module XMonad.Layout.ThreeColumns (
ThreeCol(..)
) where
import XMonad
import qualified XMonad.StackSet as W
import Data.Ratio
import Control.Monad
data ThreeCol a = ThreeColMid { threeColNMaster :: !Int, threeColDelta :: !Rational, threeColFrac :: !Rational}
| ThreeCol { threeColNMaster :: !Int, threeColDelta :: !Rational, threeColFrac :: !Rational}
deriving (Show,Read)
instance LayoutClass ThreeCol a where
pureLayout (ThreeCol n _ f) r = doL False n f r
pureLayout (ThreeColMid n _ f) r = doL True n f r
handleMessage l m =
return $ msum [fmap resize (fromMessage m)
,fmap incmastern (fromMessage m)]
where resize Shrink = l { threeColFrac = max (0.5) $ fd }
resize Expand = l { threeColFrac = min 1 $ f+d }
incmastern (IncMasterN x) = l { threeColNMaster = max 0 (n+x) }
n = threeColNMaster l
d = threeColDelta l
f = threeColFrac l
description _ = "ThreeCol"
doL :: Bool-> Int-> Rational-> Rectangle-> W.Stack a-> [(a, Rectangle)]
doL m n f r = ap zip (tile3 m f r n . length) . W.integrate
tile3 :: Bool -> Rational -> Rectangle -> Int -> Int -> [Rectangle]
tile3 middle f r nmaster n
| n <= nmaster || nmaster == 0 = splitVertically n r
| n <= nmaster+1 = splitVertically nmaster s1 ++ splitVertically (nnmaster) s2
| otherwise = splitVertically nmaster r1 ++ splitVertically nslave1 r2 ++ splitVertically nslave2 r3
where (r1, r2, r3) = split3HorizontallyBy middle (if f<0 then 1+2*f else f) r
(s1, s2) = splitHorizontallyBy (if f<0 then 1+f else f) r
nslave = (n nmaster)
nslave1 = ceiling (nslave % 2)
nslave2 = (n nmaster nslave1)
split3HorizontallyBy :: Bool -> Rational -> Rectangle -> (Rectangle, Rectangle, Rectangle)
split3HorizontallyBy middle f (Rectangle sx sy sw sh) =
if middle
then ( Rectangle (sx + fromIntegral r3w) sy r1w sh
, Rectangle (sx + fromIntegral r3w + fromIntegral r1w) sy r2w sh
, Rectangle sx sy r3w sh )
else ( Rectangle sx sy r1w sh
, Rectangle (sx + fromIntegral r1w) sy r2w sh
, Rectangle (sx + fromIntegral r1w + fromIntegral r2w) sy r3w sh )
where r1w = ceiling $ fromIntegral sw * f
r2w = ceiling ( (sw r1w) % 2 )
r3w = sw r1w r2w