ReduceM (Reduced MaybeReducedArgs Term))
-> PrimFun
forall a b. (a -> b) -> a -> b
$ \ Args
vs -> Args -> Int -> ReduceM (Reduced MaybeReducedArgs Term)
def (Args
args Args -> Args -> Args
forall a. [a] -> [a] -> [a]
++ Args
vs)
applyE :: PrimFun -> Elims -> PrimFun
applyE PrimFun
t Elims
es = PrimFun -> Args -> PrimFun
forall t. Apply t => t -> Args -> t
apply PrimFun
t (Args -> PrimFun) -> Args -> PrimFun
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
instance Apply Clause where
apply :: Clause -> Args -> Clause
apply cls :: Clause
cls@(Clause Range
rl Range
rf Telescope
tel NAPs
ps Maybe Term
b Maybe (Arg Type)
t Bool
catchall Maybe Bool
exact Maybe Bool
recursive Maybe Bool
unreachable ExpandedEllipsis
ell) Args
args
| Args -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Args
args Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> NAPs -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length NAPs
ps = Clause
forall a. HasCallStack => a
__IMPOSSIBLE__
| Bool
otherwise =
Range
-> Range
-> Telescope
-> NAPs
-> Maybe Term
-> Maybe (Arg Type)
-> Bool
-> Maybe Bool
-> Maybe Bool
-> Maybe Bool
-> ExpandedEllipsis
-> Clause
Clause Range
rl Range
rf
Telescope
tel'
(Substitution' (SubstArg NAPs) -> NAPs -> NAPs
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst PatternSubstitution
Substitution' (SubstArg NAPs)
rhoP (NAPs -> NAPs) -> NAPs -> NAPs
forall a b. (a -> b) -> a -> b
$ Int -> NAPs -> NAPs
forall a. Int -> [a] -> [a]
drop (Args -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Args
args) NAPs
ps)
(Substitution' (SubstArg (Maybe Term)) -> Maybe Term -> Maybe Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' Term
Substitution' (SubstArg (Maybe Term))
rho Maybe Term
b)
(Substitution' (SubstArg (Maybe (Arg Type)))
-> Maybe (Arg Type) -> Maybe (Arg Type)
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' Term
Substitution' (SubstArg (Maybe (Arg Type)))
rho Maybe (Arg Type)
t)
Bool
catchall
Maybe Bool
exact
Maybe Bool
recursive
Maybe Bool
unreachable
ExpandedEllipsis
ell
where
rargs :: [Term]
rargs = (Arg Term -> Term) -> Args -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Term
forall e. Arg e -> e
unArg (Args -> [Term]) -> Args -> [Term]
forall a b. (a -> b) -> a -> b
$ Args -> Args
forall a. [a] -> [a]
reverse Args
args
rps :: NAPs
rps = NAPs -> NAPs
forall a. [a] -> [a]
reverse (NAPs -> NAPs) -> NAPs -> NAPs
forall a b. (a -> b) -> a -> b
$ Int -> NAPs -> NAPs
forall a. Int -> [a] -> [a]
take (Args -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Args
args) NAPs
ps
n :: Int
n = Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel
tel' :: Telescope
tel' = Int -> Telescope -> NAPs -> [Term] -> Telescope
newTel Int
n Telescope
tel NAPs
rps [Term]
rargs
rhoP :: PatternSubstitution
rhoP :: PatternSubstitution
rhoP = (Term -> Pattern' DBPatVar)
-> Int -> NAPs -> [Term] -> PatternSubstitution
forall a.
EndoSubst a =>
(Term -> a) -> Int -> NAPs -> [Term] -> Substitution' a
mkSub Term -> Pattern' DBPatVar
forall a. Term -> Pattern' a
dotP Int
n NAPs
rps [Term]
rargs
rho :: Substitution' Term
rho = (Term -> Term) -> Int -> NAPs -> [Term] -> Substitution' Term
forall a.
EndoSubst a =>
(Term -> a) -> Int -> NAPs -> [Term] -> Substitution' a
mkSub Term -> Term
forall a. a -> a
id Int
n NAPs
rps [Term]
rargs
substP :: Nat -> Term -> [NamedArg DeBruijnPattern] -> [NamedArg DeBruijnPattern]
substP :: Int -> Term -> NAPs -> NAPs
substP Int
i Term
v = Int -> SubstArg NAPs -> NAPs -> NAPs
forall a. Subst a => Int -> SubstArg a -> a -> a
subst Int
i (Term -> Pattern' DBPatVar
forall a. Term -> Pattern' a
dotP Term
v)
mkSub :: EndoSubst a => (Term -> a) -> Nat -> [NamedArg DeBruijnPattern] -> [Term] -> Substitution' a
mkSub :: (Term -> a) -> Int -> NAPs -> [Term] -> Substitution' a
mkSub Term -> a
_ Int
_ [] [] = Substitution' a
forall a. Substitution' a
idS
mkSub Term -> a
tm Int
n (NamedArg (Pattern' DBPatVar)
p : NAPs
ps) (Term
v : [Term]
vs) =
case NamedArg (Pattern' DBPatVar) -> Pattern' DBPatVar
forall a. NamedArg a -> a
namedArg NamedArg (Pattern' DBPatVar)
p of
VarP PatternInfo
_ (DBPatVar String
_ Int
i) -> (Term -> a) -> Int -> NAPs -> [Term] -> Substitution' a
forall a.
EndoSubst a =>
(Term -> a) -> Int -> NAPs -> [Term] -> Substitution' a
mkSub Term -> a
tm (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) (Int -> Term -> NAPs -> NAPs
substP Int
i Term
v' NAPs
ps) [Term]
vs Substitution' a -> Substitution' a -> Substitution' a
forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` Int -> a -> Substitution' a
forall a. DeBruijn a => Int -> a -> Substitution' a
singletonS Int
i (Term -> a
tm Term
v')
where v' :: Term
v' = Int -> Term -> Term
forall a. Subst a => Int -> a -> a
raise (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) Term
v
DotP{} -> (Term -> a) -> Int -> NAPs -> [Term] -> Substitution' a
forall a.
EndoSubst a =>
(Term -> a) -> Int -> NAPs -> [Term] -> Substitution' a
mkSub Term -> a
tm Int
n NAPs
ps [Term]
vs
ConP ConHead
c ConPatternInfo
_ NAPs
ps' -> (Term -> a) -> Int -> NAPs -> [Term] -> Substitution' a
forall a.
EndoSubst a =>
(Term -> a) -> Int -> NAPs -> [Term] -> Substitution' a
mkSub Term -> a
tm Int
n (NAPs
ps' NAPs -> NAPs -> NAPs
forall a. [a] -> [a] -> [a]
++ NAPs
ps) (ConHead -> Term -> [Term]
projections ConHead
c Term
v [Term] -> [Term] -> [Term]
forall a. [a] -> [a] -> [a]
++ [Term]
vs)
DefP{} -> Substitution' a
forall a. HasCallStack => a
__IMPOSSIBLE__
LitP{} -> Substitution' a
forall a. HasCallStack => a
__IMPOSSIBLE__
ProjP{} -> Substitution' a
forall a. HasCallStack => a
__IMPOSSIBLE__
IApplyP PatternInfo
_ Term
_ Term
_ (DBPatVar String
_ Int
i) -> (Term -> a) -> Int -> NAPs -> [Term] -> Substitution' a
forall a.
EndoSubst a =>
(Term -> a) -> Int -> NAPs -> [Term] -> Substitution' a
mkSub Term -> a
tm (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) (Int -> Term -> NAPs -> NAPs
substP Int
i Term
v' NAPs
ps) [Term]
vs Substitution' a -> Substitution' a -> Substitution' a
forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
`composeS` Int -> a -> Substitution' a
forall a. DeBruijn a => Int -> a -> Substitution' a
singletonS Int
i (Term -> a
tm Term
v')
where v' :: Term
v' = Int -> Term -> Term
forall a. Subst a => Int -> a -> a
raise (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) Term
v
mkSub Term -> a
_ Int
_ NAPs
_ [Term]
_ = Substitution' a
forall a. HasCallStack => a
__IMPOSSIBLE__
newTel :: Nat -> Telescope -> [NamedArg DeBruijnPattern] -> [Term] -> Telescope
newTel :: Int -> Telescope -> NAPs -> [Term] -> Telescope
newTel Int
n Telescope
tel [] [] = Telescope
tel
newTel Int
n Telescope
tel (NamedArg (Pattern' DBPatVar)
p : NAPs
ps) (Term
v : [Term]
vs) =
case NamedArg (Pattern' DBPatVar) -> Pattern' DBPatVar
forall a. NamedArg a -> a
namedArg NamedArg (Pattern' DBPatVar)
p of
VarP PatternInfo
_ (DBPatVar String
_ Int
i) -> Int -> Telescope -> NAPs -> [Term] -> Telescope
newTel (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) (Int -> SubstArg (Dom Type) -> Telescope -> Telescope
forall t a.
(Eq t, Num t, Subst a, Subst (SubstArg a)) =>
t -> SubstArg a -> Tele a -> Tele a
subTel (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
i) Term
SubstArg (Dom Type)
v Telescope
tel) (Int -> Term -> NAPs -> NAPs
substP Int
i (Int -> Term -> Term
forall a. Subst a => Int -> a -> a
raise (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) Term
v) NAPs
ps) [Term]
vs
DotP{} -> Int -> Telescope -> NAPs -> [Term] -> Telescope
newTel Int
n Telescope
tel NAPs
ps [Term]
vs
ConP ConHead
c ConPatternInfo
_ NAPs
ps' -> Int -> Telescope -> NAPs -> [Term] -> Telescope
newTel Int
n Telescope
tel (NAPs
ps' NAPs -> NAPs -> NAPs
forall a. [a] -> [a] -> [a]
++ NAPs
ps) (ConHead -> Term -> [Term]
projections ConHead
c Term
v [Term] -> [Term] -> [Term]
forall a. [a] -> [a] -> [a]
++ [Term]
vs)
DefP{} -> Telescope
forall a. HasCallStack => a
__IMPOSSIBLE__
LitP{} -> Telescope
forall a. HasCallStack => a
__IMPOSSIBLE__
ProjP{} -> Telescope
forall a. HasCallStack => a
__IMPOSSIBLE__
IApplyP PatternInfo
_ Term
_ Term
_ (DBPatVar String
_ Int
i) -> Int -> Telescope -> NAPs -> [Term] -> Telescope
newTel (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) (Int -> SubstArg (Dom Type) -> Telescope -> Telescope
forall t a.
(Eq t, Num t, Subst a, Subst (SubstArg a)) =>
t -> SubstArg a -> Tele a -> Tele a
subTel (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
i) Term
SubstArg (Dom Type)
v Telescope
tel) (Int -> Term -> NAPs -> NAPs
substP Int
i (Int -> Term -> Term
forall a. Subst a => Int -> a -> a
raise (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) Term
v) NAPs
ps) [Term]
vs
newTel Int
_ Telescope
tel NAPs
_ [Term]
_ = Telescope
forall a. HasCallStack => a
__IMPOSSIBLE__
projections :: ConHead -> Term -> [Term]
projections ConHead
c Term
v = [ ArgInfo -> Term -> Term
forall a. LensRelevance a => a -> Term -> Term
relToDontCare ArgInfo
ai (Term -> Term) -> Term -> Term
forall a b. (a -> b) -> a -> b
$
case ConHead -> DataOrRecord
conDataRecord ConHead
c of
DataOrRecord
IsData -> QName -> Elims -> Term
Def QName
f [Arg Term -> Elim' Term
forall a. Arg a -> Elim' a
Apply (ArgInfo -> Term -> Arg Term
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
ai Term
v)]
IsRecord{} -> Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
applyE Term
v [ProjOrigin -> QName -> Elim' Term
forall a. ProjOrigin -> QName -> Elim' a
Proj ProjOrigin
ProjSystem QName
f]
| Arg ArgInfo
ai QName
f <- ConHead -> [Arg QName]
conFields ConHead
c ]
subTel :: t -> SubstArg a -> Tele a -> Tele a
subTel t
i SubstArg a
v Tele a
EmptyTel = Tele a
forall a. HasCallStack => a
__IMPOSSIBLE__
subTel t
0 SubstArg a
v (ExtendTel a
_ Abs (Tele a)
tel) = Abs (Tele a) -> SubstArg (Tele a) -> Tele a
forall a. Subst a => Abs a -> SubstArg a -> a
absApp Abs (Tele a)
tel SubstArg a
SubstArg (Tele a)
v
subTel t
i SubstArg a
v (ExtendTel a
a Abs (Tele a)
tel) = a -> Abs (Tele a) -> Tele a
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel a
a (Abs (Tele a) -> Tele a) -> Abs (Tele a) -> Tele a
forall a b. (a -> b) -> a -> b
$ t -> SubstArg a -> Tele a -> Tele a
subTel (t
i t -> t -> t
forall a. Num a => a -> a -> a
- t
1) (Int -> SubstArg a -> SubstArg a
forall a. Subst a => Int -> a -> a
raise Int
1 SubstArg a
v) (Tele a -> Tele a) -> Abs (Tele a) -> Abs (Tele a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Abs (Tele a)
tel
applyE :: Clause -> Elims -> Clause
applyE Clause
t Elims
es = Clause -> Args -> Clause
forall t. Apply t => t -> Args -> t
apply Clause
t (Args -> Clause) -> Args -> Clause
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
instance Apply CompiledClauses where
apply :: CompiledClauses -> Args -> CompiledClauses
apply CompiledClauses
cc Args
args = case CompiledClauses
cc of
Fail [Arg String]
hs -> [Arg String] -> CompiledClauses
forall a. [Arg String] -> CompiledClauses' a
Fail (Int -> [Arg String] -> [Arg String]
forall a. Int -> [a] -> [a]
drop Int
len [Arg String]
hs)
Done [Arg String]
hs Term
t
| [Arg String] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Arg String]
hs Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
len ->
let sub :: Substitution' Term
sub = [Term] -> Substitution' Term
forall a. DeBruijn a => [a] -> Substitution' a
parallelS ([Term] -> Substitution' Term) -> [Term] -> Substitution' Term
forall a b. (a -> b) -> a -> b
$ (Int -> Term) -> [Int] -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map Int -> Term
var [Int
0..[Arg String] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Arg String]
hs Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
len Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1] [Term] -> [Term] -> [Term]
forall a. [a] -> [a] -> [a]
++ (Arg Term -> Term) -> Args -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Term
forall e. Arg e -> e
unArg Args
args
in [Arg String] -> Term -> CompiledClauses
forall a. [Arg String] -> a -> CompiledClauses' a
Done (Int -> [Arg String] -> [Arg String]
forall a. Int -> [a] -> [a]
List.drop Int
len [Arg String]
hs) (Term -> CompiledClauses) -> Term -> CompiledClauses
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' Term
Substitution' (SubstArg Term)
sub Term
t
| Bool
otherwise -> CompiledClauses
forall a. HasCallStack => a
__IMPOSSIBLE__
Case Arg Int
n Case CompiledClauses
bs
| Arg Int -> Int
forall e. Arg e -> e
unArg Arg Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
len -> Arg Int -> Case CompiledClauses -> CompiledClauses
forall a.
Arg Int -> Case (CompiledClauses' a) -> CompiledClauses' a
Case (Arg Int
n Arg Int -> (Int -> Int) -> Arg Int
forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
<&> \ Int
m -> Int
m Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
len) (Case CompiledClauses -> Args -> Case CompiledClauses
forall t. Apply t => t -> Args -> t
apply Case CompiledClauses
bs Args
args)
| Bool
otherwise -> CompiledClauses
forall a. HasCallStack => a
__IMPOSSIBLE__
where
len :: Int
len = Args -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Args
args
applyE :: CompiledClauses -> Elims -> CompiledClauses
applyE CompiledClauses
t Elims
es = CompiledClauses -> Args -> CompiledClauses
forall t. Apply t => t -> Args -> t
apply CompiledClauses
t (Args -> CompiledClauses) -> Args -> CompiledClauses
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
instance Apply ExtLamInfo where
apply :: ExtLamInfo -> Args -> ExtLamInfo
apply (ExtLamInfo ModuleName
m Bool
b Maybe System
sys) Args
args = ModuleName -> Bool -> Maybe System -> ExtLamInfo
ExtLamInfo ModuleName
m Bool
b (Maybe System -> Args -> Maybe System
forall t. Apply t => t -> Args -> t
apply Maybe System
sys Args
args)
applyE :: ExtLamInfo -> Elims -> ExtLamInfo
applyE ExtLamInfo
t Elims
es = ExtLamInfo -> Args -> ExtLamInfo
forall t. Apply t => t -> Args -> t
apply ExtLamInfo
t (Args -> ExtLamInfo) -> Args -> ExtLamInfo
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
instance Apply System where
apply :: System -> Args -> System
apply (System Telescope
tel [(Face, Term)]
sys) Args
args
= if Int
nargs Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
ntel then System
forall a. HasCallStack => a
__IMPOSSIBLE__
else Telescope -> [(Face, Term)] -> System
System Telescope
newTel (((Face, Term) -> (Face, Term)) -> [(Face, Term)] -> [(Face, Term)]
forall a b. (a -> b) -> [a] -> [b]
map (((Term, Bool) -> (Term, Bool)) -> Face -> Face
forall a b. (a -> b) -> [a] -> [b]
map (Term -> Term
f (Term -> Term) -> (Bool -> Bool) -> (Term, Bool) -> (Term, Bool)
forall a c b d. (a -> c) -> (b -> d) -> (a, b) -> (c, d)
-*- Bool -> Bool
forall a. a -> a
id) (Face -> Face) -> (Term -> Term) -> (Face, Term) -> (Face, Term)
forall a c b d. (a -> c) -> (b -> d) -> (a, b) -> (c, d)
-*- Term -> Term
f) [(Face, Term)]
sys)
where
f :: Term -> Term
f = Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' Term
Substitution' (SubstArg Term)
sigma
nargs :: Int
nargs = Args -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length Args
args
ntel :: Int
ntel = Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel
newTel :: Telescope
newTel = Telescope -> Args -> Telescope
forall t. Apply t => t -> Args -> t
apply Telescope
tel Args
args
sigma :: Substitution' Term
sigma = Int -> Substitution' Term -> Substitution' Term
forall a. Int -> Substitution' a -> Substitution' a
liftS (Int
ntel Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
nargs) ([Term] -> Substitution' Term
forall a. DeBruijn a => [a] -> Substitution' a
parallelS ([Term] -> [Term]
forall a. [a] -> [a]
reverse ([Term] -> [Term]) -> [Term] -> [Term]
forall a b. (a -> b) -> a -> b
$ (Arg Term -> Term) -> Args -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Term
forall e. Arg e -> e
unArg Args
args))
applyE :: System -> Elims -> System
applyE System
t Elims
es = System -> Args -> System
forall t. Apply t => t -> Args -> t
apply System
t (Args -> System) -> Args -> System
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
instance Apply a => Apply (WithArity a) where
apply :: WithArity a -> Args -> WithArity a
apply (WithArity Int
n a
a) Args
args = Int -> a -> WithArity a
forall c. Int -> c -> WithArity c
WithArity Int
n (a -> WithArity a) -> a -> WithArity a
forall a b. (a -> b) -> a -> b
$ a -> Args -> a
forall t. Apply t => t -> Args -> t
apply a
a Args
args
applyE :: WithArity a -> Elims -> WithArity a
applyE (WithArity Int
n a
a) Elims
es = Int -> a -> WithArity a
forall c. Int -> c -> WithArity c
WithArity Int
n (a -> WithArity a) -> a -> WithArity a
forall a b. (a -> b) -> a -> b
$ a -> Elims -> a
forall t. Apply t => t -> Elims -> t
applyE a
a Elims
es
instance Apply a => Apply (Case a) where
apply :: Case a -> Args -> Case a
apply (Branches Bool
cop Map QName (WithArity a)
cs Maybe (ConHead, WithArity a)
eta Map Literal a
ls Maybe a
m Maybe Bool
b Bool
lz) Args
args =
Bool
-> Map QName (WithArity a)
-> Maybe (ConHead, WithArity a)
-> Map Literal a
-> Maybe a
-> Maybe Bool
-> Bool
-> Case a
forall c.
Bool
-> Map QName (WithArity c)
-> Maybe (ConHead, WithArity c)
-> Map Literal c
-> Maybe c
-> Maybe Bool
-> Bool
-> Case c
Branches Bool
cop (Map QName (WithArity a) -> Args -> Map QName (WithArity a)
forall t. Apply t => t -> Args -> t
apply Map QName (WithArity a)
cs Args
args) ((WithArity a -> WithArity a)
-> (ConHead, WithArity a) -> (ConHead, WithArity a)
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (WithArity a -> Args -> WithArity a
forall t. Apply t => t -> Args -> t
`apply` Args
args) ((ConHead, WithArity a) -> (ConHead, WithArity a))
-> Maybe (ConHead, WithArity a) -> Maybe (ConHead, WithArity a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe (ConHead, WithArity a)
eta) (Map Literal a -> Args -> Map Literal a
forall t. Apply t => t -> Args -> t
apply Map Literal a
ls Args
args) (Maybe a -> Args -> Maybe a
forall t. Apply t => t -> Args -> t
apply Maybe a
m Args
args) Maybe Bool
b Bool
lz
applyE :: Case a -> Elims -> Case a
applyE (Branches Bool
cop Map QName (WithArity a)
cs Maybe (ConHead, WithArity a)
eta Map Literal a
ls Maybe a
m Maybe Bool
b Bool
lz) Elims
es =
Bool
-> Map QName (WithArity a)
-> Maybe (ConHead, WithArity a)
-> Map Literal a
-> Maybe a
-> Maybe Bool
-> Bool
-> Case a
forall c.
Bool
-> Map QName (WithArity c)
-> Maybe (ConHead, WithArity c)
-> Map Literal c
-> Maybe c
-> Maybe Bool
-> Bool
-> Case c
Branches Bool
cop (Map QName (WithArity a) -> Elims -> Map QName (WithArity a)
forall t. Apply t => t -> Elims -> t
applyE Map QName (WithArity a)
cs Elims
es) ((WithArity a -> WithArity a)
-> (ConHead, WithArity a) -> (ConHead, WithArity a)
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (WithArity a -> Elims -> WithArity a
forall t. Apply t => t -> Elims -> t
`applyE` Elims
es) ((ConHead, WithArity a) -> (ConHead, WithArity a))
-> Maybe (ConHead, WithArity a) -> Maybe (ConHead, WithArity a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe (ConHead, WithArity a)
eta)(Map Literal a -> Elims -> Map Literal a
forall t. Apply t => t -> Elims -> t
applyE Map Literal a
ls Elims
es) (Maybe a -> Elims -> Maybe a
forall t. Apply t => t -> Elims -> t
applyE Maybe a
m Elims
es) Maybe Bool
b Bool
lz
instance Apply FunctionInverse where
apply :: FunctionInverse -> Args -> FunctionInverse
apply FunctionInverse
NotInjective Args
args = FunctionInverse
forall c. FunctionInverse' c
NotInjective
apply (Inverse InversionMap Clause
inv) Args
args = InversionMap Clause -> FunctionInverse
forall c. InversionMap c -> FunctionInverse' c
Inverse (InversionMap Clause -> FunctionInverse)
-> InversionMap Clause -> FunctionInverse
forall a b. (a -> b) -> a -> b
$ InversionMap Clause -> Args -> InversionMap Clause
forall t. Apply t => t -> Args -> t
apply InversionMap Clause
inv Args
args
applyE :: FunctionInverse -> Elims -> FunctionInverse
applyE FunctionInverse
t Elims
es = FunctionInverse -> Args -> FunctionInverse
forall t. Apply t => t -> Args -> t
apply FunctionInverse
t (Args -> FunctionInverse) -> Args -> FunctionInverse
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
instance Apply DisplayTerm where
apply :: DisplayTerm -> Args -> DisplayTerm
apply (DTerm Term
v) Args
args = Term -> DisplayTerm
DTerm (Term -> DisplayTerm) -> Term -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ Term -> Args -> Term
forall t. Apply t => t -> Args -> t
apply Term
v Args
args
apply (DDot Term
v) Args
args = Term -> DisplayTerm
DDot (Term -> DisplayTerm) -> Term -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ Term -> Args -> Term
forall t. Apply t => t -> Args -> t
apply Term
v Args
args
apply (DCon ConHead
c ConInfo
ci [Arg DisplayTerm]
vs) Args
args = ConHead -> ConInfo -> [Arg DisplayTerm] -> DisplayTerm
DCon ConHead
c ConInfo
ci ([Arg DisplayTerm] -> DisplayTerm)
-> [Arg DisplayTerm] -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ [Arg DisplayTerm]
vs [Arg DisplayTerm] -> [Arg DisplayTerm] -> [Arg DisplayTerm]
forall a. [a] -> [a] -> [a]
++ (Arg Term -> Arg DisplayTerm) -> Args -> [Arg DisplayTerm]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> DisplayTerm) -> Arg Term -> Arg DisplayTerm
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Term -> DisplayTerm
DTerm) Args
args
apply (DDef QName
c [Elim' DisplayTerm]
es) Args
args = QName -> [Elim' DisplayTerm] -> DisplayTerm
DDef QName
c ([Elim' DisplayTerm] -> DisplayTerm)
-> [Elim' DisplayTerm] -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ [Elim' DisplayTerm]
es [Elim' DisplayTerm] -> [Elim' DisplayTerm] -> [Elim' DisplayTerm]
forall a. [a] -> [a] -> [a]
++ (Arg Term -> Elim' DisplayTerm) -> Args -> [Elim' DisplayTerm]
forall a b. (a -> b) -> [a] -> [b]
map (Arg DisplayTerm -> Elim' DisplayTerm
forall a. Arg a -> Elim' a
Apply (Arg DisplayTerm -> Elim' DisplayTerm)
-> (Arg Term -> Arg DisplayTerm) -> Arg Term -> Elim' DisplayTerm
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Term -> DisplayTerm) -> Arg Term -> Arg DisplayTerm
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Term -> DisplayTerm
DTerm) Args
args
apply (DWithApp DisplayTerm
v [DisplayTerm]
ws Elims
es) Args
args = DisplayTerm -> [DisplayTerm] -> Elims -> DisplayTerm
DWithApp DisplayTerm
v [DisplayTerm]
ws (Elims -> DisplayTerm) -> Elims -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ Elims
es Elims -> Elims -> Elims
forall a. [a] -> [a] -> [a]
++ (Arg Term -> Elim' Term) -> Args -> Elims
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Elim' Term
forall a. Arg a -> Elim' a
Apply Args
args
applyE :: DisplayTerm -> Elims -> DisplayTerm
applyE (DTerm Term
v) Elims
es = Term -> DisplayTerm
DTerm (Term -> DisplayTerm) -> Term -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
applyE Term
v Elims
es
applyE (DDot Term
v) Elims
es = Term -> DisplayTerm
DDot (Term -> DisplayTerm) -> Term -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ Term -> Elims -> Term
forall t. Apply t => t -> Elims -> t
applyE Term
v Elims
es
applyE (DCon ConHead
c ConInfo
ci [Arg DisplayTerm]
vs) Elims
es = ConHead -> ConInfo -> [Arg DisplayTerm] -> DisplayTerm
DCon ConHead
c ConInfo
ci ([Arg DisplayTerm] -> DisplayTerm)
-> [Arg DisplayTerm] -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ [Arg DisplayTerm]
vs [Arg DisplayTerm] -> [Arg DisplayTerm] -> [Arg DisplayTerm]
forall a. [a] -> [a] -> [a]
++ (Arg Term -> Arg DisplayTerm) -> Args -> [Arg DisplayTerm]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> DisplayTerm) -> Arg Term -> Arg DisplayTerm
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Term -> DisplayTerm
DTerm) Args
ws
where ws :: Args
ws = Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
applyE (DDef QName
c [Elim' DisplayTerm]
es') Elims
es = QName -> [Elim' DisplayTerm] -> DisplayTerm
DDef QName
c ([Elim' DisplayTerm] -> DisplayTerm)
-> [Elim' DisplayTerm] -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ [Elim' DisplayTerm]
es' [Elim' DisplayTerm] -> [Elim' DisplayTerm] -> [Elim' DisplayTerm]
forall a. [a] -> [a] -> [a]
++ (Elim' Term -> Elim' DisplayTerm) -> Elims -> [Elim' DisplayTerm]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> DisplayTerm) -> Elim' Term -> Elim' DisplayTerm
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Term -> DisplayTerm
DTerm) Elims
es
applyE (DWithApp DisplayTerm
v [DisplayTerm]
ws Elims
es') Elims
es = DisplayTerm -> [DisplayTerm] -> Elims -> DisplayTerm
DWithApp DisplayTerm
v [DisplayTerm]
ws (Elims -> DisplayTerm) -> Elims -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ Elims
es' Elims -> Elims -> Elims
forall a. [a] -> [a] -> [a]
++ Elims
es
instance {-# OVERLAPPABLE #-} Apply t => Apply [t] where
apply :: [t] -> Args -> [t]
apply [t]
ts Args
args = (t -> t) -> [t] -> [t]
forall a b. (a -> b) -> [a] -> [b]
map (t -> Args -> t
forall t. Apply t => t -> Args -> t
`apply` Args
args) [t]
ts
applyE :: [t] -> Elims -> [t]
applyE [t]
ts Elims
es = (t -> t) -> [t] -> [t]
forall a b. (a -> b) -> [a] -> [b]
map (t -> Elims -> t
forall t. Apply t => t -> Elims -> t
`applyE` Elims
es) [t]
ts
instance Apply t => Apply (Blocked t) where
apply :: Blocked t -> Args -> Blocked t
apply Blocked t
b Args
args = (t -> t) -> Blocked t -> Blocked t
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (t -> Args -> t
forall t. Apply t => t -> Args -> t
`apply` Args
args) Blocked t
b
applyE :: Blocked t -> Elims -> Blocked t
applyE Blocked t
b Elims
es = (t -> t) -> Blocked t -> Blocked t
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (t -> Elims -> t
forall t. Apply t => t -> Elims -> t
`applyE` Elims
es) Blocked t
b
instance Apply t => Apply (Maybe t) where
apply :: Maybe t -> Args -> Maybe t
apply Maybe t
x Args
args = (t -> t) -> Maybe t -> Maybe t
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (t -> Args -> t
forall t. Apply t => t -> Args -> t
`apply` Args
args) Maybe t
x
applyE :: Maybe t -> Elims -> Maybe t
applyE Maybe t
x Elims
es = (t -> t) -> Maybe t -> Maybe t
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (t -> Elims -> t
forall t. Apply t => t -> Elims -> t
`applyE` Elims
es) Maybe t
x
instance Apply t => Apply (Strict.Maybe t) where
apply :: Maybe t -> Args -> Maybe t
apply Maybe t
x Args
args = (t -> t) -> Maybe t -> Maybe t
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (t -> Args -> t
forall t. Apply t => t -> Args -> t
`apply` Args
args) Maybe t
x
applyE :: Maybe t -> Elims -> Maybe t
applyE Maybe t
x Elims
es = (t -> t) -> Maybe t -> Maybe t
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (t -> Elims -> t
forall t. Apply t => t -> Elims -> t
`applyE` Elims
es) Maybe t
x
instance Apply v => Apply (Map k v) where
apply :: Map k v -> Args -> Map k v
apply Map k v
x Args
args = (v -> v) -> Map k v -> Map k v
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (v -> Args -> v
forall t. Apply t => t -> Args -> t
`apply` Args
args) Map k v
x
applyE :: Map k v -> Elims -> Map k v
applyE Map k v
x Elims
es = (v -> v) -> Map k v -> Map k v
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (v -> Elims -> v
forall t. Apply t => t -> Elims -> t
`applyE` Elims
es) Map k v
x
instance Apply v => Apply (HashMap k v) where
apply :: HashMap k v -> Args -> HashMap k v
apply HashMap k v
x Args
args = (v -> v) -> HashMap k v -> HashMap k v
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (v -> Args -> v
forall t. Apply t => t -> Args -> t
`apply` Args
args) HashMap k v
x
applyE :: HashMap k v -> Elims -> HashMap k v
applyE HashMap k v
x Elims
es = (v -> v) -> HashMap k v -> HashMap k v
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (v -> Elims -> v
forall t. Apply t => t -> Elims -> t
`applyE` Elims
es) HashMap k v
x
instance (Apply a, Apply b) => Apply (a,b) where
apply :: (a, b) -> Args -> (a, b)
apply (a
x,b
y) Args
args = (a -> Args -> a
forall t. Apply t => t -> Args -> t
apply a
x Args
args, b -> Args -> b
forall t. Apply t => t -> Args -> t
apply b
y Args
args)
applyE :: (a, b) -> Elims -> (a, b)
applyE (a
x,b
y) Elims
es = (a -> Elims -> a
forall t. Apply t => t -> Elims -> t
applyE a
x Elims
es , b -> Elims -> b
forall t. Apply t => t -> Elims -> t
applyE b
y Elims
es )
instance (Apply a, Apply b, Apply c) => Apply (a,b,c) where
apply :: (a, b, c) -> Args -> (a, b, c)
apply (a
x,b
y,c
z) Args
args = (a -> Args -> a
forall t. Apply t => t -> Args -> t
apply a
x Args
args, b -> Args -> b
forall t. Apply t => t -> Args -> t
apply b
y Args
args, c -> Args -> c
forall t. Apply t => t -> Args -> t
apply c
z Args
args)
applyE :: (a, b, c) -> Elims -> (a, b, c)
applyE (a
x,b
y,c
z) Elims
es = (a -> Elims -> a
forall t. Apply t => t -> Elims -> t
applyE a
x Elims
es , b -> Elims -> b
forall t. Apply t => t -> Elims -> t
applyE b
y Elims
es , c -> Elims -> c
forall t. Apply t => t -> Elims -> t
applyE c
z Elims
es )
instance DoDrop a => Apply (Drop a) where
apply :: Drop a -> Args -> Drop a
apply Drop a
x Args
args = Int -> Drop a -> Drop a
forall a. DoDrop a => Int -> Drop a -> Drop a
dropMore (Args -> Int
forall a. Sized a => a -> Int
size Args
args) Drop a
x
applyE :: Drop a -> Elims -> Drop a
applyE Drop a
t Elims
es = Drop a -> Args -> Drop a
forall t. Apply t => t -> Args -> t
apply Drop a
t (Args -> Drop a) -> Args -> Drop a
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
instance DoDrop a => Abstract (Drop a) where
abstract :: Telescope -> Drop a -> Drop a
abstract Telescope
tel Drop a
x = Int -> Drop a -> Drop a
forall a. DoDrop a => Int -> Drop a -> Drop a
unDrop (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel) Drop a
x
instance Apply Permutation where
apply :: Permutation -> Args -> Permutation
apply (Perm Int
n [Int]
xs) Args
args = Int -> [Int] -> Permutation
Perm (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
m) ([Int] -> Permutation) -> [Int] -> Permutation
forall a b. (a -> b) -> a -> b
$ (Int -> Int) -> [Int] -> [Int]
forall a b. (a -> b) -> [a] -> [b]
map ((Int -> Int -> Int) -> Int -> Int -> Int
forall a b c. (a -> b -> c) -> b -> a -> c
flip (-) Int
m) ([Int] -> [Int]) -> [Int] -> [Int]
forall a b. (a -> b) -> a -> b
$ Int -> [Int] -> [Int]
forall a. Int -> [a] -> [a]
drop Int
m [Int]
xs
where
m :: Int
m = Args -> Int
forall a. Sized a => a -> Int
size Args
args
applyE :: Permutation -> Elims -> Permutation
applyE Permutation
t Elims
es = Permutation -> Args -> Permutation
forall t. Apply t => t -> Args -> t
apply Permutation
t (Args -> Permutation) -> Args -> Permutation
forall a b. (a -> b) -> a -> b
$ Args -> Maybe Args -> Args
forall a. a -> Maybe a -> a
fromMaybe Args
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Args -> Args) -> Maybe Args -> Args
forall a b. (a -> b) -> a -> b
$ Elims -> Maybe Args
forall a. [Elim' a] -> Maybe [Arg a]
allApplyElims Elims
es
instance Abstract Permutation where
abstract :: Telescope -> Permutation -> Permutation
abstract Telescope
tel (Perm Int
n [Int]
xs) = Int -> [Int] -> Permutation
Perm (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
m) ([Int] -> Permutation) -> [Int] -> Permutation
forall a b. (a -> b) -> a -> b
$ [Int
0..Int
m Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1] [Int] -> [Int] -> [Int]
forall a. [a] -> [a] -> [a]
++ (Int -> Int) -> [Int] -> [Int]
forall a b. (a -> b) -> [a] -> [b]
map (Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
m) [Int]
xs
where
m :: Int
m = Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel
piApply :: Type -> Args -> Type
piApply :: Type -> Args -> Type
piApply Type
t [] = Type
t
piApply (El Sort
_ (Pi Dom Type
_ Abs Type
b)) (Arg Term
a:Args
args) = Abs Type -> SubstArg Type -> Type
forall a. Subst a => Abs a -> SubstArg a -> a
lazyAbsApp Abs Type
b (Arg Term -> Term
forall e. Arg e -> e
unArg Arg Term
a) Type -> Args -> Type
`piApply` Args
args
piApply Type
t Args
args =
String -> Type -> Type
forall a. String -> a -> a
trace (String
"piApply t = " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Type -> String
forall a. Pretty a => a -> String
prettyShow Type
t String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"\n args = " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Args -> String
forall a. Pretty a => a -> String
prettyShow Args
args) Type
forall a. HasCallStack => a
__IMPOSSIBLE__
instance Abstract Term where
abstract :: Telescope -> Term -> Term
abstract = Telescope -> Term -> Term
teleLam
instance Abstract Type where
abstract :: Telescope -> Type -> Type
abstract = Telescope -> Type -> Type
telePi_
instance Abstract Sort where
abstract :: Telescope -> Sort -> Sort
abstract Telescope
EmptyTel Sort
s = Sort
s
abstract Telescope
_ Sort
s = Sort
forall a. HasCallStack => a
__IMPOSSIBLE__
instance Abstract Telescope where
Telescope
EmptyTel abstract :: Telescope -> Telescope -> Telescope
`abstract` Telescope
tel = Telescope
tel
ExtendTel Dom Type
arg Abs Telescope
xtel `abstract` Telescope
tel = Dom Type -> Abs Telescope -> Telescope
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel Dom Type
arg (Abs Telescope -> Telescope) -> Abs Telescope -> Telescope
forall a b. (a -> b) -> a -> b
$ Abs Telescope
xtel Abs Telescope -> (Telescope -> Telescope) -> Abs Telescope
forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
<&> (Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
`abstract` Telescope
tel)
instance Abstract Definition where
abstract :: Telescope -> Definition -> Definition
abstract Telescope
tel (Defn ArgInfo
info QName
x Type
t [Polarity]
pol [Occurrence]
occ NumGeneralizableArgs
gens [Maybe Name]
gpars [LocalDisplayForm]
df MutualId
m CompiledRepresentation
c Maybe QName
inst Bool
copy Set QName
ma Bool
nc Bool
inj Bool
copat Blocked_
blk Language
lang Defn
d) =
ArgInfo
-> QName
-> Type
-> [Polarity]
-> [Occurrence]
-> NumGeneralizableArgs
-> [Maybe Name]
-> [LocalDisplayForm]
-> MutualId
-> CompiledRepresentation
-> Maybe QName
-> Bool
-> Set QName
-> Bool
-> Bool
-> Bool
-> Blocked_
-> Language
-> Defn
-> Definition
Defn ArgInfo
info QName
x (Telescope -> Type -> Type
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel Type
t) (Telescope -> [Polarity] -> [Polarity]
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel [Polarity]
pol) (Telescope -> [Occurrence] -> [Occurrence]
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel [Occurrence]
occ) (Telescope -> NumGeneralizableArgs -> NumGeneralizableArgs
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel NumGeneralizableArgs
gens)
(Int -> Maybe Name -> [Maybe Name]
forall a. Int -> a -> [a]
replicate (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel) Maybe Name
forall a. Maybe a
Nothing [Maybe Name] -> [Maybe Name] -> [Maybe Name]
forall a. [a] -> [a] -> [a]
++ [Maybe Name]
gpars)
[LocalDisplayForm]
df MutualId
m CompiledRepresentation
c Maybe QName
inst Bool
copy Set QName
ma Bool
nc Bool
inj Bool
copat Blocked_
blk Language
lang (Telescope -> Defn -> Defn
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel Defn
d)
instance Abstract RewriteRule where
abstract :: Telescope -> RewriteRule -> RewriteRule
abstract Telescope
tel (RewriteRule QName
q Telescope
gamma QName
f PElims
ps Term
rhs Type
t Bool
c) =
QName
-> Telescope
-> QName
-> PElims
-> Term
-> Type
-> Bool
-> RewriteRule
RewriteRule QName
q (Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel Telescope
gamma) QName
f PElims
ps Term
rhs Type
t Bool
c
instance {-# OVERLAPPING #-} Abstract [Occ.Occurrence] where
abstract :: Telescope -> [Occurrence] -> [Occurrence]
abstract Telescope
tel [] = []
abstract Telescope
tel [Occurrence]
occ = Int -> Occurrence -> [Occurrence]
forall a. Int -> a -> [a]
replicate (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel) Occurrence
Mixed [Occurrence] -> [Occurrence] -> [Occurrence]
forall a. [a] -> [a] -> [a]
++ [Occurrence]
occ
instance {-# OVERLAPPING #-} Abstract [Polarity] where
abstract :: Telescope -> [Polarity] -> [Polarity]
abstract Telescope
tel [] = []
abstract Telescope
tel [Polarity]
pol = Int -> Polarity -> [Polarity]
forall a. Int -> a -> [a]
replicate (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel) Polarity
Invariant [Polarity] -> [Polarity] -> [Polarity]
forall a. [a] -> [a] -> [a]
++ [Polarity]
pol
instance Abstract NumGeneralizableArgs where
abstract :: Telescope -> NumGeneralizableArgs -> NumGeneralizableArgs
abstract Telescope
tel NumGeneralizableArgs
NoGeneralizableArgs = NumGeneralizableArgs
NoGeneralizableArgs
abstract Telescope
tel (SomeGeneralizableArgs Int
n) = Int -> NumGeneralizableArgs
SomeGeneralizableArgs (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n)
instance Abstract Projection where
abstract :: Telescope -> Projection -> Projection
abstract Telescope
tel Projection
p = Projection
p
{ projIndex :: Int
projIndex = Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Projection -> Int
projIndex Projection
p
, projLams :: ProjLams
projLams = Telescope -> ProjLams -> ProjLams
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel (ProjLams -> ProjLams) -> ProjLams -> ProjLams
forall a b. (a -> b) -> a -> b
$ Projection -> ProjLams
projLams Projection
p
}
instance Abstract ProjLams where
abstract :: Telescope -> ProjLams -> ProjLams
abstract Telescope
tel (ProjLams [Arg String]
lams) = [Arg String] -> ProjLams
ProjLams ([Arg String] -> ProjLams) -> [Arg String] -> ProjLams
forall a b. (a -> b) -> a -> b
$
(Dom' Term (String, Type) -> Arg String)
-> [Dom' Term (String, Type)] -> [Arg String]
forall a b. (a -> b) -> [a] -> [b]
map (\ !Dom' Term (String, Type)
dom -> Dom' Term String -> Arg String
forall t a. Dom' t a -> Arg a
argFromDom ((String, Type) -> String
forall a b. (a, b) -> a
fst ((String, Type) -> String)
-> Dom' Term (String, Type) -> Dom' Term String
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom' Term (String, Type)
dom)) (Telescope -> [Dom' Term (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList Telescope
tel) [Arg String] -> [Arg String] -> [Arg String]
forall a. [a] -> [a] -> [a]
++ [Arg String]
lams
instance Abstract System where
abstract :: Telescope -> System -> System
abstract Telescope
tel (System Telescope
tel1 [(Face, Term)]
sys) = Telescope -> [(Face, Term)] -> System
System (Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel Telescope
tel1) [(Face, Term)]
sys
instance Abstract Defn where
abstract :: Telescope -> Defn -> Defn
abstract Telescope
tel Defn
d = case Defn
d of
Axiom{} -> Defn
d
DataOrRecSig Int
n -> Int -> Defn
DataOrRecSig (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n)
GeneralizableVar{} -> Defn
d
AbstractDefn Defn
d -> Defn -> Defn
AbstractDefn (Defn -> Defn) -> Defn -> Defn
forall a b. (a -> b) -> a -> b
$ Telescope -> Defn -> Defn
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel Defn
d
Function{ funClauses :: Defn -> [Clause]
funClauses = [Clause]
cs, funCompiled :: Defn -> Maybe CompiledClauses
funCompiled = Maybe CompiledClauses
cc, funCovering :: Defn -> [Clause]
funCovering = [Clause]
cov, funInv :: Defn -> FunctionInverse
funInv = FunctionInverse
inv
, funExtLam :: Defn -> Maybe ExtLamInfo
funExtLam = Maybe ExtLamInfo
extLam
, funProjection :: Defn -> Maybe Projection
funProjection = Maybe Projection
Nothing } ->
Defn
d { funClauses :: [Clause]
funClauses = Telescope -> [Clause] -> [Clause]
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel [Clause]
cs
, funCompiled :: Maybe CompiledClauses
funCompiled = Telescope -> Maybe CompiledClauses -> Maybe CompiledClauses
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel Maybe CompiledClauses
cc
, funCovering :: [Clause]
funCovering = Telescope -> [Clause] -> [Clause]
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel [Clause]
cov
, funInv :: FunctionInverse
funInv = Telescope -> FunctionInverse -> FunctionInverse
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel FunctionInverse
inv
, funExtLam :: Maybe ExtLamInfo
funExtLam = (System -> System) -> ExtLamInfo -> ExtLamInfo
modifySystem (Telescope -> System -> System
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel) (ExtLamInfo -> ExtLamInfo) -> Maybe ExtLamInfo -> Maybe ExtLamInfo
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe ExtLamInfo
extLam
}
Function{ funClauses :: Defn -> [Clause]
funClauses = [Clause]
cs, funCompiled :: Defn -> Maybe CompiledClauses
funCompiled = Maybe CompiledClauses
cc, funCovering :: Defn -> [Clause]
funCovering = [Clause]
cov, funInv :: Defn -> FunctionInverse
funInv = FunctionInverse
inv
, funExtLam :: Defn -> Maybe ExtLamInfo
funExtLam = Maybe ExtLamInfo
extLam
, funProjection :: Defn -> Maybe Projection
funProjection = Just Projection
p } ->
if Projection -> Int
projIndex Projection
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0 then Defn
d' else
Defn
d' { funClauses :: [Clause]
funClauses = (Clause -> Clause) -> [Clause] -> [Clause]
forall a b. (a -> b) -> [a] -> [b]
map (Telescope -> Clause -> Clause
abstractClause Telescope
tel1) [Clause]
cs
, funCompiled :: Maybe CompiledClauses
funCompiled = Telescope -> Maybe CompiledClauses -> Maybe CompiledClauses
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel1 Maybe CompiledClauses
cc
, funCovering :: [Clause]
funCovering = Telescope -> [Clause] -> [Clause]
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel1 [Clause]
cov
, funInv :: FunctionInverse
funInv = Telescope -> FunctionInverse -> FunctionInverse
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel1 FunctionInverse
inv
, funExtLam :: Maybe ExtLamInfo
funExtLam = (System -> System) -> ExtLamInfo -> ExtLamInfo
modifySystem (\ System
_ -> System
forall a. HasCallStack => a
__IMPOSSIBLE__) (ExtLamInfo -> ExtLamInfo) -> Maybe ExtLamInfo -> Maybe ExtLamInfo
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe ExtLamInfo
extLam
}
where
d' :: Defn
d' = Defn
d { funProjection :: Maybe Projection
funProjection = Projection -> Maybe Projection
forall a. a -> Maybe a
Just (Projection -> Maybe Projection) -> Projection -> Maybe Projection
forall a b. (a -> b) -> a -> b
$ Telescope -> Projection -> Projection
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel Projection
p
, funClauses :: [Clause]
funClauses = (Clause -> Clause) -> [Clause] -> [Clause]
forall a b. (a -> b) -> [a] -> [b]
map (Telescope -> Clause -> Clause
abstractClause Telescope
forall a. Tele a
EmptyTel) [Clause]
cs }
tel1 :: Telescope
tel1 = [Dom' Term (String, Type)] -> Telescope
telFromList ([Dom' Term (String, Type)] -> Telescope)
-> [Dom' Term (String, Type)] -> Telescope
forall a b. (a -> b) -> a -> b
$ Int -> [Dom' Term (String, Type)] -> [Dom' Term (String, Type)]
forall a. Int -> [a] -> [a]
drop (Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) ([Dom' Term (String, Type)] -> [Dom' Term (String, Type)])
-> [Dom' Term (String, Type)] -> [Dom' Term (String, Type)]
forall a b. (a -> b) -> a -> b
$ Telescope -> [Dom' Term (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList Telescope
tel
abstractClause :: Telescope -> Clause -> Clause
abstractClause Telescope
tel1 Clause
c = (Telescope -> Clause -> Clause
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel1 Clause
c) { clauseTel :: Telescope
clauseTel = Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel (Telescope -> Telescope) -> Telescope -> Telescope
forall a b. (a -> b) -> a -> b
$ Clause -> Telescope
clauseTel Clause
c }
Datatype{ dataPars :: Defn -> Int
dataPars = Int
np, dataClause :: Defn -> Maybe Clause
dataClause = Maybe Clause
cl } ->
Defn
d { dataPars :: Int
dataPars = Int
np Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel
, dataClause :: Maybe Clause
dataClause = Telescope -> Maybe Clause -> Maybe Clause
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel Maybe Clause
cl
}
Record{ recPars :: Defn -> Int
recPars = Int
np, recClause :: Defn -> Maybe Clause
recClause = Maybe Clause
cl, recTel :: Defn -> Telescope
recTel = Telescope
tel' } ->
Defn
d { recPars :: Int
recPars = Int
np Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel
, recClause :: Maybe Clause
recClause = Telescope -> Maybe Clause -> Maybe Clause
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel Maybe Clause
cl
, recTel :: Telescope
recTel = Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel Telescope
tel'
}
Constructor{ conPars :: Defn -> Int
conPars = Int
np } ->
Defn
d { conPars :: Int
conPars = Int
np Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel }
Primitive{ primClauses :: Defn -> [Clause]
primClauses = [Clause]
cs } ->
Defn
d { primClauses :: [Clause]
primClauses = Telescope -> [Clause] -> [Clause]
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel [Clause]
cs }
PrimitiveSort{} -> Defn
d
instance Abstract PrimFun where
abstract :: Telescope -> PrimFun -> PrimFun
abstract Telescope
tel (PrimFun QName
x Int
ar Args -> Int -> ReduceM (Reduced MaybeReducedArgs Term)
def) = QName
-> Int
-> (Args -> Int -> ReduceM (Reduced MaybeReducedArgs Term))
-> PrimFun
PrimFun QName
x (Int
ar Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n) ((Args -> Int -> ReduceM (Reduced MaybeReducedArgs Term))
-> PrimFun)
-> (Args -> Int -> ReduceM (Reduced MaybeReducedArgs Term))
-> PrimFun
forall a b. (a -> b) -> a -> b
$ \Args
ts -> Args -> Int -> ReduceM (Reduced MaybeReducedArgs Term)
def (Args -> Int -> ReduceM (Reduced MaybeReducedArgs Term))
-> Args -> Int -> ReduceM (Reduced MaybeReducedArgs Term)
forall a b. (a -> b) -> a -> b
$ Int -> Args -> Args
forall a. Int -> [a] -> [a]
drop Int
n Args
ts
where n :: Int
n = Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel
instance Abstract Clause where
abstract :: Telescope -> Clause -> Clause
abstract Telescope
tel (Clause Range
rl Range
rf Telescope
tel' NAPs
ps Maybe Term
b Maybe (Arg Type)
t Bool
catchall Maybe Bool
exact Maybe Bool
recursive Maybe Bool
unreachable ExpandedEllipsis
ell) =
Range
-> Range
-> Telescope
-> NAPs
-> Maybe Term
-> Maybe (Arg Type)
-> Bool
-> Maybe Bool
-> Maybe Bool
-> Maybe Bool
-> ExpandedEllipsis
-> Clause
Clause Range
rl Range
rf (Telescope -> Telescope -> Telescope
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel Telescope
tel')
(Int -> Telescope -> NAPs
namedTelVars Int
m Telescope
tel NAPs -> NAPs -> NAPs
forall a. [a] -> [a] -> [a]
++ NAPs
ps)
Maybe Term
b
Maybe (Arg Type)
t
Bool
catchall
Maybe Bool
exact
Maybe Bool
recursive
Maybe Bool
unreachable
ExpandedEllipsis
ell
where m :: Int
m = Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel'
instance Abstract CompiledClauses where
abstract :: Telescope -> CompiledClauses -> CompiledClauses
abstract Telescope
tel CompiledClauses
cc = case CompiledClauses
cc of
Fail [Arg String]
xs -> [Arg String] -> CompiledClauses
forall a. [Arg String] -> CompiledClauses' a
Fail ([Arg String]
hs [Arg String] -> [Arg String] -> [Arg String]
forall a. [a] -> [a] -> [a]
++ [Arg String]
xs)
Done [Arg String]
xs Term
t -> [Arg String] -> Term -> CompiledClauses
forall a. [Arg String] -> a -> CompiledClauses' a
Done ([Arg String]
hs [Arg String] -> [Arg String] -> [Arg String]
forall a. [a] -> [a] -> [a]
++ [Arg String]
xs) Term
t
Case Arg Int
n Case CompiledClauses
bs -> Arg Int -> Case CompiledClauses -> CompiledClauses
forall a.
Arg Int -> Case (CompiledClauses' a) -> CompiledClauses' a
Case (Arg Int
n Arg Int -> (Int -> Int) -> Arg Int
forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
<&> \ Int
i -> Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
tel) (Telescope -> Case CompiledClauses -> Case CompiledClauses
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel Case CompiledClauses
bs)
where
hs :: [Arg String]
hs = (Dom' Term (String, Type) -> Arg String)
-> [Dom' Term (String, Type)] -> [Arg String]
forall a b. (a -> b) -> [a] -> [b]
map (Dom' Term String -> Arg String
forall t a. Dom' t a -> Arg a
argFromDom (Dom' Term String -> Arg String)
-> (Dom' Term (String, Type) -> Dom' Term String)
-> Dom' Term (String, Type)
-> Arg String
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((String, Type) -> String)
-> Dom' Term (String, Type) -> Dom' Term String
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (String, Type) -> String
forall a b. (a, b) -> a
fst) ([Dom' Term (String, Type)] -> [Arg String])
-> [Dom' Term (String, Type)] -> [Arg String]
forall a b. (a -> b) -> a -> b
$ Telescope -> [Dom' Term (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList Telescope
tel
instance Abstract a => Abstract (WithArity a) where
abstract :: Telescope -> WithArity a -> WithArity a
abstract Telescope
tel (WithArity Int
n a
a) = Int -> a -> WithArity a
forall c. Int -> c -> WithArity c
WithArity Int
n (a -> WithArity a) -> a -> WithArity a
forall a b. (a -> b) -> a -> b
$ Telescope -> a -> a
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel a
a
instance Abstract a => Abstract (Case a) where
abstract :: Telescope -> Case a -> Case a
abstract Telescope
tel (Branches Bool
cop Map QName (WithArity a)
cs Maybe (ConHead, WithArity a)
eta Map Literal a
ls Maybe a
m Maybe Bool
b Bool
lz) =
Bool
-> Map QName (WithArity a)
-> Maybe (ConHead, WithArity a)
-> Map Literal a
-> Maybe a
-> Maybe Bool
-> Bool
-> Case a
forall c.
Bool
-> Map QName (WithArity c)
-> Maybe (ConHead, WithArity c)
-> Map Literal c
-> Maybe c
-> Maybe Bool
-> Bool
-> Case c
Branches Bool
cop (Telescope -> Map QName (WithArity a) -> Map QName (WithArity a)
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel Map QName (WithArity a)
cs) ((WithArity a -> WithArity a)
-> (ConHead, WithArity a) -> (ConHead, WithArity a)
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (Telescope -> WithArity a -> WithArity a
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel) ((ConHead, WithArity a) -> (ConHead, WithArity a))
-> Maybe (ConHead, WithArity a) -> Maybe (ConHead, WithArity a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe (ConHead, WithArity a)
eta)
(Telescope -> Map Literal a -> Map Literal a
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel Map Literal a
ls) (Telescope -> Maybe a -> Maybe a
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel Maybe a
m) Maybe Bool
b Bool
lz
telVars :: Int -> Telescope -> [Arg DeBruijnPattern]
telVars :: Int -> Telescope -> [Arg (Pattern' DBPatVar)]
telVars Int
m = (NamedArg (Pattern' DBPatVar) -> Arg (Pattern' DBPatVar))
-> NAPs -> [Arg (Pattern' DBPatVar)]
forall a b. (a -> b) -> [a] -> [b]
map ((Named NamedName (Pattern' DBPatVar) -> Pattern' DBPatVar)
-> NamedArg (Pattern' DBPatVar) -> Arg (Pattern' DBPatVar)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Named NamedName (Pattern' DBPatVar) -> Pattern' DBPatVar
forall name a. Named name a -> a
namedThing) (NAPs -> [Arg (Pattern' DBPatVar)])
-> (Telescope -> NAPs) -> Telescope -> [Arg (Pattern' DBPatVar)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> Telescope -> NAPs
namedTelVars Int
m)
namedTelVars :: Int -> Telescope -> [NamedArg DeBruijnPattern]
namedTelVars :: Int -> Telescope -> NAPs
namedTelVars Int
m Telescope
EmptyTel = []
namedTelVars Int
m (ExtendTel !Dom Type
dom Abs Telescope
tel) =
ArgInfo
-> Named NamedName (Pattern' DBPatVar)
-> NamedArg (Pattern' DBPatVar)
forall e. ArgInfo -> e -> Arg e
Arg (Dom Type -> ArgInfo
forall t e. Dom' t e -> ArgInfo
domInfo Dom Type
dom) (Int -> String -> Named NamedName (Pattern' DBPatVar)
namedDBVarP (Int
mInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) (String -> Named NamedName (Pattern' DBPatVar))
-> String -> Named NamedName (Pattern' DBPatVar)
forall a b. (a -> b) -> a -> b
$ Abs Telescope -> String
forall a. Abs a -> String
absName Abs Telescope
tel) NamedArg (Pattern' DBPatVar) -> NAPs -> NAPs
forall a. a -> [a] -> [a]
:
Int -> Telescope -> NAPs
namedTelVars (Int
mInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) (Abs Telescope -> Telescope
forall a. Abs a -> a
unAbs Abs Telescope
tel)
instance Abstract FunctionInverse where
abstract :: Telescope -> FunctionInverse -> FunctionInverse
abstract Telescope
tel FunctionInverse
NotInjective = FunctionInverse
forall c. FunctionInverse' c
NotInjective
abstract Telescope
tel (Inverse InversionMap Clause
inv) = InversionMap Clause -> FunctionInverse
forall c. InversionMap c -> FunctionInverse' c
Inverse (InversionMap Clause -> FunctionInverse)
-> InversionMap Clause -> FunctionInverse
forall a b. (a -> b) -> a -> b
$ Telescope -> InversionMap Clause -> InversionMap Clause
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel InversionMap Clause
inv
instance {-# OVERLAPPABLE #-} Abstract t => Abstract [t] where
abstract :: Telescope -> [t] -> [t]
abstract Telescope
tel = (t -> t) -> [t] -> [t]
forall a b. (a -> b) -> [a] -> [b]
map (Telescope -> t -> t
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel)
instance Abstract t => Abstract (Maybe t) where
abstract :: Telescope -> Maybe t -> Maybe t
abstract Telescope
tel Maybe t
x = (t -> t) -> Maybe t -> Maybe t
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Telescope -> t -> t
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel) Maybe t
x
instance Abstract v => Abstract (Map k v) where
abstract :: Telescope -> Map k v -> Map k v
abstract Telescope
tel Map k v
m = (v -> v) -> Map k v -> Map k v
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Telescope -> v -> v
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel) Map k v
m
instance Abstract v => Abstract (HashMap k v) where
abstract :: Telescope -> HashMap k v -> HashMap k v
abstract Telescope
tel HashMap k v
m = (v -> v) -> HashMap k v -> HashMap k v
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Telescope -> v -> v
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel) HashMap k v
m
abstractArgs :: Abstract a => Args -> a -> a
abstractArgs :: Args -> a -> a
abstractArgs Args
args a
x = Telescope -> a -> a
forall t. Abstract t => Telescope -> t -> t
abstract Telescope
tel a
x
where
tel :: Telescope
tel = (Arg String -> Telescope -> Telescope)
-> Telescope -> [Arg String] -> Telescope
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (\arg :: Arg String
arg@(Arg ArgInfo
info String
x) -> Dom Type -> Abs Telescope -> Telescope
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel (Type
HasCallStack => Type
__DUMMY_TYPE__ Type -> Dom' Term String -> Dom Type
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Arg String -> Dom' Term String
forall a. Arg a -> Dom a
domFromArg Arg String
arg) (Abs Telescope -> Telescope)
-> (Telescope -> Abs Telescope) -> Telescope -> Telescope
forall b c a. (b -> c) -> (a -> b) -> a -> c
. String -> Telescope -> Abs Telescope
forall a. String -> a -> Abs a
Abs String
x)
Telescope
forall a. Tele a
EmptyTel
([Arg String] -> Telescope) -> [Arg String] -> Telescope
forall a b. (a -> b) -> a -> b
$ (String -> Arg Term -> Arg String)
-> [String] -> Args -> [Arg String]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith String -> Arg Term -> Arg String
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
(<$) [String]
names Args
args
names :: [String]
names = [String] -> [String]
forall a. [a] -> [a]
cycle ([String] -> [String]) -> [String] -> [String]
forall a b. (a -> b) -> a -> b
$ (Char -> String) -> String -> [String]
forall a b. (a -> b) -> [a] -> [b]
map (String -> String
stringToArgName (String -> String) -> (Char -> String) -> Char -> String
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Char -> String -> String
forall a. a -> [a] -> [a]
:[])) [Char
'a'..Char
'z']
renaming :: forall a. DeBruijn a => Impossible -> Permutation -> Substitution' a
renaming :: Impossible -> Permutation -> Substitution' a
renaming Impossible
err Permutation
p = Impossible -> [Maybe a] -> Substitution' a -> Substitution' a
forall a.
DeBruijn a =>
Impossible -> [Maybe a] -> Substitution' a -> Substitution' a
prependS Impossible
err [Maybe a]
gamma (Substitution' a -> Substitution' a)
-> Substitution' a -> Substitution' a
forall a b. (a -> b) -> a -> b
$ Int -> Substitution' a
forall a. Int -> Substitution' a
raiseS (Int -> Substitution' a) -> Int -> Substitution' a
forall a b. (a -> b) -> a -> b
$ Permutation -> Int
forall a. Sized a => a -> Int
size Permutation
p
where
gamma :: [Maybe a]
gamma :: [Maybe a]
gamma = Permutation -> (Int -> a) -> [Maybe a]
forall a b. InversePermute a b => Permutation -> a -> b
inversePermute Permutation
p (Int -> a
forall a. DeBruijn a => Int -> a
deBruijnVar :: Int -> a)
renamingR :: DeBruijn a => Permutation -> Substitution' a
renamingR :: Permutation -> Substitution' a
renamingR p :: Permutation
p@(Perm Int
n [Int]
_) = Permutation -> [a] -> [a]
forall a. Permutation -> [a] -> [a]
permute (Permutation -> Permutation
reverseP Permutation
p) ((Int -> a) -> [Int] -> [a]
forall a b. (a -> b) -> [a] -> [b]
map Int -> a
forall a. DeBruijn a => Int -> a
deBruijnVar [Int
0..]) [a] -> Substitution' a -> Substitution' a
forall a. DeBruijn a => [a] -> Substitution' a -> Substitution' a
++# Int -> Substitution' a
forall a. Int -> Substitution' a
raiseS Int
n
renameP :: Subst a => Impossible -> Permutation -> a -> a
renameP :: Impossible -> Permutation -> a -> a
renameP Impossible
err Permutation
p = Substitution' (SubstArg a) -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst (Impossible -> Permutation -> Substitution' (SubstArg a)
forall a.
DeBruijn a =>
Impossible -> Permutation -> Substitution' a
renaming Impossible
err Permutation
p)
instance EndoSubst a => Subst (Substitution' a) where
type SubstArg (Substitution' a) = a
applySubst :: Substitution' (SubstArg (Substitution' a))
-> Substitution' a -> Substitution' a
applySubst Substitution' (SubstArg (Substitution' a))
rho Substitution' a
sgm = Substitution' a -> Substitution' a -> Substitution' a
forall a.
EndoSubst a =>
Substitution' a -> Substitution' a -> Substitution' a
composeS Substitution' a
Substitution' (SubstArg (Substitution' a))
rho Substitution' a
sgm
{-# SPECIALIZE applySubstTerm :: Substitution -> Term -> Term #-}
{-# SPECIALIZE applySubstTerm :: Substitution' BraveTerm -> BraveTerm -> BraveTerm #-}
applySubstTerm :: forall t. (Coercible t Term, EndoSubst t, Apply t) => Substitution' t -> t -> t
applySubstTerm :: Substitution' t -> t -> t
applySubstTerm Substitution' t
IdS t
t = t
t
applySubstTerm Substitution' t
rho t
t = Term -> t
coerce (Term -> t) -> Term -> t
forall a b. (a -> b) -> a -> b
$ case t -> Term
coerce t
t of
Var Int
i Elims
es -> t -> Term
coerce (t -> Term) -> t -> Term
forall a b. (a -> b) -> a -> b
$ Substitution' t -> Int -> t
forall a. EndoSubst a => Substitution' a -> Int -> a
lookupS Substitution' t
rho Int
i t -> Elims -> t
forall t. Apply t => t -> Elims -> t
`applyE` Elims -> Elims
subE Elims
es
Lam ArgInfo
h Abs Term
m -> ArgInfo -> Abs Term -> Term
Lam ArgInfo
h (Abs Term -> Term) -> Abs Term -> Term
forall a b. (a -> b) -> a -> b
$ Abs Term -> Abs Term
forall a b. (Coercible b a, SubstWith t a) => b -> b
sub @(Abs t) Abs Term
m
Def QName
f Elims
es -> QName -> Elims -> Elims -> Term
defApp QName
f [] (Elims -> Term) -> Elims -> Term
forall a b. (a -> b) -> a -> b
$ Elims -> Elims
subE Elims
es
Con ConHead
c ConInfo
ci Elims
vs -> ConHead -> ConInfo -> Elims -> Term
Con ConHead
c ConInfo
ci (Elims -> Term) -> Elims -> Term
forall a b. (a -> b) -> a -> b
$ Elims -> Elims
subE Elims
vs
MetaV MetaId
x Elims
es -> MetaId -> Elims -> Term
MetaV MetaId
x (Elims -> Term) -> Elims -> Term
forall a b. (a -> b) -> a -> b
$ Elims -> Elims
subE Elims
es
Lit Literal
l -> Literal -> Term
Lit Literal
l
Level Level
l -> Level -> Term
levelTm (Level -> Term) -> Level -> Term
forall a b. (a -> b) -> a -> b
$ Level -> Level
forall a b. (Coercible b a, SubstWith t a) => b -> b
sub @(Level' t) Level
l
Pi Dom Type
a Abs Type
b -> (Dom Type -> Abs Type -> Term) -> (Dom Type, Abs Type) -> Term
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry Dom Type -> Abs Type -> Term
Pi ((Dom Type, Abs Type) -> Term) -> (Dom Type, Abs Type) -> Term
forall a b. (a -> b) -> a -> b
$ (Dom Type, Abs Type) -> (Dom Type, Abs Type)
subPi (Dom Type
a,Abs Type
b)
Sort Sort
s -> Sort -> Term
Sort (Sort -> Term) -> Sort -> Term
forall a b. (a -> b) -> a -> b
$ Sort -> Sort
forall a b. (Coercible b a, SubstWith t a) => b -> b
sub @(Sort' t) Sort
s
DontCare Term
mv -> Term -> Term
dontCare (Term -> Term) -> Term -> Term
forall a b. (a -> b) -> a -> b
$ Term -> Term
forall a b. (Coercible b a, SubstWith t a) => b -> b
sub @t Term
mv
Dummy String
s Elims
es -> String -> Elims -> Term
Dummy String
s (Elims -> Term) -> Elims -> Term
forall a b. (a -> b) -> a -> b
$ Elims -> Elims
subE Elims
es
where
sub :: forall a b. (Coercible b a, SubstWith t a) => b -> b
sub :: b -> b
sub b
t = a -> b
coerce (a -> b) -> a -> b
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg a) -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' t
Substitution' (SubstArg a)
rho (b -> a
coerce b
t :: a)
subE :: Elims -> Elims
subE :: Elims -> Elims
subE = forall b. (Coercible b [Elim' t], SubstWith t [Elim' t]) => b -> b
forall a b. (Coercible b a, SubstWith t a) => b -> b
sub @[Elim' t]
subPi :: (Dom Type, Abs Type) -> (Dom Type, Abs Type)
subPi :: (Dom Type, Abs Type) -> (Dom Type, Abs Type)
subPi = forall b.
(Coercible b (Dom' t (Type'' t t), Abs (Type'' t t)),
SubstWith t (Dom' t (Type'' t t), Abs (Type'' t t))) =>
b -> b
forall a b. (Coercible b a, SubstWith t a) => b -> b
sub @(Dom' t (Type'' t t), Abs (Type'' t t))
instance Subst Term where
type SubstArg Term = Term
applySubst :: Substitution' (SubstArg Term) -> Term -> Term
applySubst = Substitution' (SubstArg Term) -> Term -> Term
forall t.
(Coercible t Term, EndoSubst t, Apply t) =>
Substitution' t -> t -> t
applySubstTerm
instance Subst BraveTerm where
type SubstArg BraveTerm = BraveTerm
applySubst :: Substitution' (SubstArg BraveTerm) -> BraveTerm -> BraveTerm
applySubst = Substitution' (SubstArg BraveTerm) -> BraveTerm -> BraveTerm
forall t.
(Coercible t Term, EndoSubst t, Apply t) =>
Substitution' t -> t -> t
applySubstTerm
instance (Coercible a Term, Subst a, Subst b, SubstArg a ~ SubstArg b) => Subst (Type'' a b) where
type SubstArg (Type'' a b) = SubstArg a
applySubst :: Substitution' (SubstArg (Type'' a b)) -> Type'' a b -> Type'' a b
applySubst Substitution' (SubstArg (Type'' a b))
rho (El Sort' a
s b
t) = Substitution' (SubstArg (Sort' a)) -> Sort' a -> Sort' a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg (Sort' a))
Substitution' (SubstArg (Type'' a b))
rho Sort' a
s Sort' a -> b -> Type'' a b
forall t a. Sort' t -> a -> Type'' t a
`El` Substitution' (SubstArg b) -> b -> b
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg b)
Substitution' (SubstArg (Type'' a b))
rho b
t
instance (Coercible a Term, Subst a) => Subst (Sort' a) where
type SubstArg (Sort' a) = SubstArg a
applySubst :: Substitution' (SubstArg (Sort' a)) -> Sort' a -> Sort' a
applySubst Substitution' (SubstArg (Sort' a))
rho = \case
Type Level' a
n -> Level' a -> Sort' a
forall t. Level' t -> Sort' t
Type (Level' a -> Sort' a) -> Level' a -> Sort' a
forall a b. (a -> b) -> a -> b
$ Level' a -> Level' a
forall b. (Subst b, SubstArg a ~ SubstArg b) => b -> b
sub Level' a
n
Prop Level' a
n -> Level' a -> Sort' a
forall t. Level' t -> Sort' t
Prop (Level' a -> Sort' a) -> Level' a -> Sort' a
forall a b. (a -> b) -> a -> b
$ Level' a -> Level' a
forall b. (Subst b, SubstArg a ~ SubstArg b) => b -> b
sub Level' a
n
Inf IsFibrant
f Integer
n -> IsFibrant -> Integer -> Sort' a
forall t. IsFibrant -> Integer -> Sort' t
Inf IsFibrant
f Integer
n
SSet Level' a
n -> Level' a -> Sort' a
forall t. Level' t -> Sort' t
SSet (Level' a -> Sort' a) -> Level' a -> Sort' a
forall a b. (a -> b) -> a -> b
$ Level' a -> Level' a
forall b. (Subst b, SubstArg a ~ SubstArg b) => b -> b
sub Level' a
n
Sort' a
SizeUniv -> Sort' a
forall t. Sort' t
SizeUniv
Sort' a
LockUniv -> Sort' a
forall t. Sort' t
LockUniv
PiSort Dom' a a
a Sort' a
s1 Abs (Sort' a)
s2 -> Sort -> Sort' a
coerce (Sort -> Sort' a) -> Sort -> Sort' a
forall a b. (a -> b) -> a -> b
$ Dom Term -> Sort -> Abs Sort -> Sort
piSort (Dom' a a -> Dom Term
coerce (Dom' a a -> Dom Term) -> Dom' a a -> Dom Term
forall a b. (a -> b) -> a -> b
$ Dom' a a -> Dom' a a
forall b. (Subst b, SubstArg a ~ SubstArg b) => b -> b
sub Dom' a a
a) (Sort' a -> Sort
coerce (Sort' a -> Sort) -> Sort' a -> Sort
forall a b. (a -> b) -> a -> b
$ Sort' a -> Sort' a
forall b. (Subst b, SubstArg a ~ SubstArg b) => b -> b
sub Sort' a
s1) (Abs (Sort' a) -> Abs Sort
coerce (Abs (Sort' a) -> Abs Sort) -> Abs (Sort' a) -> Abs Sort
forall a b. (a -> b) -> a -> b
$ Abs (Sort' a) -> Abs (Sort' a)
forall b. (Subst b, SubstArg a ~ SubstArg b) => b -> b
sub Abs (Sort' a)
s2)
FunSort Sort' a
s1 Sort' a
s2 -> Sort -> Sort' a
coerce (Sort -> Sort' a) -> Sort -> Sort' a
forall a b. (a -> b) -> a -> b
$ Sort -> Sort -> Sort
funSort (Sort' a -> Sort
coerce (Sort' a -> Sort) -> Sort' a -> Sort
forall a b. (a -> b) -> a -> b
$ Sort' a -> Sort' a
forall b. (Subst b, SubstArg a ~ SubstArg b) => b -> b
sub Sort' a
s1) (Sort' a -> Sort
coerce (Sort' a -> Sort) -> Sort' a -> Sort
forall a b. (a -> b) -> a -> b
$ Sort' a -> Sort' a
forall b. (Subst b, SubstArg a ~ SubstArg b) => b -> b
sub Sort' a
s2)
UnivSort Sort' a
s -> Sort -> Sort' a
coerce (Sort -> Sort' a) -> Sort -> Sort' a
forall a b. (a -> b) -> a -> b
$ Sort -> Sort
univSort (Sort -> Sort) -> Sort -> Sort
forall a b. (a -> b) -> a -> b
$ Sort' a -> Sort
coerce (Sort' a -> Sort) -> Sort' a -> Sort
forall a b. (a -> b) -> a -> b
$ Sort' a -> Sort' a
forall b. (Subst b, SubstArg a ~ SubstArg b) => b -> b
sub Sort' a
s
MetaS MetaId
x [Elim' a]
es -> MetaId -> [Elim' a] -> Sort' a
forall t. MetaId -> [Elim' t] -> Sort' t
MetaS MetaId
x ([Elim' a] -> Sort' a) -> [Elim' a] -> Sort' a
forall a b. (a -> b) -> a -> b
$ [Elim' a] -> [Elim' a]
forall b. (Subst b, SubstArg a ~ SubstArg b) => b -> b
sub [Elim' a]
es
DefS QName
d [Elim' a]
es -> QName -> [Elim' a] -> Sort' a
forall t. QName -> [Elim' t] -> Sort' t
DefS QName
d ([Elim' a] -> Sort' a) -> [Elim' a] -> Sort' a
forall a b. (a -> b) -> a -> b
$ [Elim' a] -> [Elim' a]
forall b. (Subst b, SubstArg a ~ SubstArg b) => b -> b
sub [Elim' a]
es
s :: Sort' a
s@DummyS{} -> Sort' a
s
where
sub :: forall b. (Subst b, SubstArg a ~ SubstArg b) => b -> b
sub :: b -> b
sub b
x = Substitution' (SubstArg b) -> b -> b
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg b)
Substitution' (SubstArg (Sort' a))
rho b
x
instance Subst a => Subst (Level' a) where
type SubstArg (Level' a) = SubstArg a
applySubst :: Substitution' (SubstArg (Level' a)) -> Level' a -> Level' a
applySubst Substitution' (SubstArg (Level' a))
rho (Max Integer
n [PlusLevel' a]
as) = Integer -> [PlusLevel' a] -> Level' a
forall t. Integer -> [PlusLevel' t] -> Level' t
Max Integer
n ([PlusLevel' a] -> Level' a) -> [PlusLevel' a] -> Level' a
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg [PlusLevel' a])
-> [PlusLevel' a] -> [PlusLevel' a]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg [PlusLevel' a])
Substitution' (SubstArg (Level' a))
rho [PlusLevel' a]
as
instance Subst a => Subst (PlusLevel' a) where
type SubstArg (PlusLevel' a) = SubstArg a
applySubst :: Substitution' (SubstArg (PlusLevel' a))
-> PlusLevel' a -> PlusLevel' a
applySubst Substitution' (SubstArg (PlusLevel' a))
rho (Plus Integer
n a
l) = Integer -> a -> PlusLevel' a
forall t. Integer -> t -> PlusLevel' t
Plus Integer
n (a -> PlusLevel' a) -> a -> PlusLevel' a
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg a) -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg a)
Substitution' (SubstArg (PlusLevel' a))
rho a
l
instance Subst Name where
type SubstArg Name = Term
applySubst :: Substitution' (SubstArg Name) -> Name -> Name
applySubst Substitution' (SubstArg Name)
rho = Name -> Name
forall a. a -> a
id
instance Subst ConPatternInfo where
type SubstArg ConPatternInfo = Term
applySubst :: Substitution' (SubstArg ConPatternInfo)
-> ConPatternInfo -> ConPatternInfo
applySubst Substitution' (SubstArg ConPatternInfo)
rho ConPatternInfo
i = ConPatternInfo
i{ conPType :: Maybe (Arg Type)
conPType = Substitution' (SubstArg (Maybe (Arg Type)))
-> Maybe (Arg Type) -> Maybe (Arg Type)
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg (Maybe (Arg Type)))
Substitution' (SubstArg ConPatternInfo)
rho (Maybe (Arg Type) -> Maybe (Arg Type))
-> Maybe (Arg Type) -> Maybe (Arg Type)
forall a b. (a -> b) -> a -> b
$ ConPatternInfo -> Maybe (Arg Type)
conPType ConPatternInfo
i }
instance Subst Pattern where
type SubstArg Pattern = Term
applySubst :: Substitution' (SubstArg Pattern) -> Pattern -> Pattern
applySubst Substitution' (SubstArg Pattern)
rho = \case
ConP ConHead
c ConPatternInfo
mt [NamedArg Pattern]
ps -> ConHead -> ConPatternInfo -> [NamedArg Pattern] -> Pattern
forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
c (Substitution' (SubstArg ConPatternInfo)
-> ConPatternInfo -> ConPatternInfo
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg ConPatternInfo)
Substitution' (SubstArg Pattern)
rho ConPatternInfo
mt) ([NamedArg Pattern] -> Pattern) -> [NamedArg Pattern] -> Pattern
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg [NamedArg Pattern])
-> [NamedArg Pattern] -> [NamedArg Pattern]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg [NamedArg Pattern])
Substitution' (SubstArg Pattern)
rho [NamedArg Pattern]
ps
DefP PatternInfo
o QName
q [NamedArg Pattern]
ps -> PatternInfo -> QName -> [NamedArg Pattern] -> Pattern
forall x.
PatternInfo -> QName -> [NamedArg (Pattern' x)] -> Pattern' x
DefP PatternInfo
o QName
q ([NamedArg Pattern] -> Pattern) -> [NamedArg Pattern] -> Pattern
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg [NamedArg Pattern])
-> [NamedArg Pattern] -> [NamedArg Pattern]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg [NamedArg Pattern])
Substitution' (SubstArg Pattern)
rho [NamedArg Pattern]
ps
DotP PatternInfo
o Term
t -> PatternInfo -> Term -> Pattern
forall x. PatternInfo -> Term -> Pattern' x
DotP PatternInfo
o (Term -> Pattern) -> Term -> Pattern
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg Pattern)
Substitution' (SubstArg Term)
rho Term
t
p :: Pattern
p@(VarP PatternInfo
_o String
_x) -> Pattern
p
p :: Pattern
p@(LitP PatternInfo
_o Literal
_l) -> Pattern
p
p :: Pattern
p@(ProjP ProjOrigin
_o QName
_x) -> Pattern
p
IApplyP PatternInfo
o Term
t Term
u String
x -> PatternInfo -> Term -> Term -> String -> Pattern
forall x. PatternInfo -> Term -> Term -> x -> Pattern' x
IApplyP PatternInfo
o (Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg Pattern)
Substitution' (SubstArg Term)
rho Term
t) (Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg Pattern)
Substitution' (SubstArg Term)
rho Term
u) String
x
instance Subst A.ProblemEq where
type SubstArg A.ProblemEq = Term
applySubst :: Substitution' (SubstArg ProblemEq) -> ProblemEq -> ProblemEq
applySubst Substitution' (SubstArg ProblemEq)
rho (A.ProblemEq Pattern
p Term
v Dom Type
a) =
(Term -> Dom Type -> ProblemEq) -> (Term, Dom Type) -> ProblemEq
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry (Pattern -> Term -> Dom Type -> ProblemEq
A.ProblemEq Pattern
p) ((Term, Dom Type) -> ProblemEq) -> (Term, Dom Type) -> ProblemEq
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg (Term, Dom Type))
-> (Term, Dom Type) -> (Term, Dom Type)
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg (Term, Dom Type))
Substitution' (SubstArg ProblemEq)
rho (Term
v,Dom Type
a)
instance DeBruijn BraveTerm where
deBruijnVar :: Int -> BraveTerm
deBruijnVar = Term -> BraveTerm
BraveTerm (Term -> BraveTerm) -> (Int -> Term) -> Int -> BraveTerm
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Term
forall a. DeBruijn a => Int -> a
deBruijnVar
deBruijnView :: BraveTerm -> Maybe Int
deBruijnView = Term -> Maybe Int
forall a. DeBruijn a => a -> Maybe Int
deBruijnView (Term -> Maybe Int)
-> (BraveTerm -> Term) -> BraveTerm -> Maybe Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. BraveTerm -> Term
unBrave
instance DeBruijn NLPat where
deBruijnVar :: Int -> NLPat
deBruijnVar Int
i = Int -> [Arg Int] -> NLPat
PVar Int
i []
deBruijnView :: NLPat -> Maybe Int
deBruijnView = \case
PVar Int
i [] -> Int -> Maybe Int
forall a. a -> Maybe a
Just Int
i
PVar{} -> Maybe Int
forall a. Maybe a
Nothing
PDef{} -> Maybe Int
forall a. Maybe a
Nothing
PLam{} -> Maybe Int
forall a. Maybe a
Nothing
PPi{} -> Maybe Int
forall a. Maybe a
Nothing
PSort{} -> Maybe Int
forall a. Maybe a
Nothing
PBoundVar{} -> Maybe Int
forall a. Maybe a
Nothing
PTerm{} -> Maybe Int
forall a. Maybe a
Nothing
applyNLPatSubst :: TermSubst a => Substitution' NLPat -> a -> a
applyNLPatSubst :: Substitution' NLPat -> a -> a
applyNLPatSubst = Substitution' Term -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst (Substitution' Term -> a -> a)
-> (Substitution' NLPat -> Substitution' Term)
-> Substitution' NLPat
-> a
-> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (NLPat -> Term) -> Substitution' NLPat -> Substitution' Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap NLPat -> Term
nlPatToTerm
where
nlPatToTerm :: NLPat -> Term
nlPatToTerm :: NLPat -> Term
nlPatToTerm = \case
PVar Int
i [Arg Int]
xs -> Int -> Elims -> Term
Var Int
i (Elims -> Term) -> Elims -> Term
forall a b. (a -> b) -> a -> b
$ (Arg Int -> Elim' Term) -> [Arg Int] -> Elims
forall a b. (a -> b) -> [a] -> [b]
map (Arg Term -> Elim' Term
forall a. Arg a -> Elim' a
Apply (Arg Term -> Elim' Term)
-> (Arg Int -> Arg Term) -> Arg Int -> Elim' Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> Term) -> Arg Int -> Arg Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Int -> Term
var) [Arg Int]
xs
PTerm Term
u -> Term
u
PDef QName
f PElims
es -> Term
forall a. HasCallStack => a
__IMPOSSIBLE__
PLam ArgInfo
i Abs NLPat
u -> Term
forall a. HasCallStack => a
__IMPOSSIBLE__
PPi Dom NLPType
a Abs NLPType
b -> Term
forall a. HasCallStack => a
__IMPOSSIBLE__
PSort NLPSort
s -> Term
forall a. HasCallStack => a
__IMPOSSIBLE__
PBoundVar Int
i PElims
es -> Term
forall a. HasCallStack => a
__IMPOSSIBLE__
applyNLSubstToDom :: SubstWith NLPat a => Substitution' NLPat -> Dom a -> Dom a
applyNLSubstToDom :: Substitution' NLPat -> Dom a -> Dom a
applyNLSubstToDom Substitution' NLPat
rho Dom a
dom = Substitution' (SubstArg a) -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg a)
Substitution' NLPat
rho (a -> a) -> Dom a -> Dom a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom a
dom{ domTactic :: Maybe Term
domTactic = Substitution' NLPat -> Maybe Term -> Maybe Term
forall a. TermSubst a => Substitution' NLPat -> a -> a
applyNLPatSubst Substitution' NLPat
rho (Maybe Term -> Maybe Term) -> Maybe Term -> Maybe Term
forall a b. (a -> b) -> a -> b
$ Dom a -> Maybe Term
forall t e. Dom' t e -> Maybe t
domTactic Dom a
dom }
instance Subst NLPat where
type SubstArg NLPat = NLPat
applySubst :: Substitution' (SubstArg NLPat) -> NLPat -> NLPat
applySubst Substitution' (SubstArg NLPat)
rho = \case
PVar Int
i [Arg Int]
bvs -> Substitution' NLPat -> Int -> NLPat
forall a. EndoSubst a => Substitution' a -> Int -> a
lookupS Substitution' (SubstArg NLPat)
Substitution' NLPat
rho Int
i NLPat -> [Arg Int] -> NLPat
`applyBV` [Arg Int]
bvs
PDef QName
f PElims
es -> QName -> PElims -> NLPat
PDef QName
f (PElims -> NLPat) -> PElims -> NLPat
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg PElims) -> PElims -> PElims
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg PElims)
Substitution' (SubstArg NLPat)
rho PElims
es
PLam ArgInfo
i Abs NLPat
u -> ArgInfo -> Abs NLPat -> NLPat
PLam ArgInfo
i (Abs NLPat -> NLPat) -> Abs NLPat -> NLPat
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg (Abs NLPat)) -> Abs NLPat -> Abs NLPat
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg (Abs NLPat))
Substitution' (SubstArg NLPat)
rho Abs NLPat
u
PPi Dom NLPType
a Abs NLPType
b -> Dom NLPType -> Abs NLPType -> NLPat
PPi (Substitution' NLPat -> Dom NLPType -> Dom NLPType
forall a.
SubstWith NLPat a =>
Substitution' NLPat -> Dom a -> Dom a
applyNLSubstToDom Substitution' (SubstArg NLPat)
Substitution' NLPat
rho Dom NLPType
a) (Substitution' (SubstArg (Abs NLPType))
-> Abs NLPType -> Abs NLPType
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg (Abs NLPType))
Substitution' (SubstArg NLPat)
rho Abs NLPType
b)
PSort NLPSort
s -> NLPSort -> NLPat
PSort (NLPSort -> NLPat) -> NLPSort -> NLPat
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg NLPSort) -> NLPSort -> NLPSort
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg NLPSort)
Substitution' (SubstArg NLPat)
rho NLPSort
s
PBoundVar Int
i PElims
es -> Int -> PElims -> NLPat
PBoundVar Int
i (PElims -> NLPat) -> PElims -> NLPat
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg PElims) -> PElims -> PElims
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg PElims)
Substitution' (SubstArg NLPat)
rho PElims
es
PTerm Term
u -> Term -> NLPat
PTerm (Term -> NLPat) -> Term -> NLPat
forall a b. (a -> b) -> a -> b
$ Substitution' NLPat -> Term -> Term
forall a. TermSubst a => Substitution' NLPat -> a -> a
applyNLPatSubst Substitution' (SubstArg NLPat)
Substitution' NLPat
rho Term
u
where
applyBV :: NLPat -> [Arg Int] -> NLPat
applyBV :: NLPat -> [Arg Int] -> NLPat
applyBV NLPat
p [Arg Int]
ys = case NLPat
p of
PVar Int
i [Arg Int]
xs -> Int -> [Arg Int] -> NLPat
PVar Int
i ([Arg Int]
xs [Arg Int] -> [Arg Int] -> [Arg Int]
forall a. [a] -> [a] -> [a]
++ [Arg Int]
ys)
PTerm Term
u -> Term -> NLPat
PTerm (Term -> NLPat) -> Term -> NLPat
forall a b. (a -> b) -> a -> b
$ Term
u Term -> Args -> Term
forall t. Apply t => t -> Args -> t
`apply` (Arg Int -> Arg Term) -> [Arg Int] -> Args
forall a b. (a -> b) -> [a] -> [b]
map ((Int -> Term) -> Arg Int -> Arg Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Int -> Term
var) [Arg Int]
ys
PDef QName
f PElims
es -> NLPat
forall a. HasCallStack => a
__IMPOSSIBLE__
PLam ArgInfo
i Abs NLPat
u -> NLPat
forall a. HasCallStack => a
__IMPOSSIBLE__
PPi Dom NLPType
a Abs NLPType
b -> NLPat
forall a. HasCallStack => a
__IMPOSSIBLE__
PSort NLPSort
s -> NLPat
forall a. HasCallStack => a
__IMPOSSIBLE__
PBoundVar Int
i PElims
es -> NLPat
forall a. HasCallStack => a
__IMPOSSIBLE__
instance Subst NLPType where
type SubstArg NLPType = NLPat
applySubst :: Substitution' (SubstArg NLPType) -> NLPType -> NLPType
applySubst Substitution' (SubstArg NLPType)
rho (NLPType NLPSort
s NLPat
a) = NLPSort -> NLPat -> NLPType
NLPType (Substitution' (SubstArg NLPSort) -> NLPSort -> NLPSort
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg NLPSort)
Substitution' (SubstArg NLPType)
rho NLPSort
s) (Substitution' (SubstArg NLPat) -> NLPat -> NLPat
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg NLPType)
Substitution' (SubstArg NLPat)
rho NLPat
a)
instance Subst NLPSort where
type SubstArg NLPSort = NLPat
applySubst :: Substitution' (SubstArg NLPSort) -> NLPSort -> NLPSort
applySubst Substitution' (SubstArg NLPSort)
rho = \case
PType NLPat
l -> NLPat -> NLPSort
PType (NLPat -> NLPSort) -> NLPat -> NLPSort
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg NLPat) -> NLPat -> NLPat
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg NLPSort)
Substitution' (SubstArg NLPat)
rho NLPat
l
PProp NLPat
l -> NLPat -> NLPSort
PProp (NLPat -> NLPSort) -> NLPat -> NLPSort
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg NLPat) -> NLPat -> NLPat
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg NLPSort)
Substitution' (SubstArg NLPat)
rho NLPat
l
PInf IsFibrant
f Integer
n -> IsFibrant -> Integer -> NLPSort
PInf IsFibrant
f Integer
n
NLPSort
PSizeUniv -> NLPSort
PSizeUniv
NLPSort
PLockUniv -> NLPSort
PLockUniv
instance Subst RewriteRule where
type SubstArg RewriteRule = NLPat
applySubst :: Substitution' (SubstArg RewriteRule) -> RewriteRule -> RewriteRule
applySubst Substitution' (SubstArg RewriteRule)
rho (RewriteRule QName
q Telescope
gamma QName
f PElims
ps Term
rhs Type
t Bool
c) =
QName
-> Telescope
-> QName
-> PElims
-> Term
-> Type
-> Bool
-> RewriteRule
RewriteRule QName
q (Substitution' NLPat -> Telescope -> Telescope
forall a. TermSubst a => Substitution' NLPat -> a -> a
applyNLPatSubst Substitution' (SubstArg RewriteRule)
Substitution' NLPat
rho Telescope
gamma)
QName
f (Substitution' (SubstArg PElims) -> PElims -> PElims
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst (Int -> Substitution' NLPat -> Substitution' NLPat
forall a. Int -> Substitution' a -> Substitution' a
liftS Int
n Substitution' (SubstArg RewriteRule)
Substitution' NLPat
rho) PElims
ps)
(Substitution' NLPat -> Term -> Term
forall a. TermSubst a => Substitution' NLPat -> a -> a
applyNLPatSubst (Int -> Substitution' NLPat -> Substitution' NLPat
forall a. Int -> Substitution' a -> Substitution' a
liftS Int
n Substitution' (SubstArg RewriteRule)
Substitution' NLPat
rho) Term
rhs)
(Substitution' NLPat -> Type -> Type
forall a. TermSubst a => Substitution' NLPat -> a -> a
applyNLPatSubst (Int -> Substitution' NLPat -> Substitution' NLPat
forall a. Int -> Substitution' a -> Substitution' a
liftS Int
n Substitution' (SubstArg RewriteRule)
Substitution' NLPat
rho) Type
t)
Bool
c
where n :: Int
n = Telescope -> Int
forall a. Sized a => a -> Int
size Telescope
gamma
instance Subst a => Subst (Blocked a) where
type SubstArg (Blocked a) = SubstArg a
applySubst :: Substitution' (SubstArg (Blocked a)) -> Blocked a -> Blocked a
applySubst Substitution' (SubstArg (Blocked a))
rho Blocked a
b = (a -> a) -> Blocked a -> Blocked a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Substitution' (SubstArg a) -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg a)
Substitution' (SubstArg (Blocked a))
rho) Blocked a
b
instance Subst DisplayForm where
type SubstArg DisplayForm = Term
applySubst :: Substitution' (SubstArg DisplayForm) -> DisplayForm -> DisplayForm
applySubst Substitution' (SubstArg DisplayForm)
rho (Display Int
n Elims
ps DisplayTerm
v) =
Int -> Elims -> DisplayTerm -> DisplayForm
Display Int
n (Substitution' (SubstArg Elims) -> Elims -> Elims
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst (Int -> Substitution' Term -> Substitution' Term
forall a. Int -> Substitution' a -> Substitution' a
liftS Int
n Substitution' Term
Substitution' (SubstArg DisplayForm)
rho) Elims
ps)
(Substitution' (SubstArg DisplayTerm) -> DisplayTerm -> DisplayTerm
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst (Int -> Substitution' Term -> Substitution' Term
forall a. Int -> Substitution' a -> Substitution' a
liftS Int
n Substitution' Term
Substitution' (SubstArg DisplayForm)
rho) DisplayTerm
v)
instance Subst DisplayTerm where
type SubstArg DisplayTerm = Term
applySubst :: Substitution' (SubstArg DisplayTerm) -> DisplayTerm -> DisplayTerm
applySubst Substitution' (SubstArg DisplayTerm)
rho (DTerm Term
v) = Term -> DisplayTerm
DTerm (Term -> DisplayTerm) -> Term -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg Term)
Substitution' (SubstArg DisplayTerm)
rho Term
v
applySubst Substitution' (SubstArg DisplayTerm)
rho (DDot Term
v) = Term -> DisplayTerm
DDot (Term -> DisplayTerm) -> Term -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg Term)
Substitution' (SubstArg DisplayTerm)
rho Term
v
applySubst Substitution' (SubstArg DisplayTerm)
rho (DCon ConHead
c ConInfo
ci [Arg DisplayTerm]
vs) = ConHead -> ConInfo -> [Arg DisplayTerm] -> DisplayTerm
DCon ConHead
c ConInfo
ci ([Arg DisplayTerm] -> DisplayTerm)
-> [Arg DisplayTerm] -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg [Arg DisplayTerm])
-> [Arg DisplayTerm] -> [Arg DisplayTerm]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg [Arg DisplayTerm])
Substitution' (SubstArg DisplayTerm)
rho [Arg DisplayTerm]
vs
applySubst Substitution' (SubstArg DisplayTerm)
rho (DDef QName
c [Elim' DisplayTerm]
es) = QName -> [Elim' DisplayTerm] -> DisplayTerm
DDef QName
c ([Elim' DisplayTerm] -> DisplayTerm)
-> [Elim' DisplayTerm] -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg [Elim' DisplayTerm])
-> [Elim' DisplayTerm] -> [Elim' DisplayTerm]
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg [Elim' DisplayTerm])
Substitution' (SubstArg DisplayTerm)
rho [Elim' DisplayTerm]
es
applySubst Substitution' (SubstArg DisplayTerm)
rho (DWithApp DisplayTerm
v [DisplayTerm]
vs Elims
es) = (DisplayTerm -> [DisplayTerm] -> Elims -> DisplayTerm)
-> (DisplayTerm, [DisplayTerm], Elims) -> DisplayTerm
forall a b c d. (a -> b -> c -> d) -> (a, b, c) -> d
uncurry3 DisplayTerm -> [DisplayTerm] -> Elims -> DisplayTerm
DWithApp ((DisplayTerm, [DisplayTerm], Elims) -> DisplayTerm)
-> (DisplayTerm, [DisplayTerm], Elims) -> DisplayTerm
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg (DisplayTerm, [DisplayTerm], Elims))
-> (DisplayTerm, [DisplayTerm], Elims)
-> (DisplayTerm, [DisplayTerm], Elims)
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg (DisplayTerm, [DisplayTerm], Elims))
Substitution' (SubstArg DisplayTerm)
rho (DisplayTerm
v, [DisplayTerm]
vs, Elims
es)
instance Subst a => Subst (Tele a) where
type SubstArg (Tele a) = SubstArg a
applySubst :: Substitution' (SubstArg (Tele a)) -> Tele a -> Tele a
applySubst Substitution' (SubstArg (Tele a))
rho Tele a
EmptyTel = Tele a
forall a. Tele a
EmptyTel
applySubst Substitution' (SubstArg (Tele a))
rho (ExtendTel a
t Abs (Tele a)
tel) = (a -> Abs (Tele a) -> Tele a) -> (a, Abs (Tele a)) -> Tele a
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry a -> Abs (Tele a) -> Tele a
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel ((a, Abs (Tele a)) -> Tele a) -> (a, Abs (Tele a)) -> Tele a
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg (a, Abs (Tele a)))
-> (a, Abs (Tele a)) -> (a, Abs (Tele a))
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg (a, Abs (Tele a)))
Substitution' (SubstArg (Tele a))
rho (a
t, Abs (Tele a)
tel)
instance Subst Constraint where
type SubstArg Constraint = Term
applySubst :: Substitution' (SubstArg Constraint) -> Constraint -> Constraint
applySubst Substitution' (SubstArg Constraint)
rho = \case
ValueCmp Comparison
cmp CompareAs
a Term
u Term
v -> Comparison -> CompareAs -> Term -> Term -> Constraint
ValueCmp Comparison
cmp (CompareAs -> CompareAs
forall a. TermSubst a => a -> a
rf CompareAs
a) (Term -> Term
forall a. TermSubst a => a -> a
rf Term
u) (Term -> Term
forall a. TermSubst a => a -> a
rf Term
v)
ValueCmpOnFace Comparison
cmp Term
p Type
t Term
u Term
v -> Comparison -> Term -> Type -> Term -> Term -> Constraint
ValueCmpOnFace Comparison
cmp (Term -> Term
forall a. TermSubst a => a -> a
rf Term
p) (Type -> Type
forall a. TermSubst a => a -> a
rf Type
t) (Term -> Term
forall a. TermSubst a => a -> a
rf Term
u) (Term -> Term
forall a. TermSubst a => a -> a
rf Term
v)
ElimCmp [Polarity]
ps [IsForced]
fs Type
a Term
v Elims
e1 Elims
e2 -> [Polarity]
-> [IsForced] -> Type -> Term -> Elims -> Elims -> Constraint
ElimCmp [Polarity]
ps [IsForced]
fs (Type -> Type
forall a. TermSubst a => a -> a
rf Type
a) (Term -> Term
forall a. TermSubst a => a -> a
rf Term
v) (Elims -> Elims
forall a. TermSubst a => a -> a
rf Elims
e1) (Elims -> Elims
forall a. TermSubst a => a -> a
rf Elims
e2)
SortCmp Comparison
cmp Sort
s1 Sort
s2 -> Comparison -> Sort -> Sort -> Constraint
SortCmp Comparison
cmp (Sort -> Sort
forall a. TermSubst a => a -> a
rf Sort
s1) (Sort -> Sort
forall a. TermSubst a => a -> a
rf Sort
s2)
LevelCmp Comparison
cmp Level
l1 Level
l2 -> Comparison -> Level -> Level -> Constraint
LevelCmp Comparison
cmp (Level -> Level
forall a. TermSubst a => a -> a
rf Level
l1) (Level -> Level
forall a. TermSubst a => a -> a
rf Level
l2)
IsEmpty Range
r Type
a -> Range -> Type -> Constraint
IsEmpty Range
r (Type -> Type
forall a. TermSubst a => a -> a
rf Type
a)
CheckSizeLtSat Term
t -> Term -> Constraint
CheckSizeLtSat (Term -> Term
forall a. TermSubst a => a -> a
rf Term
t)
FindInstance MetaId
m Maybe [Candidate]
cands -> MetaId -> Maybe [Candidate] -> Constraint
FindInstance MetaId
m (Maybe [Candidate] -> Maybe [Candidate]
forall a. TermSubst a => a -> a
rf Maybe [Candidate]
cands)
c :: Constraint
c@UnBlock{} -> Constraint
c
c :: Constraint
c@CheckFunDef{} -> Constraint
c
HasBiggerSort Sort
s -> Sort -> Constraint
HasBiggerSort (Sort -> Sort
forall a. TermSubst a => a -> a
rf Sort
s)
HasPTSRule Dom Type
a Abs Sort
s -> Dom Type -> Abs Sort -> Constraint
HasPTSRule (Dom Type -> Dom Type
forall a. TermSubst a => a -> a
rf Dom Type
a) (Abs Sort -> Abs Sort
forall a. TermSubst a => a -> a
rf Abs Sort
s)
CheckLockedVars Term
a Type
b Arg Term
c Type
d -> Term -> Type -> Arg Term -> Type -> Constraint
CheckLockedVars (Term -> Term
forall a. TermSubst a => a -> a
rf Term
a) (Type -> Type
forall a. TermSubst a => a -> a
rf Type
b) (Arg Term -> Arg Term
forall a. TermSubst a => a -> a
rf Arg Term
c) (Type -> Type
forall a. TermSubst a => a -> a
rf Type
d)
UnquoteTactic Term
t Term
h Type
g -> Term -> Term -> Type -> Constraint
UnquoteTactic (Term -> Term
forall a. TermSubst a => a -> a
rf Term
t) (Term -> Term
forall a. TermSubst a => a -> a
rf Term
h) (Type -> Type
forall a. TermSubst a => a -> a
rf Type
g)
CheckMetaInst MetaId
m -> MetaId -> Constraint
CheckMetaInst MetaId
m
CheckType Type
t -> Type -> Constraint
CheckType (Type -> Type
forall a. TermSubst a => a -> a
rf Type
t)
UsableAtModality Modality
mod Term
m -> Modality -> Term -> Constraint
UsableAtModality Modality
mod (Term -> Term
forall a. TermSubst a => a -> a
rf Term
m)
where
rf :: forall a. TermSubst a => a -> a
rf :: a -> a
rf a
x = Substitution' (SubstArg a) -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg a)
Substitution' (SubstArg Constraint)
rho a
x
instance Subst CompareAs where
type SubstArg CompareAs = Term
applySubst :: Substitution' (SubstArg CompareAs) -> CompareAs -> CompareAs
applySubst Substitution' (SubstArg CompareAs)
rho (AsTermsOf Type
a) = Type -> CompareAs
AsTermsOf (Type -> CompareAs) -> Type -> CompareAs
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg Type) -> Type -> Type
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg Type)
Substitution' (SubstArg CompareAs)
rho Type
a
applySubst Substitution' (SubstArg CompareAs)
rho CompareAs
AsSizes = CompareAs
AsSizes
applySubst Substitution' (SubstArg CompareAs)
rho CompareAs
AsTypes = CompareAs
AsTypes
instance Subst a => Subst (Elim' a) where
type SubstArg (Elim' a) = SubstArg a
applySubst :: Substitution' (SubstArg (Elim' a)) -> Elim' a -> Elim' a
applySubst Substitution' (SubstArg (Elim' a))
rho = \case
Apply Arg a
v -> Arg a -> Elim' a
forall a. Arg a -> Elim' a
Apply (Arg a -> Elim' a) -> Arg a -> Elim' a
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg (Arg a)) -> Arg a -> Arg a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg (Arg a))
Substitution' (SubstArg (Elim' a))
rho Arg a
v
IApply a
x a
y a
r -> a -> a -> a -> Elim' a
forall a. a -> a -> a -> Elim' a
IApply (Substitution' (SubstArg a) -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg a)
Substitution' (SubstArg (Elim' a))
rho a
x) (Substitution' (SubstArg a) -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg a)
Substitution' (SubstArg (Elim' a))
rho a
y) (Substitution' (SubstArg a) -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg a)
Substitution' (SubstArg (Elim' a))
rho a
r)
e :: Elim' a
e@Proj{} -> Elim' a
e
instance Subst a => Subst (Abs a) where
type SubstArg (Abs a) = SubstArg a
applySubst :: Substitution' (SubstArg (Abs a)) -> Abs a -> Abs a
applySubst Substitution' (SubstArg (Abs a))
rho (Abs String
x a
a) = String -> a -> Abs a
forall a. String -> a -> Abs a
Abs String
x (a -> Abs a) -> a -> Abs a
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg a) -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst (Int -> Substitution' (SubstArg a) -> Substitution' (SubstArg a)
forall a. Int -> Substitution' a -> Substitution' a
liftS Int
1 Substitution' (SubstArg a)
Substitution' (SubstArg (Abs a))
rho) a
a
applySubst Substitution' (SubstArg (Abs a))
rho (NoAbs String
x a
a) = String -> a -> Abs a
forall a. String -> a -> Abs a
NoAbs String
x (a -> Abs a) -> a -> Abs a
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg a) -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg a)
Substitution' (SubstArg (Abs a))
rho a
a
instance Subst a => Subst (Arg a) where
type SubstArg (Arg a) = SubstArg a
applySubst :: Substitution' (SubstArg (Arg a)) -> Arg a -> Arg a
applySubst Substitution' (SubstArg (Arg a))
IdS Arg a
arg = Arg a
arg
applySubst Substitution' (SubstArg (Arg a))
rho Arg a
arg = FreeVariables -> Arg a -> Arg a
forall a. LensFreeVariables a => FreeVariables -> a -> a
setFreeVariables FreeVariables
unknownFreeVariables (Arg a -> Arg a) -> Arg a -> Arg a
forall a b. (a -> b) -> a -> b
$ (a -> a) -> Arg a -> Arg a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Substitution' (SubstArg a) -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg a)
Substitution' (SubstArg (Arg a))
rho) Arg a
arg
instance Subst a => Subst (Named name a) where
type SubstArg (Named name a) = SubstArg a
applySubst :: Substitution' (SubstArg (Named name a))
-> Named name a -> Named name a
applySubst Substitution' (SubstArg (Named name a))
rho = (a -> a) -> Named name a -> Named name a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Substitution' (SubstArg a) -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg a)
Substitution' (SubstArg (Named name a))
rho)
instance (Subst a, Subst b, SubstArg a ~ SubstArg b) => Subst (Dom' a b) where
type SubstArg (Dom' a b) = SubstArg a
applySubst :: Substitution' (SubstArg (Dom' a b)) -> Dom' a b -> Dom' a b
applySubst Substitution' (SubstArg (Dom' a b))
IdS Dom' a b
dom = Dom' a b
dom
applySubst Substitution' (SubstArg (Dom' a b))
rho Dom' a b
dom = FreeVariables -> Dom' a b -> Dom' a b
forall a. LensFreeVariables a => FreeVariables -> a -> a
setFreeVariables FreeVariables
unknownFreeVariables (Dom' a b -> Dom' a b) -> Dom' a b -> Dom' a b
forall a b. (a -> b) -> a -> b
$
(b -> b) -> Dom' a b -> Dom' a b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Substitution' (SubstArg b) -> b -> b
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg b)
Substitution' (SubstArg (Dom' a b))
rho) Dom' a b
dom{ domTactic :: Maybe a
domTactic = Substitution' (SubstArg (Maybe a)) -> Maybe a -> Maybe a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg (Maybe a))
Substitution' (SubstArg (Dom' a b))
rho (Dom' a b -> Maybe a
forall t e. Dom' t e -> Maybe t
domTactic Dom' a b
dom) }
instance Subst a => Subst (Maybe a) where
type SubstArg (Maybe a) = SubstArg a
instance Subst a => Subst [a] where
type SubstArg [a] = SubstArg a
instance (Ord k, Subst a) => Subst (Map k a) where
type SubstArg (Map k a) = SubstArg a
instance Subst a => Subst (WithHiding a) where
type SubstArg (WithHiding a) = SubstArg a
instance Subst () where
type SubstArg () = Term
applySubst :: Substitution' (SubstArg ()) -> () -> ()
applySubst Substitution' (SubstArg ())
_ ()
_ = ()
instance (Subst a, Subst b, SubstArg a ~ SubstArg b) => Subst (a, b) where
type SubstArg (a, b) = SubstArg a
applySubst :: Substitution' (SubstArg (a, b)) -> (a, b) -> (a, b)
applySubst Substitution' (SubstArg (a, b))
rho (a
x,b
y) = (Substitution' (SubstArg a) -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg a)
Substitution' (SubstArg (a, b))
rho a
x, Substitution' (SubstArg b) -> b -> b
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg b)
Substitution' (SubstArg (a, b))
rho b
y)
instance (Subst a, Subst b, Subst c, SubstArg a ~ SubstArg b, SubstArg b ~ SubstArg c) => Subst (a, b, c) where
type SubstArg (a, b, c) = SubstArg a
applySubst :: Substitution' (SubstArg (a, b, c)) -> (a, b, c) -> (a, b, c)
applySubst Substitution' (SubstArg (a, b, c))
rho (a
x,b
y,c
z) = (Substitution' (SubstArg a) -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg a)
Substitution' (SubstArg (a, b, c))
rho a
x, Substitution' (SubstArg b) -> b -> b
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg b)
Substitution' (SubstArg (a, b, c))
rho b
y, Substitution' (SubstArg c) -> c -> c
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg c)
Substitution' (SubstArg (a, b, c))
rho c
z)
instance
( Subst a, Subst b, Subst c, Subst d
, SubstArg a ~ SubstArg b
, SubstArg b ~ SubstArg c
, SubstArg c ~ SubstArg d
) => Subst (a, b, c, d) where
type SubstArg (a, b, c, d) = SubstArg a
applySubst :: Substitution' (SubstArg (a, b, c, d))
-> (a, b, c, d) -> (a, b, c, d)
applySubst Substitution' (SubstArg (a, b, c, d))
rho (a
x,b
y,c
z,d
u) = (Substitution' (SubstArg a) -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg a)
Substitution' (SubstArg (a, b, c, d))
rho a
x, Substitution' (SubstArg b) -> b -> b
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg b)
Substitution' (SubstArg (a, b, c, d))
rho b
y, Substitution' (SubstArg c) -> c -> c
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg c)
Substitution' (SubstArg (a, b, c, d))
rho c
z, Substitution' (SubstArg d) -> d -> d
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg d)
Substitution' (SubstArg (a, b, c, d))
rho d
u)
instance Subst Candidate where
type SubstArg Candidate = Term
applySubst :: Substitution' (SubstArg Candidate) -> Candidate -> Candidate
applySubst Substitution' (SubstArg Candidate)
rho (Candidate CandidateKind
q Term
u Type
t Bool
ov) = CandidateKind -> Term -> Type -> Bool -> Candidate
Candidate CandidateKind
q (Substitution' (SubstArg Term) -> Term -> Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg Term)
Substitution' (SubstArg Candidate)
rho Term
u) (Substitution' (SubstArg Type) -> Type -> Type
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg Type)
Substitution' (SubstArg Candidate)
rho Type
t) Bool
ov
instance Subst EqualityView where
type SubstArg EqualityView = Term
applySubst :: Substitution' (SubstArg EqualityView)
-> EqualityView -> EqualityView
applySubst Substitution' (SubstArg EqualityView)
rho (OtherType Type
t) = Type -> EqualityView
OtherType
(Substitution' (SubstArg Type) -> Type -> Type
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg EqualityView)
Substitution' (SubstArg Type)
rho Type
t)
applySubst Substitution' (SubstArg EqualityView)
rho (IdiomType Type
t) = Type -> EqualityView
IdiomType
(Substitution' (SubstArg Type) -> Type -> Type
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg EqualityView)
Substitution' (SubstArg Type)
rho Type
t)
applySubst Substitution' (SubstArg EqualityView)
rho (EqualityType Sort
s QName
eq Args
l Arg Term
t Arg Term
a Arg Term
b) = Sort
-> QName
-> Args
-> Arg Term
-> Arg Term
-> Arg Term
-> EqualityView
EqualityType
(Substitution' (SubstArg Sort) -> Sort -> Sort
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg EqualityView)
Substitution' (SubstArg Sort)
rho Sort
s)
QName
eq
((Arg Term -> Arg Term) -> Args -> Args
forall a b. (a -> b) -> [a] -> [b]
map (Substitution' (SubstArg (Arg Term)) -> Arg Term -> Arg Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg (Arg Term))
Substitution' (SubstArg EqualityView)
rho) Args
l)
(Substitution' (SubstArg (Arg Term)) -> Arg Term -> Arg Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg (Arg Term))
Substitution' (SubstArg EqualityView)
rho Arg Term
t)
(Substitution' (SubstArg (Arg Term)) -> Arg Term -> Arg Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg (Arg Term))
Substitution' (SubstArg EqualityView)
rho Arg Term
a)
(Substitution' (SubstArg (Arg Term)) -> Arg Term -> Arg Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg (Arg Term))
Substitution' (SubstArg EqualityView)
rho Arg Term
b)
instance DeBruijn a => DeBruijn (Pattern' a) where
debruijnNamedVar :: String -> Int -> Pattern' a
debruijnNamedVar String
n Int
i = a -> Pattern' a
forall a. a -> Pattern' a
varP (a -> Pattern' a) -> a -> Pattern' a
forall a b. (a -> b) -> a -> b
$ String -> Int -> a
forall a. DeBruijn a => String -> Int -> a
debruijnNamedVar String
n Int
i
deBruijnView :: Pattern' a -> Maybe Int
deBruijnView Pattern' a
_ = Maybe Int
forall a. Maybe a
Nothing
fromPatternSubstitution :: PatternSubstitution -> Substitution
fromPatternSubstitution :: PatternSubstitution -> Substitution' Term
fromPatternSubstitution = (Pattern' DBPatVar -> Term)
-> PatternSubstitution -> Substitution' Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Pattern' DBPatVar -> Term
patternToTerm
applyPatSubst :: TermSubst a => PatternSubstitution -> a -> a
applyPatSubst :: PatternSubstitution -> a -> a
applyPatSubst = Substitution' Term -> a -> a
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst (Substitution' Term -> a -> a)
-> (PatternSubstitution -> Substitution' Term)
-> PatternSubstitution
-> a
-> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. PatternSubstitution -> Substitution' Term
fromPatternSubstitution
usePatOrigin :: PatOrigin -> Pattern' a -> Pattern' a
usePatOrigin :: PatOrigin -> Pattern' a -> Pattern' a
usePatOrigin PatOrigin
o Pattern' a
p = case Pattern' a -> Maybe PatternInfo
forall x. Pattern' x -> Maybe PatternInfo
patternInfo Pattern' a
p of
Maybe PatternInfo
Nothing -> Pattern' a
p
Just PatternInfo
i -> PatternInfo -> Pattern' a -> Pattern' a
forall a. PatternInfo -> Pattern' a -> Pattern' a
usePatternInfo (PatternInfo
i { patOrigin :: PatOrigin
patOrigin = PatOrigin
o }) Pattern' a
p
usePatternInfo :: PatternInfo -> Pattern' a -> Pattern' a
usePatternInfo :: PatternInfo -> Pattern' a -> Pattern' a
usePatternInfo PatternInfo
i Pattern' a
p = case Pattern' a -> Maybe PatOrigin
forall x. Pattern' x -> Maybe PatOrigin
patternOrigin Pattern' a
p of
Maybe PatOrigin
Nothing -> Pattern' a
p
Just PatOrigin
PatOSplit -> Pattern' a
p
Just PatOrigin
PatOAbsurd -> Pattern' a
p
Just PatOrigin
_ -> case Pattern' a
p of
(VarP PatternInfo
_ a
x) -> PatternInfo -> a -> Pattern' a
forall x. PatternInfo -> x -> Pattern' x
VarP PatternInfo
i a
x
(DotP PatternInfo
_ Term
u) -> PatternInfo -> Term -> Pattern' a
forall x. PatternInfo -> Term -> Pattern' x
DotP PatternInfo
i Term
u
(ConP ConHead
c (ConPatternInfo PatternInfo
_ Bool
r Bool
ft Maybe (Arg Type)
b Bool
l) [NamedArg (Pattern' a)]
ps)
-> ConHead -> ConPatternInfo -> [NamedArg (Pattern' a)] -> Pattern' a
forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
c (PatternInfo
-> Bool -> Bool -> Maybe (Arg Type) -> Bool -> ConPatternInfo
ConPatternInfo PatternInfo
i Bool
r Bool
ft Maybe (Arg Type)
b Bool
l) [NamedArg (Pattern' a)]
ps
DefP PatternInfo
_ QName
q [NamedArg (Pattern' a)]
ps -> PatternInfo -> QName -> [NamedArg (Pattern' a)] -> Pattern' a
forall x.
PatternInfo -> QName -> [NamedArg (Pattern' x)] -> Pattern' x
DefP PatternInfo
i QName
q [NamedArg (Pattern' a)]
ps
(LitP PatternInfo
_ Literal
l) -> PatternInfo -> Literal -> Pattern' a
forall x. PatternInfo -> Literal -> Pattern' x
LitP PatternInfo
i Literal
l
ProjP{} -> Pattern' a
forall a. HasCallStack => a
__IMPOSSIBLE__
(IApplyP PatternInfo
_ Term
t Term
u a
x) -> PatternInfo -> Term -> Term -> a -> Pattern' a
forall x. PatternInfo -> Term -> Term -> x -> Pattern' x
IApplyP PatternInfo
i Term
t Term
u a
x
instance Subst DeBruijnPattern where
type SubstArg DeBruijnPattern = DeBruijnPattern
applySubst :: Substitution' (SubstArg (Pattern' DBPatVar))
-> Pattern' DBPatVar -> Pattern' DBPatVar
applySubst Substitution' (SubstArg (Pattern' DBPatVar))
IdS = Pattern' DBPatVar -> Pattern' DBPatVar
forall a. a -> a
id
applySubst Substitution' (SubstArg (Pattern' DBPatVar))
rho = \case
VarP PatternInfo
i DBPatVar
x ->
PatternInfo -> Pattern' DBPatVar -> Pattern' DBPatVar
forall a. PatternInfo -> Pattern' a -> Pattern' a
usePatternInfo PatternInfo
i (Pattern' DBPatVar -> Pattern' DBPatVar)
-> Pattern' DBPatVar -> Pattern' DBPatVar
forall a b. (a -> b) -> a -> b
$
String -> Pattern' DBPatVar -> Pattern' DBPatVar
useName (DBPatVar -> String
dbPatVarName DBPatVar
x) (Pattern' DBPatVar -> Pattern' DBPatVar)
-> Pattern' DBPatVar -> Pattern' DBPatVar
forall a b. (a -> b) -> a -> b
$
PatternSubstitution -> Int -> Pattern' DBPatVar
forall a. EndoSubst a => Substitution' a -> Int -> a
lookupS PatternSubstitution
Substitution' (SubstArg (Pattern' DBPatVar))
rho (Int -> Pattern' DBPatVar) -> Int -> Pattern' DBPatVar
forall a b. (a -> b) -> a -> b
$ DBPatVar -> Int
dbPatVarIndex DBPatVar
x
DotP PatternInfo
i Term
u -> PatternInfo -> Term -> Pattern' DBPatVar
forall x. PatternInfo -> Term -> Pattern' x
DotP PatternInfo
i (Term -> Pattern' DBPatVar) -> Term -> Pattern' DBPatVar
forall a b. (a -> b) -> a -> b
$ PatternSubstitution -> Term -> Term
forall a. TermSubst a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
Substitution' (SubstArg (Pattern' DBPatVar))
rho Term
u
ConP ConHead
c ConPatternInfo
ci NAPs
ps -> ConHead -> ConPatternInfo -> NAPs -> Pattern' DBPatVar
forall x.
ConHead -> ConPatternInfo -> [NamedArg (Pattern' x)] -> Pattern' x
ConP ConHead
c ConPatternInfo
ci {conPType :: Maybe (Arg Type)
conPType = PatternSubstitution -> Maybe (Arg Type) -> Maybe (Arg Type)
forall a. TermSubst a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
Substitution' (SubstArg (Pattern' DBPatVar))
rho (ConPatternInfo -> Maybe (Arg Type)
conPType ConPatternInfo
ci)} (NAPs -> Pattern' DBPatVar) -> NAPs -> Pattern' DBPatVar
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg NAPs) -> NAPs -> NAPs
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg NAPs)
Substitution' (SubstArg (Pattern' DBPatVar))
rho NAPs
ps
DefP PatternInfo
i QName
q NAPs
ps -> PatternInfo -> QName -> NAPs -> Pattern' DBPatVar
forall x.
PatternInfo -> QName -> [NamedArg (Pattern' x)] -> Pattern' x
DefP PatternInfo
i QName
q (NAPs -> Pattern' DBPatVar) -> NAPs -> Pattern' DBPatVar
forall a b. (a -> b) -> a -> b
$ Substitution' (SubstArg NAPs) -> NAPs -> NAPs
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst Substitution' (SubstArg NAPs)
Substitution' (SubstArg (Pattern' DBPatVar))
rho NAPs
ps
p :: Pattern' DBPatVar
p@(LitP PatternInfo
_ Literal
_) -> Pattern' DBPatVar
p
p :: Pattern' DBPatVar
p@ProjP{} -> Pattern' DBPatVar
p
IApplyP PatternInfo
i Term
t Term
u DBPatVar
x ->
case String -> Pattern' DBPatVar -> Pattern' DBPatVar
useName (DBPatVar -> String
dbPatVarName DBPatVar
x) (Pattern' DBPatVar -> Pattern' DBPatVar)
-> Pattern' DBPatVar -> Pattern' DBPatVar
forall a b. (a -> b) -> a -> b
$ PatternSubstitution -> Int -> Pattern' DBPatVar
forall a. EndoSubst a => Substitution' a -> Int -> a
lookupS PatternSubstitution
Substitution' (SubstArg (Pattern' DBPatVar))
rho (Int -> Pattern' DBPatVar) -> Int -> Pattern' DBPatVar
forall a b. (a -> b) -> a -> b
$ DBPatVar -> Int
dbPatVarIndex DBPatVar
x of
IApplyP PatternInfo
_ Term
_ Term
_ DBPatVar
y -> PatternInfo -> Term -> Term -> DBPatVar -> Pattern' DBPatVar
forall x. PatternInfo -> Term -> Term -> x -> Pattern' x
IApplyP PatternInfo
i (PatternSubstitution -> Term -> Term
forall a. TermSubst a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
Substitution' (SubstArg (Pattern' DBPatVar))
rho Term
t) (PatternSubstitution -> Term -> Term
forall a. TermSubst a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
Substitution' (SubstArg (Pattern' DBPatVar))
rho Term
u) DBPatVar
y
VarP PatternInfo
_ DBPatVar
y -> PatternInfo -> Term -> Term -> DBPatVar -> Pattern' DBPatVar
forall x. PatternInfo -> Term -> Term -> x -> Pattern' x
IApplyP PatternInfo
i (PatternSubstitution -> Term -> Term
forall a. TermSubst a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
Substitution' (SubstArg (Pattern' DBPatVar))
rho Term
t) (PatternSubstitution -> Term -> Term
forall a. TermSubst a => PatternSubstitution -> a -> a
applyPatSubst PatternSubstitution
Substitution' (SubstArg (Pattern' DBPatVar))
rho Term
u) DBPatVar
y
Pattern' DBPatVar
_ -> Pattern' DBPatVar
forall a. HasCallStack => a
__IMPOSSIBLE__
where
useName :: PatVarName -> DeBruijnPattern -> DeBruijnPattern
useName :: String -> Pattern' DBPatVar -> Pattern' DBPatVar
useName String
n (VarP PatternInfo
o DBPatVar
x)
| String -> Bool
forall a. Underscore a => a -> Bool
isUnderscore (DBPatVar -> String
dbPatVarName DBPatVar
x)
= PatternInfo -> DBPatVar -> Pattern' DBPatVar
forall x. PatternInfo -> x -> Pattern' x
VarP PatternInfo
o (DBPatVar -> Pattern' DBPatVar) -> DBPatVar -> Pattern' DBPatVar
forall a b. (a -> b) -> a -> b
$ DBPatVar
x { dbPatVarName :: String
dbPatVarName = String
n }
useName String
_ Pattern' DBPatVar
x = Pattern' DBPatVar
x
instance Subst Range where
type SubstArg Range = Term
applySubst :: Substitution' (SubstArg Range) -> Range -> Range
applySubst Substitution' (SubstArg Range)
_ = Range -> Range
forall a. a -> a
id
projDropParsApply :: Projection -> ProjOrigin -> Relevance -> Args -> Term
projDropParsApply :: Projection -> ProjOrigin -> Relevance -> Args -> Term
projDropParsApply (Projection Maybe QName
prop QName
d Arg QName
r Int
_ ProjLams
lams) ProjOrigin
o Relevance
rel Args
args =
case [Arg String] -> Maybe ([Arg String], Arg String)
forall a. [a] -> Maybe ([a], a)
initLast ([Arg String] -> Maybe ([Arg String], Arg String))
-> [Arg String] -> Maybe ([Arg String], Arg String)
forall a b. (a -> b) -> a -> b
$ ProjLams -> [Arg String]
getProjLams ProjLams
lams of
Maybe ([Arg String], Arg String)
Nothing -> if Bool
proper then QName -> Elims -> Term
Def QName
d (Elims -> Term) -> Elims -> Term
forall a b. (a -> b) -> a -> b
$ (Arg Term -> Elim' Term) -> Args -> Elims
forall a b. (a -> b) -> [a] -> [b]
map Arg Term -> Elim' Term
forall a. Arg a -> Elim' a
Apply Args
args else Term
forall a. HasCallStack => a
__IMPOSSIBLE__
Just ([Arg String]
pars, Arg ArgInfo
i String
y) ->
let irr :: Bool
irr = Relevance -> Bool
forall a. LensRelevance a => a -> Bool
isIrrelevant Relevance
rel
core :: Term
core
| Bool
proper Bool -> Bool -> Bool
&& Bool -> Bool
not Bool
irr = ArgInfo -> Abs Term -> Term
Lam ArgInfo
i (Abs Term -> Term) -> Abs Term -> Term
forall a b. (a -> b) -> a -> b
$ String -> Term -> Abs Term
forall a. String -> a -> Abs a
Abs String
y (Term -> Abs Term) -> Term -> Abs Term
forall a b. (a -> b) -> a -> b
$ Int -> Elims -> Term
Var Int
0 [ProjOrigin -> QName -> Elim' Term
forall a. ProjOrigin -> QName -> Elim' a
Proj ProjOrigin
o QName
d]
| Bool
otherwise = ArgInfo -> Abs Term -> Term
Lam ArgInfo
i (Abs Term -> Term) -> Abs Term -> Term
forall a b. (a -> b) -> a -> b
$ String -> Term -> Abs Term
forall a. String -> a -> Abs a
Abs String
y (Term -> Abs Term) -> Term -> Abs Term
forall a b. (a -> b) -> a -> b
$ QName -> Elims -> Term
Def QName
d [Arg Term -> Elim' Term
forall a. Arg a -> Elim' a
Apply (Arg Term -> Elim' Term) -> Arg Term -> Elim' Term
forall a b. (a -> b) -> a -> b
$ Int -> Elims -> Term
Var Int
0 [] Term -> Arg QName -> Arg Term
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ Arg QName
r]
([Arg String]
pars', Args
args') = [Arg String] -> Args -> ([Arg String], Args)
forall a b. [a] -> [b] -> ([a], [b])
dropCommon [Arg String]
pars Args
args
in (Arg String -> Term -> Term) -> Term -> [Arg String] -> Term
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
List.foldr (\ (Arg ArgInfo
ai String
x) -> ArgInfo -> Abs Term -> Term
Lam ArgInfo
ai (Abs Term -> Term) -> (Term -> Abs Term) -> Term -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. String -> Term -> Abs Term
forall a. String -> a -> Abs a
NoAbs String
x) (Term
core Term -> Args -> Term
forall t. Apply t => t -> Args -> t
`apply` Args
args') [Arg String]
pars'
where proper :: Bool
proper = Maybe QName -> Bool
forall a. Maybe a -> Bool
isJust Maybe QName
prop
type TelView = TelV Type
data TelV a = TelV { TelV a -> Tele (Dom a)
theTel :: Tele (Dom a), TelV a -> a
theCore :: a }
deriving (Int -> TelV a -> String -> String
[TelV a] -> String -> String
TelV a -> String
(Int -> TelV a -> String -> String)
-> (TelV a -> String)
-> ([TelV a] -> String -> String)
-> Show (TelV a)
forall a. Show a => Int -> TelV a -> String -> String
forall a. Show a => [TelV a] -> String -> String
forall a. Show a => TelV a -> String
forall a.
(Int -> a -> String -> String)
-> (a -> String) -> ([a] -> String -> String) -> Show a
showList :: [TelV a] -> String -> String
$cshowList :: forall a. Show a => [TelV a] -> String -> String
show :: TelV a -> String
$cshow :: forall a. Show a => TelV a -> String
showsPrec :: Int -> TelV a -> String -> String
$cshowsPrec :: forall a. Show a => Int -> TelV a -> String -> String
Show, a -> TelV b -> TelV a
(a -> b) -> TelV a -> TelV b
(forall a b. (a -> b) -> TelV a -> TelV b)
-> (forall a b. a -> TelV b -> TelV a) -> Functor TelV
forall a b. a -> TelV b -> TelV a
forall a b. (a -> b) -> TelV a -> TelV b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: a -> TelV b -> TelV a
$c<$ :: forall a b. a -> TelV b -> TelV a
fmap :: (a -> b) -> TelV a -> TelV b
$cfmap :: forall a b. (a -> b) -> TelV a -> TelV b
Functor)
deriving instance (TermSubst a, Eq a) => Eq (TelV a)
deriving instance (TermSubst a, Ord a) => Ord (TelV a)
telView' :: Type -> TelView
telView' :: Type -> TelView
telView' = Int -> Type -> TelView
telView'UpTo (-Int
1)
telView'UpTo :: Int -> Type -> TelView
telView'UpTo :: Int -> Type -> TelView
telView'UpTo Int
0 Type
t = Telescope -> Type -> TelView
forall a. Tele (Dom a) -> a -> TelV a
TelV Telescope
forall a. Tele a
EmptyTel Type
t
telView'UpTo Int
n Type
t = case Type -> Term
forall t a. Type'' t a -> a
unEl Type
t of
Pi Dom Type
a Abs Type
b -> Dom Type -> String -> TelView -> TelView
forall a. Dom a -> String -> TelV a -> TelV a
absV Dom Type
a (Abs Type -> String
forall a. Abs a -> String
absName Abs Type
b) (TelView -> TelView) -> TelView -> TelView
forall a b. (a -> b) -> a -> b
$ Int -> Type -> TelView
telView'UpTo (Int
n Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) (Abs Type -> Type
forall a. Subst a => Abs a -> a
absBody Abs Type
b)
Term
_ -> Telescope -> Type -> TelView
forall a. Tele (Dom a) -> a -> TelV a
TelV Telescope
forall a. Tele a
EmptyTel Type
t
where
absV :: Dom a -> String -> TelV a -> TelV a
absV Dom a
a String
x (TelV Tele (Dom a)
tel a
t) = Tele (Dom a) -> a -> TelV a
forall a. Tele (Dom a) -> a -> TelV a
TelV (Dom a -> Abs (Tele (Dom a)) -> Tele (Dom a)
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel Dom a
a (String -> Tele (Dom a) -> Abs (Tele (Dom a))
forall a. String -> a -> Abs a
Abs String
x Tele (Dom a)
tel)) a
t
bindsToTel' :: (Name -> a) -> [Name] -> Dom Type -> ListTel' a
bindsToTel' :: (Name -> a) -> [Name] -> Dom Type -> ListTel' a
bindsToTel' Name -> a
f [] Dom Type
t = []
bindsToTel' Name -> a
f (Name
x:[Name]
xs) Dom Type
t = (Type -> (a, Type)) -> Dom Type -> Dom' Term (a, Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Name -> a
f Name
x,) Dom Type
t Dom' Term (a, Type) -> ListTel' a -> ListTel' a
forall a. a -> [a] -> [a]
: (Name -> a) -> [Name] -> Dom Type -> ListTel' a
forall a. (Name -> a) -> [Name] -> Dom Type -> ListTel' a
bindsToTel' Name -> a
f [Name]
xs (Int -> Dom Type -> Dom Type
forall a. Subst a => Int -> a -> a
raise Int
1 Dom Type
t)
bindsToTel :: [Name] -> Dom Type -> ListTel
bindsToTel :: [Name] -> Dom Type -> [Dom' Term (String, Type)]
bindsToTel = (Name -> String)
-> [Name] -> Dom Type -> [Dom' Term (String, Type)]
forall a. (Name -> a) -> [Name] -> Dom Type -> ListTel' a
bindsToTel' Name -> String
nameToArgName
bindsToTel'1 :: (Name -> a) -> List1 Name -> Dom Type -> ListTel' a
bindsToTel'1 :: (Name -> a) -> List1 Name -> Dom Type -> ListTel' a
bindsToTel'1 Name -> a
f = (Name -> a) -> [Name] -> Dom Type -> ListTel' a
forall a. (Name -> a) -> [Name] -> Dom Type -> ListTel' a
bindsToTel' Name -> a
f ([Name] -> Dom Type -> ListTel' a)
-> (List1 Name -> [Name]) -> List1 Name -> Dom Type -> ListTel' a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. List1 Name -> [Name]
forall a. NonEmpty a -> [a]
List1.toList
bindsToTel1 :: List1 Name -> Dom Type -> ListTel
bindsToTel1 :: List1 Name -> Dom Type -> [Dom' Term (String, Type)]
bindsToTel1 = [Name] -> Dom Type -> [Dom' Term (String, Type)]
bindsToTel ([Name] -> Dom Type -> [Dom' Term (String, Type)])
-> (List1 Name -> [Name])
-> List1 Name
-> Dom Type
-> [Dom' Term (String, Type)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. List1 Name -> [Name]
forall a. NonEmpty a -> [a]
List1.toList
namedBindsToTel :: [NamedArg Name] -> Type -> Telescope
namedBindsToTel :: [NamedArg Name] -> Type -> Telescope
namedBindsToTel [] Type
t = Telescope
forall a. Tele a
EmptyTel
namedBindsToTel (NamedArg Name
x : [NamedArg Name]
xs) Type
t =
Dom Type -> Abs Telescope -> Telescope
forall a. a -> Abs (Tele a) -> Tele a
ExtendTel (Type
t Type -> Dom' Term () -> Dom Type
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ NamedArg Name -> Dom' Term ()
domFromNamedArgName NamedArg Name
x) (Abs Telescope -> Telescope) -> Abs Telescope -> Telescope
forall a b. (a -> b) -> a -> b
$ String -> Telescope -> Abs Telescope
forall a. String -> a -> Abs a
Abs (Name -> String
nameToArgName (Name -> String) -> Name -> String
forall a b. (a -> b) -> a -> b
$ NamedArg Name -> Name
forall a. NamedArg a -> a
namedArg NamedArg Name
x) (Telescope -> Abs Telescope) -> Telescope -> Abs Telescope
forall a b. (a -> b) -> a -> b
$ [NamedArg Name] -> Type -> Telescope
namedBindsToTel [NamedArg Name]
xs (Int -> Type -> Type
forall a. Subst a => Int -> a -> a
raise Int
1 Type
t)
namedBindsToTel1 :: List1 (NamedArg Name) -> Type -> Telescope
namedBindsToTel1 :: List1 (NamedArg Name) -> Type -> Telescope
namedBindsToTel1 = [NamedArg Name] -> Type -> Telescope
namedBindsToTel ([NamedArg Name] -> Type -> Telescope)
-> (List1 (NamedArg Name) -> [NamedArg Name])
-> List1 (NamedArg Name)
-> Type
-> Telescope
forall b c a. (b -> c) -> (a -> b) -> a -> c
. List1 (NamedArg Name) -> [NamedArg Name]
forall a. NonEmpty a -> [a]
List1.toList
domFromNamedArgName :: NamedArg Name -> Dom ()
domFromNamedArgName :: NamedArg Name -> Dom' Term ()
domFromNamedArgName NamedArg Name
x = () () -> Dom' Term Name -> Dom' Term ()
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ NamedArg Name -> Dom' Term Name
forall a. NamedArg a -> Dom a
domFromNamedArg ((Named NamedName Name -> Named NamedName Name)
-> NamedArg Name -> NamedArg Name
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Named NamedName Name -> Named NamedName Name
forceName NamedArg Name
x)
where
forceName :: Named NamedName Name -> Named NamedName Name
forceName (Named Maybe NamedName
Nothing Name
x) = Maybe NamedName -> Name -> Named NamedName Name
forall name a. Maybe name -> a -> Named name a
Named (NamedName -> Maybe NamedName
forall a. a -> Maybe a
Just (NamedName -> Maybe NamedName) -> NamedName -> Maybe NamedName
forall a b. (a -> b) -> a -> b
$ Origin -> Ranged String -> NamedName
forall a. Origin -> a -> WithOrigin a
WithOrigin Origin
Inserted (Ranged String -> NamedName) -> Ranged String -> NamedName
forall a b. (a -> b) -> a -> b
$ Range -> String -> Ranged String
forall a. Range -> a -> Ranged a
Ranged (Name -> Range
forall a. HasRange a => a -> Range
getRange Name
x) (String -> Ranged String) -> String -> Ranged String
forall a b. (a -> b) -> a -> b
$ Name -> String
nameToArgName Name
x) Name
x
forceName Named NamedName Name
x = Named NamedName Name
x
mkPiSort :: Dom Type -> Abs Type -> Sort
mkPiSort :: Dom Type -> Abs Type -> Sort
mkPiSort Dom Type
a Abs Type
b = Dom Term -> Sort -> Abs Sort -> Sort
piSort (Type -> Term
forall t a. Type'' t a -> a
unEl (Type -> Term) -> Dom Type -> Dom Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom Type
a) (Type -> Sort
forall a. LensSort a => a -> Sort
getSort (Type -> Sort) -> Type -> Sort
forall a b. (a -> b) -> a -> b
$ Dom Type -> Type
forall t e. Dom' t e -> e
unDom Dom Type
a) (Type -> Sort
forall a. LensSort a => a -> Sort
getSort (Type -> Sort) -> Abs Type -> Abs Sort
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Abs Type
b)
mkPi :: Dom (ArgName, Type) -> Type -> Type
mkPi :: Dom' Term (String, Type) -> Type -> Type
mkPi !Dom' Term (String, Type)
dom Type
b = Term -> Type
el (Term -> Type) -> Term -> Type
forall a b. (a -> b) -> a -> b
$ Dom Type -> Abs Type -> Term
Pi Dom Type
a (String -> Type -> Abs Type
forall a. (Subst a, Free a) => String -> a -> Abs a
mkAbs String
x Type
b)
where
x :: String
x = (String, Type) -> String
forall a b. (a, b) -> a
fst ((String, Type) -> String) -> (String, Type) -> String
forall a b. (a -> b) -> a -> b
$ Dom' Term (String, Type) -> (String, Type)
forall t e. Dom' t e -> e
unDom Dom' Term (String, Type)
dom
a :: Dom Type
a = (String, Type) -> Type
forall a b. (a, b) -> b
snd ((String, Type) -> Type) -> Dom' Term (String, Type) -> Dom Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Dom' Term (String, Type)
dom
el :: Term -> Type
el = Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El (Sort -> Term -> Type) -> Sort -> Term -> Type
forall a b. (a -> b) -> a -> b
$ Dom Type -> Abs Type -> Sort
mkPiSort Dom Type
a (String -> Type -> Abs Type
forall a. String -> a -> Abs a
Abs String
x Type
b)
mkLam :: Arg ArgName -> Term -> Term
mkLam :: Arg String -> Term -> Term
mkLam Arg String
a Term
v = ArgInfo -> Abs Term -> Term
Lam (Arg String -> ArgInfo
forall e. Arg e -> ArgInfo
argInfo Arg String
a) (String -> Term -> Abs Term
forall a. String -> a -> Abs a
Abs (Arg String -> String
forall e. Arg e -> e
unArg Arg String
a) Term
v)
lamView :: Term -> ([Arg ArgName], Term)
lamView :: Term -> ([Arg String], Term)
lamView (Lam ArgInfo
h (Abs String
x Term
b)) = ([Arg String] -> [Arg String])
-> ([Arg String], Term) -> ([Arg String], Term)
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (b, d) (c, d)
first (ArgInfo -> String -> Arg String
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
h String
x Arg String -> [Arg String] -> [Arg String]
forall a. a -> [a] -> [a]
:) (([Arg String], Term) -> ([Arg String], Term))
-> ([Arg String], Term) -> ([Arg String], Term)
forall a b. (a -> b) -> a -> b
$ Term -> ([Arg String], Term)
lamView Term
b
lamView (Lam ArgInfo
h (NoAbs String
x Term
b)) = ([Arg String] -> [Arg String])
-> ([Arg String], Term) -> ([Arg String], Term)
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (b, d) (c, d)
first (ArgInfo -> String -> Arg String
forall e. ArgInfo -> e -> Arg e
Arg ArgInfo
h String
x Arg String -> [Arg String] -> [Arg String]
forall a. a -> [a] -> [a]
:) (([Arg String], Term) -> ([Arg String], Term))
-> ([Arg String], Term) -> ([Arg String], Term)
forall a b. (a -> b) -> a -> b
$ Term -> ([Arg String], Term)
lamView (Int -> Term -> Term
forall a. Subst a => Int -> a -> a
raise Int
1 Term
b)
lamView Term
t = ([], Term
t)
unlamView :: [Arg ArgName] -> Term -> Term
unlamView :: [Arg String] -> Term -> Term
unlamView [Arg String]
xs Term
b = (Arg String -> Term -> Term) -> Term -> [Arg String] -> Term
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Arg String -> Term -> Term
mkLam Term
b [Arg String]
xs
telePi' :: (Abs Type -> Abs Type) -> Telescope -> Type -> Type
telePi' :: (Abs Type -> Abs Type) -> Telescope -> Type -> Type
telePi' Abs Type -> Abs Type
reAbs = Telescope -> Type -> Type
telePi where
telePi :: Telescope -> Type -> Type
telePi Telescope
EmptyTel Type
t = Type
t
telePi (ExtendTel Dom Type
u Abs Telescope
tel) Type
t = Term -> Type
el (Term -> Type) -> Term -> Type
forall a b. (a -> b) -> a -> b
$ Dom Type -> Abs Type -> Term
Pi Dom Type
u (Abs Type -> Term) -> Abs Type -> Term
forall a b. (a -> b) -> a -> b
$ Abs Type -> Abs Type
reAbs Abs Type
b
where
b :: Abs Type
b = (Telescope -> Type -> Type
`telePi` Type
t) (Telescope -> Type) -> Abs Telescope -> Abs Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Abs Telescope
tel
el :: Term -> Type
el = Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El (Sort -> Term -> Type) -> Sort -> Term -> Type
forall a b. (a -> b) -> a -> b
$ Dom Type -> Abs Type -> Sort
mkPiSort Dom Type
u Abs Type
b
telePi :: Telescope -> Type -> Type
telePi :: Telescope -> Type -> Type
telePi = (Abs Type -> Abs Type) -> Telescope -> Type -> Type
telePi' Abs Type -> Abs Type
forall a. (Subst a, Free a) => Abs a -> Abs a
reAbs
telePi_ :: Telescope -> Type -> Type
telePi_ :: Telescope -> Type -> Type
telePi_ = (Abs Type -> Abs Type) -> Telescope -> Type -> Type
telePi' Abs Type -> Abs Type
forall a. a -> a
id
telePiVisible :: Telescope -> Type -> Type
telePiVisible :: Telescope -> Type -> Type
telePiVisible Telescope
EmptyTel Type
t = Type
t
telePiVisible (ExtendTel Dom Type
u Abs Telescope
tel) Type
t
| Dom Type -> Bool
forall a. LensHiding a => a -> Bool
notVisible Dom Type
u, NoAbs String
x Type
t' <- Abs Type
b' = Type
t'
| Bool
otherwise = Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El (Dom Type -> Abs Type -> Sort
mkPiSort Dom Type
u Abs Type
b) (Term -> Type) -> Term -> Type
forall a b. (a -> b) -> a -> b
$ Dom Type -> Abs Type -> Term
Pi Dom Type
u Abs Type
b
where
b :: Abs Type
b = Abs Telescope
tel Abs Telescope -> (Telescope -> Type) -> Abs Type
forall (m :: * -> *) a b. Functor m => m a -> (a -> b) -> m b
<&> (Telescope -> Type -> Type
`telePiVisible` Type
t)
b' :: Abs Type
b' = Abs Type -> Abs Type
forall a. (Subst a, Free a) => Abs a -> Abs a
reAbs Abs Type
b
teleLam :: Telescope -> Term -> Term
teleLam :: Telescope -> Term -> Term
teleLam Telescope
EmptyTel Term
t = Term
t
teleLam (ExtendTel Dom Type
u Abs Telescope
tel) Term
t = ArgInfo -> Abs Term -> Term
Lam (Dom Type -> ArgInfo
forall t e. Dom' t e -> ArgInfo
domInfo Dom Type
u) (Abs Term -> Term) -> Abs Term -> Term
forall a b. (a -> b) -> a -> b
$ (Telescope -> Term -> Term) -> Term -> Telescope -> Term
forall a b c. (a -> b -> c) -> b -> a -> c
flip Telescope -> Term -> Term
teleLam Term
t (Telescope -> Term) -> Abs Telescope -> Abs Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Abs Telescope
tel
class TeleNoAbs a where
teleNoAbs :: a -> Term -> Term
instance TeleNoAbs ListTel where
teleNoAbs :: [Dom' Term (String, Type)] -> Term -> Term
teleNoAbs [Dom' Term (String, Type)]
tel Term
t = (Dom' Term (String, Type) -> Term -> Term)
-> Term -> [Dom' Term (String, Type)] -> Term
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (\ Dom{domInfo :: forall t e. Dom' t e -> ArgInfo
domInfo = ArgInfo
ai, unDom :: forall t e. Dom' t e -> e
unDom = (String
x, Type
_)} -> ArgInfo -> Abs Term -> Term
Lam ArgInfo
ai (Abs Term -> Term) -> (Term -> Abs Term) -> Term -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. String -> Term -> Abs Term
forall a. String -> a -> Abs a
NoAbs String
x) Term
t [Dom' Term (String, Type)]
tel
instance TeleNoAbs Telescope where
teleNoAbs :: Telescope -> Term -> Term
teleNoAbs Telescope
tel = [Dom' Term (String, Type)] -> Term -> Term
forall a. TeleNoAbs a => a -> Term -> Term
teleNoAbs ([Dom' Term (String, Type)] -> Term -> Term)
-> [Dom' Term (String, Type)] -> Term -> Term
forall a b. (a -> b) -> a -> b
$ Telescope -> [Dom' Term (String, Type)]
forall t. Tele (Dom t) -> [Dom (String, t)]
telToList Telescope
tel
typeArgsWithTel :: Telescope -> [Term] -> Maybe [Dom Type]
typeArgsWithTel :: Telescope -> [Term] -> Maybe [Dom Type]
typeArgsWithTel Telescope
_ [] = [Dom Type] -> Maybe [Dom Type]
forall (m :: * -> *) a. Monad m => a -> m a
return []
typeArgsWithTel (ExtendTel Dom Type
dom Abs Telescope
tel) (Term
v : [Term]
vs) = (Dom Type
dom Dom Type -> [Dom Type] -> [Dom Type]
forall a. a -> [a] -> [a]
:) ([Dom Type] -> [Dom Type]) -> Maybe [Dom Type] -> Maybe [Dom Type]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Telescope -> [Term] -> Maybe [Dom Type]
typeArgsWithTel (Abs Telescope -> SubstArg Telescope -> Telescope
forall a. Subst a => Abs a -> SubstArg a -> a
absApp Abs Telescope
tel Term
SubstArg Telescope
v) [Term]
vs
typeArgsWithTel EmptyTel{} (Term
_:[Term]
_) = Maybe [Dom Type]
forall a. Maybe a
Nothing
compiledClauseBody :: Clause -> Maybe Term
compiledClauseBody :: Clause -> Maybe Term
compiledClauseBody Clause
cl = Substitution' (SubstArg (Maybe Term)) -> Maybe Term -> Maybe Term
forall a. Subst a => Substitution' (SubstArg a) -> a -> a
applySubst (Permutation -> Substitution' Term
forall a. DeBruijn a => Permutation -> Substitution' a
renamingR Permutation
perm) (Maybe Term -> Maybe Term) -> Maybe Term -> Maybe Term
forall a b. (a -> b) -> a -> b
$ Clause -> Maybe Term
clauseBody Clause
cl
where perm :: Permutation
perm = Permutation -> Maybe Permutation -> Permutation
forall a. a -> Maybe a -> a
fromMaybe Permutation
forall a. HasCallStack => a
__IMPOSSIBLE__ (Maybe Permutation -> Permutation)
-> Maybe Permutation -> Permutation
forall a b. (a -> b) -> a -> b
$ Clause -> Maybe Permutation
clausePerm Clause
cl
deriving instance Eq Substitution
deriving instance Ord Substitution
deriving instance Eq Sort
deriving instance Ord Sort
deriving instance Eq Level
deriving instance Ord Level
deriving instance Eq PlusLevel
deriving instance Eq NotBlocked
deriving instance Eq t => Eq (Blocked t)
deriving instance Eq CandidateKind
deriving instance Eq Candidate
deriving instance (Subst a, Eq a) => Eq (Tele a)
deriving instance (Subst a, Ord a) => Ord (Tele a)
deriving instance Eq Section
instance Ord PlusLevel where
compare :: PlusLevel -> PlusLevel -> Ordering
compare (Plus Integer
n Term
a) (Plus Integer
m Term
b) = (Term, Integer) -> (Term, Integer) -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Term
a,Integer
n) (Term
b,Integer
m)
instance Eq a => Eq (Type' a) where
== :: Type' a -> Type' a -> Bool
(==) = a -> a -> Bool
forall a. Eq a => a -> a -> Bool
(==) (a -> a -> Bool) -> (Type' a -> a) -> Type' a -> Type' a -> Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Type' a -> a
forall t a. Type'' t a -> a
unEl
instance Ord a => Ord (Type' a) where
compare :: Type' a -> Type' a -> Ordering
compare = a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (a -> a -> Ordering)
-> (Type' a -> a) -> Type' a -> Type' a -> Ordering
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Type' a -> a
forall t a. Type'' t a -> a
unEl
instance Eq Term where
Var Int
x Elims
vs == :: Term -> Term -> Bool
== Var Int
x' Elims
vs' = Int
x Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
x' Bool -> Bool -> Bool
&& Elims
vs Elims -> Elims -> Bool
forall a. Eq a => a -> a -> Bool
== Elims
vs'
Lam ArgInfo
h Abs Term
v == Lam ArgInfo
h' Abs Term
v' = ArgInfo
h ArgInfo -> ArgInfo -> Bool
forall a. Eq a => a -> a -> Bool
== ArgInfo
h' Bool -> Bool -> Bool
&& Abs Term
v Abs Term -> Abs Term -> Bool
forall a. Eq a => a -> a -> Bool
== Abs Term
v'
Lit Literal
l == Lit Literal
l' = Literal
l Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
l'
Def QName
x Elims
vs == Def QName
x' Elims
vs' = QName
x QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
x' Bool -> Bool -> Bool
&& Elims
vs Elims -> Elims -> Bool
forall a. Eq a => a -> a -> Bool
== Elims
vs'
Con ConHead
x ConInfo
_ Elims
vs == Con ConHead
x' ConInfo
_ Elims
vs' = ConHead
x ConHead -> ConHead -> Bool
forall a. Eq a => a -> a -> Bool
== ConHead
x' Bool -> Bool -> Bool
&& Elims
vs Elims -> Elims -> Bool
forall a. Eq a => a -> a -> Bool
== Elims
vs'
Pi Dom Type
a Abs Type
b == Pi Dom Type
a' Abs Type
b' = Dom Type
a Dom Type -> Dom Type -> Bool
forall a. Eq a => a -> a -> Bool
== Dom Type
a' Bool -> Bool -> Bool
&& Abs Type
b Abs Type -> Abs Type -> Bool
forall a. Eq a => a -> a -> Bool
== Abs Type
b'
Sort Sort
s == Sort Sort
s' = Sort
s Sort -> Sort -> Bool
forall a. Eq a => a -> a -> Bool
== Sort
s'
Level Level
l == Level Level
l' = Level
l Level -> Level -> Bool
forall a. Eq a => a -> a -> Bool
== Level
l'
MetaV MetaId
m Elims
vs == MetaV MetaId
m' Elims
vs' = MetaId
m MetaId -> MetaId -> Bool
forall a. Eq a => a -> a -> Bool
== MetaId
m' Bool -> Bool -> Bool
&& Elims
vs Elims -> Elims -> Bool
forall a. Eq a => a -> a -> Bool
== Elims
vs'
DontCare Term
_ == DontCare Term
_ = Bool
True
Dummy{} == Dummy{} = Bool
True
Term
_ == Term
_ = Bool
False
instance Eq a => Eq (Pattern' a) where
VarP PatternInfo
_ a
x == :: Pattern' a -> Pattern' a -> Bool
== VarP PatternInfo
_ a
y = a
x a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
y
DotP PatternInfo
_ Term
u == DotP PatternInfo
_ Term
v = Term
u Term -> Term -> Bool
forall a. Eq a => a -> a -> Bool
== Term
v
ConP ConHead
c ConPatternInfo
_ [NamedArg (Pattern' a)]
ps == ConP ConHead
c' ConPatternInfo
_ [NamedArg (Pattern' a)]
qs = ConHead
c ConHead -> ConHead -> Bool
forall a. Eq a => a -> a -> Bool
== ConHead
c Bool -> Bool -> Bool
&& [NamedArg (Pattern' a)]
ps [NamedArg (Pattern' a)] -> [NamedArg (Pattern' a)] -> Bool
forall a. Eq a => a -> a -> Bool
== [NamedArg (Pattern' a)]
qs
LitP PatternInfo
_ Literal
l == LitP PatternInfo
_ Literal
l' = Literal
l Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
l'
ProjP ProjOrigin
_ QName
f == ProjP ProjOrigin
_ QName
g = QName
f QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
g
IApplyP PatternInfo
_ Term
u Term
v a
x == IApplyP PatternInfo
_ Term
u' Term
v' a
y = Term
u Term -> Term -> Bool
forall a. Eq a => a -> a -> Bool
== Term
u' Bool -> Bool -> Bool
&& Term
v Term -> Term -> Bool
forall a. Eq a => a -> a -> Bool
== Term
v' Bool -> Bool -> Bool
&& a
x a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
y
DefP PatternInfo
_ QName
f [NamedArg (Pattern' a)]
ps == DefP PatternInfo
_ QName
g [NamedArg (Pattern' a)]
qs = QName
f QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
g Bool -> Bool -> Bool
&& [NamedArg (Pattern' a)]
ps [NamedArg (Pattern' a)] -> [NamedArg (Pattern' a)] -> Bool
forall a. Eq a => a -> a -> Bool
== [NamedArg (Pattern' a)]
qs
Pattern' a
_ == Pattern' a
_ = Bool
False
instance Ord Term where
Var Int
a Elims
b compare :: Term -> Term -> Ordering
`compare` Var Int
x Elims
y = Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Int
x Int
a Ordering -> Ordering -> Ordering
`thenCmp` Elims -> Elims -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Elims
b Elims
y
Var{} `compare` Term
_ = Ordering
LT
Term
_ `compare` Var{} = Ordering
GT
Def QName
a Elims
b `compare` Def QName
x Elims
y = (QName, Elims) -> (QName, Elims) -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (QName
a, Elims
b) (QName
x, Elims
y)
Def{} `compare` Term
_ = Ordering
LT
Term
_ `compare` Def{} = Ordering
GT
Con ConHead
a ConInfo
_ Elims
b `compare` Con ConHead
x ConInfo
_ Elims
y = (ConHead, Elims) -> (ConHead, Elims) -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (ConHead
a, Elims
b) (ConHead
x, Elims
y)
Con{} `compare` Term
_ = Ordering
LT
Term
_ `compare` Con{} = Ordering
GT
Lit Literal
a `compare` Lit Literal
x = Literal -> Literal -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Literal
a Literal
x
Lit{} `compare` Term
_ = Ordering
LT
Term
_ `compare` Lit{} = Ordering
GT
Lam ArgInfo
a Abs Term
b `compare` Lam ArgInfo
x Abs Term
y = (ArgInfo, Abs Term) -> (ArgInfo, Abs Term) -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (ArgInfo
a, Abs Term
b) (ArgInfo
x, Abs Term
y)
Lam{} `compare` Term
_ = Ordering
LT
Term
_ `compare` Lam{} = Ordering
GT
Pi Dom Type
a Abs Type
b `compare` Pi Dom Type
x Abs Type
y = (Dom Type, Abs Type) -> (Dom Type, Abs Type) -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Dom Type
a, Abs Type
b) (Dom Type
x, Abs Type
y)
Pi{} `compare` Term
_ = Ordering
LT
Term
_ `compare` Pi{} = Ordering
GT
Sort Sort
a `compare` Sort Sort
x = Sort -> Sort -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Sort
a Sort
x
Sort{} `compare` Term
_ = Ordering
LT
Term
_ `compare` Sort{} = Ordering
GT
Level Level
a `compare` Level Level
x = Level -> Level -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Level
a Level
x
Level{} `compare` Term
_ = Ordering
LT
Term
_ `compare` Level{} = Ordering
GT
MetaV MetaId
a Elims
b `compare` MetaV MetaId
x Elims
y = (MetaId, Elims) -> (MetaId, Elims) -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (MetaId
a, Elims
b) (MetaId
x, Elims
y)
MetaV{} `compare` Term
_ = Ordering
LT
Term
_ `compare` MetaV{} = Ordering
GT
DontCare{} `compare` DontCare{} = Ordering
EQ
DontCare{} `compare` Term
_ = Ordering
LT
Term
_ `compare` DontCare{} = Ordering
GT
Dummy{} `compare` Dummy{} = Ordering
EQ
instance (Subst a, Eq a) => Eq (Abs a) where
NoAbs String
_ a
a == :: Abs a -> Abs a -> Bool
== NoAbs String
_ a
b = a
a a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
b
Abs a
a == Abs a
b = Abs a -> a
forall a. Subst a => Abs a -> a
absBody Abs a
a a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== Abs a -> a
forall a. Subst a => Abs a -> a
absBody Abs a
b
instance (Subst a, Ord a) => Ord (Abs a) where
NoAbs String
_ a
a compare :: Abs a -> Abs a -> Ordering
`compare` NoAbs String
_ a
b = a
a a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
`compare` a
b
Abs a
a `compare` Abs a
b = Abs a -> a
forall a. Subst a => Abs a -> a
absBody Abs a
a a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
`compare` Abs a -> a
forall a. Subst a => Abs a -> a
absBody Abs a
b
deriving instance Ord a => Ord (Dom a)
instance (Subst a, Eq a) => Eq (Elim' a) where
Apply Arg a
a == :: Elim' a -> Elim' a -> Bool
== Apply Arg a
b = Arg a
a Arg a -> Arg a -> Bool
forall a. Eq a => a -> a -> Bool
== Arg a
b
Proj ProjOrigin
_ QName
x == Proj ProjOrigin
_ QName
y = QName
x QName -> QName -> Bool
forall a. Eq a => a -> a -> Bool
== QName
y
IApply a
x a
y a
r == IApply a
x' a
y' a
r' = a
x a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
x' Bool -> Bool -> Bool
&& a
y a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
y' Bool -> Bool -> Bool
&& a
r a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
r'
Elim' a
_ == Elim' a
_ = Bool
False
instance (Subst a, Ord a) => Ord (Elim' a) where
Apply Arg a
a compare :: Elim' a -> Elim' a -> Ordering
`compare` Apply Arg a
b = Arg a
a Arg a -> Arg a -> Ordering
forall a. Ord a => a -> a -> Ordering
`compare` Arg a
b
Proj ProjOrigin
_ QName
x `compare` Proj ProjOrigin
_ QName
y = QName
x QName -> QName -> Ordering
forall a. Ord a => a -> a -> Ordering
`compare` QName
y
IApply a
x a
y a
r `compare` IApply a
x' a
y' a
r' = a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
x a
x' Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend` a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
y a
y' Ordering -> Ordering -> Ordering
forall a. Monoid a => a -> a -> a
`mappend` a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare a
r a
r'
Apply{} `compare` Elim' a
_ = Ordering
LT
Elim' a
_ `compare` Apply{} = Ordering
GT
Proj{} `compare` Elim' a
_ = Ordering
LT
Elim' a
_ `compare` Proj{} = Ordering
GT
univSort' :: Sort -> Maybe Sort
univSort' :: Sort -> Maybe Sort
univSort' (Type Level
l) = Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ Level -> Sort
forall t. Level' t -> Sort' t
Type (Level -> Sort) -> Level -> Sort
forall a b. (a -> b) -> a -> b
$ Level -> Level
levelSuc Level
l
univSort' (Prop Level
l) = Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ Level -> Sort
forall t. Level' t -> Sort' t
Type (Level -> Sort) -> Level -> Sort
forall a b. (a -> b) -> a -> b
$ Level -> Level
levelSuc Level
l
univSort' (Inf IsFibrant
f Integer
n) = Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ IsFibrant -> Integer -> Sort
forall t. IsFibrant -> Integer -> Sort' t
Inf IsFibrant
f (Integer -> Sort) -> Integer -> Sort
forall a b. (a -> b) -> a -> b
$ Integer
1 Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ Integer
n
univSort' (SSet Level
l) = Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ Level -> Sort
forall t. Level' t -> Sort' t
SSet (Level -> Sort) -> Level -> Sort
forall a b. (a -> b) -> a -> b
$ Level -> Level
levelSuc Level
l
univSort' Sort
SizeUniv = Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ IsFibrant -> Integer -> Sort
forall t. IsFibrant -> Integer -> Sort' t
Inf IsFibrant
IsFibrant Integer
0
univSort' Sort
LockUniv = Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ IsFibrant -> Integer -> Sort
forall t. IsFibrant -> Integer -> Sort' t
Inf IsFibrant
IsFibrant Integer
0
univSort' Sort
s = Maybe Sort
forall a. Maybe a
Nothing
univSort :: Sort -> Sort
univSort :: Sort -> Sort
univSort Sort
s = Sort -> Maybe Sort -> Sort
forall a. a -> Maybe a -> a
fromMaybe (Sort -> Sort
forall t. Sort' t -> Sort' t
UnivSort Sort
s) (Maybe Sort -> Sort) -> Maybe Sort -> Sort
forall a b. (a -> b) -> a -> b
$ Sort -> Maybe Sort
univSort' Sort
s
sort :: Sort -> Type
sort :: Sort -> Type
sort Sort
s = Sort -> Term -> Type
forall t a. Sort' t -> a -> Type'' t a
El (Sort -> Sort
univSort Sort
s) (Term -> Type) -> Term -> Type
forall a b. (a -> b) -> a -> b
$ Sort -> Term
Sort Sort
s
ssort :: Level -> Type
ssort :: Level -> Type
ssort Level
l = Sort -> Type
sort (Level -> Sort
forall t. Level' t -> Sort' t
SSet Level
l)
isSmallSort :: Sort -> Maybe (Bool,IsFibrant)
isSmallSort :: Sort -> Maybe (Bool, IsFibrant)
isSmallSort Type{} = (Bool, IsFibrant) -> Maybe (Bool, IsFibrant)
forall a. a -> Maybe a
Just (Bool
True,IsFibrant
IsFibrant)
isSmallSort Prop{} = (Bool, IsFibrant) -> Maybe (Bool, IsFibrant)
forall a. a -> Maybe a
Just (Bool
True,IsFibrant
IsFibrant)
isSmallSort Sort
SizeUniv = (Bool, IsFibrant) -> Maybe (Bool, IsFibrant)
forall a. a -> Maybe a
Just (Bool
True,IsFibrant
IsFibrant)
isSmallSort Sort
LockUniv = (Bool, IsFibrant) -> Maybe (Bool, IsFibrant)
forall a. a -> Maybe a
Just (Bool
True,IsFibrant
IsFibrant)
isSmallSort (Inf IsFibrant
f Integer
_) = (Bool, IsFibrant) -> Maybe (Bool, IsFibrant)
forall a. a -> Maybe a
Just (Bool
False,IsFibrant
f)
isSmallSort SSet{} = (Bool, IsFibrant) -> Maybe (Bool, IsFibrant)
forall a. a -> Maybe a
Just (Bool
True,IsFibrant
IsStrict)
isSmallSort MetaS{} = Maybe (Bool, IsFibrant)
forall a. Maybe a
Nothing
isSmallSort FunSort{} = Maybe (Bool, IsFibrant)
forall a. Maybe a
Nothing
isSmallSort PiSort{} = Maybe (Bool, IsFibrant)
forall a. Maybe a
Nothing
isSmallSort UnivSort{} = Maybe (Bool, IsFibrant)
forall a. Maybe a
Nothing
isSmallSort DefS{} = Maybe (Bool, IsFibrant)
forall a. Maybe a
Nothing
isSmallSort DummyS{} = Maybe (Bool, IsFibrant)
forall a. Maybe a
Nothing
fibrantLub :: IsFibrant -> IsFibrant -> IsFibrant
fibrantLub :: IsFibrant -> IsFibrant -> IsFibrant
fibrantLub IsFibrant
IsStrict IsFibrant
a = IsFibrant
IsStrict
fibrantLub IsFibrant
a IsFibrant
IsStrict = IsFibrant
IsStrict
fibrantLub IsFibrant
a IsFibrant
b = IsFibrant
a
funSort' :: Sort -> Sort -> Maybe Sort
funSort' :: Sort -> Sort -> Maybe Sort
funSort' Sort
a Sort
b = case (Sort
a, Sort
b) of
(Inf IsFibrant
af Integer
m , Inf IsFibrant
bf Integer
n ) -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ IsFibrant -> Integer -> Sort
forall t. IsFibrant -> Integer -> Sort' t
Inf (IsFibrant -> IsFibrant -> IsFibrant
fibrantLub IsFibrant
af IsFibrant
bf) (Integer -> Sort) -> Integer -> Sort
forall a b. (a -> b) -> a -> b
$ Integer -> Integer -> Integer
forall a. Ord a => a -> a -> a
max Integer
m Integer
n
(Inf IsFibrant
af Integer
m , Sort
b ) | Just (Bool
True,IsFibrant
bf) <- Sort -> Maybe (Bool, IsFibrant)
isSmallSort Sort
b -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ IsFibrant -> Integer -> Sort
forall t. IsFibrant -> Integer -> Sort' t
Inf (IsFibrant -> IsFibrant -> IsFibrant
fibrantLub IsFibrant
af IsFibrant
bf) Integer
m
(Sort
a , Inf IsFibrant
bf Integer
n ) | Just (Bool
True,IsFibrant
af) <- Sort -> Maybe (Bool, IsFibrant)
isSmallSort Sort
a -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ IsFibrant -> Integer -> Sort
forall t. IsFibrant -> Integer -> Sort' t
Inf (IsFibrant -> IsFibrant -> IsFibrant
fibrantLub IsFibrant
af IsFibrant
bf) Integer
n
(Type Level
a , Type Level
b ) -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ Level -> Sort
forall t. Level' t -> Sort' t
Type (Level -> Sort) -> Level -> Sort
forall a b. (a -> b) -> a -> b
$ Level -> Level -> Level
levelLub Level
a Level
b
(Sort
LockUniv , Sort
b ) -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just Sort
b
(Sort
a , Sort
LockUniv ) -> Maybe Sort
forall a. Maybe a
Nothing
(Sort
SizeUniv , Sort
b ) -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just Sort
b
(Sort
a , Sort
SizeUniv ) | Just (Bool
True,IsFibrant
_) <- Sort -> Maybe (Bool, IsFibrant)
isSmallSort Sort
a -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just Sort
forall t. Sort' t
SizeUniv
(Prop Level
a , Type Level
b ) -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ Level -> Sort
forall t. Level' t -> Sort' t
Type (Level -> Sort) -> Level -> Sort
forall a b. (a -> b) -> a -> b
$ Level -> Level -> Level
levelLub Level
a Level
b
(Type Level
a , Prop Level
b ) -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ Level -> Sort
forall t. Level' t -> Sort' t
Prop (Level -> Sort) -> Level -> Sort
forall a b. (a -> b) -> a -> b
$ Level -> Level -> Level
levelLub Level
a Level
b
(Prop Level
a , Prop Level
b ) -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ Level -> Sort
forall t. Level' t -> Sort' t
Prop (Level -> Sort) -> Level -> Sort
forall a b. (a -> b) -> a -> b
$ Level -> Level -> Level
levelLub Level
a Level
b
(SSet Level
a , SSet Level
b ) -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ Level -> Sort
forall t. Level' t -> Sort' t
SSet (Level -> Sort) -> Level -> Sort
forall a b. (a -> b) -> a -> b
$ Level -> Level -> Level
levelLub Level
a Level
b
(Type Level
a , SSet Level
b ) -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ Level -> Sort
forall t. Level' t -> Sort' t
SSet (Level -> Sort) -> Level -> Sort
forall a b. (a -> b) -> a -> b
$ Level -> Level -> Level
levelLub Level
a Level
b
(SSet Level
a , Type Level
b ) -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ Level -> Sort
forall t. Level' t -> Sort' t
SSet (Level -> Sort) -> Level -> Sort
forall a b. (a -> b) -> a -> b
$ Level -> Level -> Level
levelLub Level
a Level
b
(Sort
a , Sort
b ) -> Maybe Sort
forall a. Maybe a
Nothing
funSort :: Sort -> Sort -> Sort
funSort :: Sort -> Sort -> Sort
funSort Sort
a Sort
b = Sort -> Maybe Sort -> Sort
forall a. a -> Maybe a -> a
fromMaybe (Sort -> Sort -> Sort
forall t. Sort' t -> Sort' t -> Sort' t
FunSort Sort
a Sort
b) (Maybe Sort -> Sort) -> Maybe Sort -> Sort
forall a b. (a -> b) -> a -> b
$ Sort -> Sort -> Maybe Sort
funSort' Sort
a Sort
b
piSort' :: Dom Term -> Sort -> Abs Sort -> Maybe Sort
piSort' :: Dom Term -> Sort -> Abs Sort -> Maybe Sort
piSort' Dom Term
a Sort
s1 (NoAbs String
_ Sort
s2) = Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ Sort -> Sort -> Sort
forall t. Sort' t -> Sort' t -> Sort' t
FunSort Sort
s1 Sort
s2
piSort' Dom Term
a Sort
s1 s2Abs :: Abs Sort
s2Abs@(Abs String
_ Sort
s2) = case Int -> Sort -> Maybe (FlexRig' ())
forall a. Free a => Int -> a -> Maybe (FlexRig' ())
flexRigOccurrenceIn Int
0 Sort
s2 of
Maybe (FlexRig' ())
Nothing -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ Sort -> Sort -> Sort
forall t. Sort' t -> Sort' t -> Sort' t
FunSort Sort
s1 (Sort -> Sort) -> Sort -> Sort
forall a b. (a -> b) -> a -> b
$ Impossible -> Abs Sort -> Sort
forall a. Subst a => Impossible -> Abs a -> a
noabsApp Impossible
forall a. HasCallStack => a
__IMPOSSIBLE__ Abs Sort
s2Abs
Just FlexRig' ()
o | Just (Bool
True, IsFibrant
f1) <- Sort -> Maybe (Bool, IsFibrant)
isSmallSort Sort
s1, Just (Bool
True, IsFibrant
f2) <- Sort -> Maybe (Bool, IsFibrant)
isSmallSort Sort
s2 -> case FlexRig' ()
o of
FlexRig' ()
StronglyRigid -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ IsFibrant -> Integer -> Sort
forall t. IsFibrant -> Integer -> Sort' t
Inf (IsFibrant -> IsFibrant -> IsFibrant
fibrantLub IsFibrant
f1 IsFibrant
f2) Integer
0
FlexRig' ()
Unguarded -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ IsFibrant -> Integer -> Sort
forall t. IsFibrant -> Integer -> Sort' t
Inf (IsFibrant -> IsFibrant -> IsFibrant
fibrantLub IsFibrant
f1 IsFibrant
f2) Integer
0
FlexRig' ()
WeaklyRigid -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ IsFibrant -> Integer -> Sort
forall t. IsFibrant -> Integer -> Sort' t
Inf (IsFibrant -> IsFibrant -> IsFibrant
fibrantLub IsFibrant
f1 IsFibrant
f2) Integer
0
Flexible ()
_ -> Maybe Sort
forall a. Maybe a
Nothing
Just FlexRig' ()
o | Inf IsFibrant
f1 Integer
n <- Sort
s1 , Just (Bool
True, IsFibrant
f2) <- Sort -> Maybe (Bool, IsFibrant)
isSmallSort Sort
s2 -> Sort -> Maybe Sort
forall a. a -> Maybe a
Just (Sort -> Maybe Sort) -> Sort -> Maybe Sort
forall a b. (a -> b) -> a -> b
$ IsFibrant -> Integer -> Sort
forall t. IsFibrant -> Integer -> Sort' t
Inf (IsFibrant -> IsFibrant -> IsFibrant
fibrantLub IsFibrant
f1 IsFibrant
f2) Integer
n
Just FlexRig' ()
_ -> Maybe Sort
forall a. Maybe a
Nothing
piSort :: Dom Term -> Sort -> Abs Sort -> Sort
piSort :: Dom Term -> Sort -> Abs Sort -> Sort
piSort Dom Term
a Sort
s1 Abs Sort
s2 = case Dom Term -> Sort -> Abs Sort -> Maybe Sort
piSort' Dom Term
a Sort
s1 Abs Sort
s2 of
Just Sort
s -> Sort
s
Maybe Sort
Nothing -> Dom Term -> Sort -> Abs Sort -> Sort
forall t. Dom' t t -> Sort' t -> Abs (Sort' t) -> Sort' t
PiSort Dom Term
a Sort
s1 Abs Sort
s2
levelMax :: Integer -> [PlusLevel] -> Level
levelMax :: Integer -> [PlusLevel] -> Level
levelMax Integer
n0 [PlusLevel]
as0 = Integer -> [PlusLevel] -> Level
forall t. Integer -> [PlusLevel' t] -> Level' t
Max Integer
n [PlusLevel]
as
where
Max Integer
n1 [PlusLevel]
as1 = Level -> Level
expandLevel (Level -> Level) -> Level -> Level
forall a b. (a -> b) -> a -> b
$ Integer -> [PlusLevel] -> Level
forall t. Integer -> [PlusLevel' t] -> Level' t
Max Integer
n0 [PlusLevel]
as0
as2 :: [PlusLevel]
as2 = [PlusLevel] -> [PlusLevel]
forall a. Eq a => [PlusLevel' a] -> [PlusLevel' a]
removeSubsumed [PlusLevel]
as1
as :: [PlusLevel]
as = [PlusLevel] -> [PlusLevel]
forall a. Ord a => [a] -> [a]
List.sort [PlusLevel]
as2
greatestB :: Integer
greatestB = [Integer] -> Integer
forall (t :: * -> *) a. (Foldable t, Ord a) => t a -> a
Prelude.maximum ([Integer] -> Integer) -> [Integer] -> Integer
forall a b. (a -> b) -> a -> b
$ Integer
0 Integer -> [Integer] -> [Integer]
forall a. a -> [a] -> [a]
: [ Integer
n | Plus Integer
n Term
_ <- [PlusLevel]
as ]
n :: Integer
n | Integer
n1 Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
greatestB = Integer
n1
| Bool
otherwise = Integer
0
lmax :: Integer -> [PlusLevel] -> [Level] -> Level
lmax :: Integer -> [PlusLevel] -> [Level] -> Level
lmax Integer
m [PlusLevel]
as [] = Integer -> [PlusLevel] -> Level
forall t. Integer -> [PlusLevel' t] -> Level' t
Max Integer
m [PlusLevel]
as
lmax Integer
m [PlusLevel]
as (Max Integer
n [PlusLevel]
bs : [Level]
ls) = Integer -> [PlusLevel] -> [Level] -> Level
lmax (Integer -> Integer -> Integer
forall a. Ord a => a -> a -> a
max Integer
m Integer
n) ([PlusLevel]
bs [PlusLevel] -> [PlusLevel] -> [PlusLevel]
forall a. [a] -> [a] -> [a]
++ [PlusLevel]
as) [Level]
ls
expandLevel :: Level -> Level
expandLevel :: Level -> Level
expandLevel (Max Integer
m [PlusLevel]
as) = Integer -> [PlusLevel] -> [Level] -> Level
lmax Integer
m [] ([Level] -> Level) -> [Level] -> Level
forall a b. (a -> b) -> a -> b
$ (PlusLevel -> Level) -> [PlusLevel] -> [Level]
forall a b. (a -> b) -> [a] -> [b]
map PlusLevel -> Level
expandPlus [PlusLevel]
as
expandPlus :: PlusLevel -> Level
expandPlus :: PlusLevel -> Level
expandPlus (Plus Integer
m Term
l) = Integer -> Level -> Level
levelPlus Integer
m (Term -> Level
expandTm Term
l)
expandTm :: Term -> Level
expandTm (Level Level
l) = Level -> Level
expandLevel Level
l
expandTm Term
l = Term -> Level
forall t. t -> Level' t
atomicLevel Term
l
removeSubsumed :: [PlusLevel' a] -> [PlusLevel' a]
removeSubsumed [] = []
removeSubsumed (Plus Integer
n a
a : [PlusLevel' a]
bs)
| Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ [Integer] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Integer]
ns = [PlusLevel' a] -> [PlusLevel' a]
removeSubsumed [PlusLevel' a]
bs
| Bool
otherwise = Integer -> a -> PlusLevel' a
forall t. Integer -> t -> PlusLevel' t
Plus Integer
n a
a PlusLevel' a -> [PlusLevel' a] -> [PlusLevel' a]
forall a. a -> [a] -> [a]
: [PlusLevel' a] -> [PlusLevel' a]
removeSubsumed [ PlusLevel' a
b | b :: PlusLevel' a
b@(Plus Integer
_ a
a') <- [PlusLevel' a]
bs, a
a a -> a -> Bool
forall a. Eq a => a -> a -> Bool
/= a
a' ]
where
ns :: [Integer]
ns = [ Integer
m | Plus Integer
m a
a' <- [PlusLevel' a]
bs, a
a a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
a', Integer
m Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
> Integer
n ]
levelLub :: Level -> Level -> Level
levelLub :: Level -> Level -> Level
levelLub (Max Integer
m [PlusLevel]
as) (Max Integer
n [PlusLevel]
bs) = Integer -> [PlusLevel] -> Level
levelMax (Integer -> Integer -> Integer
forall a. Ord a => a -> a -> a
max Integer
m Integer
n) ([PlusLevel] -> Level) -> [PlusLevel] -> Level
forall a b. (a -> b) -> a -> b
$ [PlusLevel]
as [PlusLevel] -> [PlusLevel] -> [PlusLevel]
forall a. [a] -> [a] -> [a]
++ [PlusLevel]
bs
levelTm :: Level -> Term
levelTm :: Level -> Term
levelTm Level
l =
case Level
l of
Max Integer
0 [Plus Integer
0 Term
l] -> Term
l
Level
_ -> Level -> Term
Level Level
l