----------------------------------------------------------------------------- -- | -- Module : XMonad.Util.Rectangle -- Description : A module for handling pixel rectangles. -- Copyright : (c) 2018 Yclept Nemo -- License : BSD-style (see LICENSE) -- -- Maintainer : -- Stability : unstable -- Portability : unportable -- -- A module for handling pixel rectangles: 'Rectangle'. -- ----------------------------------------------------------------------------- module XMonad.Util.Rectangle ( -- * Usage -- $usage PointRectangle (..) , pixelsToIndices, pixelsToCoordinates , indicesToRectangle, coordinatesToRectangle , empty , intersects , supersetOf , difference , withBorder , center , toRatio ) where import XMonad import XMonad.Prelude (fi) import qualified XMonad.StackSet as W import Data.Ratio -- $usage -- > import XMonad.Util.Rectangle as R -- > R.empty (Rectangle 0 0 1024 768) -- | Rectangle as two points. What those points mean depends on the conversion -- function. data PointRectangle a = PointRectangle { point_x1::a -- ^ Point nearest to the origin. , point_y1::a , point_x2::a -- ^ Point furthest from the origin. , point_y2::a } deriving (Eq,Read,Show) -- | There are three possible ways to convert rectangles to pixels: -- -- * Consider integers as "gaps" between pixels; pixels range from @(N,N+1)@, -- exclusively: @(0,1)@, @(1,2)@, and so on. This leads to interval ambiguity: -- whether an integer endpoint contains a pixel depends on which direction the -- interval approaches the pixel. Consider the adjacent pixels @(0,1)@ and -- @(1,2)@ where @1@ can refer to either pixel @(0,1)@ or pixel @(1,2)@. -- -- * Consider integers to demarcate the start of each pixel; pixels range from -- @[N,N+1)@: @[0,1)@, @[1,2)@, and so on - or equivalently: @(N,N+1]@. This is -- the most flexible coordinate system, and the convention used by the -- 'Rectangle' type. -- -- * Consider integers to demarcate the center of each pixel; pixels range from -- @[N,N+1]@, as though each real-valued coordinate had been rounded (either -- down or up) to the nearest integers. So each pixel, from zero, is listed as: -- @[0,0]@, @[1,1]@, @[2,2]@, and so on. Rather than a coordinate system, this -- considers pixels as row/column indices. While easiest to reason with, -- indices are unable to represent zero-dimension rectangles. -- -- Consider pixels as indices. Do not use this on empty rectangles. pixelsToIndices :: Rectangle -> PointRectangle Integer pixelsToIndices (Rectangle px py dx dy) = PointRectangle (fromIntegral px) (fromIntegral py) (fromIntegral px + fromIntegral dx - 1) (fromIntegral py + fromIntegral dy - 1) -- | Consider pixels as @[N,N+1)@ coordinates. Available for empty rectangles. pixelsToCoordinates :: Rectangle -> PointRectangle Integer pixelsToCoordinates (Rectangle px py dx dy) = PointRectangle (fromIntegral px) (fromIntegral py) (fromIntegral px + fromIntegral dx) (fromIntegral py + fromIntegral dy) -- | Invert 'pixelsToIndices'. indicesToRectangle :: PointRectangle Integer -> Rectangle indicesToRectangle (PointRectangle x1 y1 x2 y2) = Rectangle (fromIntegral x1) (fromIntegral y1) (fromIntegral $ x2 - x1 + 1) (fromIntegral $ y2 - y1 + 1) -- | Invert 'pixelsToCoordinates'. coordinatesToRectangle :: PointRectangle Integer -> Rectangle coordinatesToRectangle (PointRectangle x1 y1 x2 y2) = Rectangle (fromIntegral x1) (fromIntegral y1) (fromIntegral $ x2 - x1) (fromIntegral $ y2 - y1) -- | True if either the 'rect_width' or 'rect_height' fields are zero, i.e. the -- rectangle has no area. empty :: Rectangle -> Bool empty (Rectangle _ _ _ 0) = True empty (Rectangle _ _ 0 _) = True empty Rectangle{} = False -- | True if the intersection of the set of points comprising each rectangle is -- not the empty set. Therefore any rectangle containing the initial points of -- an empty rectangle will never intersect that rectangle - including the same -- empty rectangle. intersects :: Rectangle -> Rectangle -> Bool intersects r1 r2 | empty r1 || empty r2 = False | otherwise = r1_x1 < r2_x2 && r1_x2 > r2_x1 && r1_y1 < r2_y2 && r1_y2 > r2_y1 where PointRectangle r1_x1 r1_y1 r1_x2 r1_y2 = pixelsToCoordinates r1 PointRectangle r2_x1 r2_y1 r2_x2 r2_y2 = pixelsToCoordinates r2 -- | True if the first rectangle contains at least all the points of the second -- rectangle. Any rectangle containing the initial points of an empty rectangle -- will be a superset of that rectangle - including the same empty rectangle. supersetOf :: Rectangle -> Rectangle -> Bool supersetOf r1 r2 = r1_x1 <= r2_x1 && r1_y1 <= r2_y1 && r1_x2 >= r2_x2 && r1_y2 >= r2_y2 where PointRectangle r1_x1 r1_y1 r1_x2 r1_y2 = pixelsToCoordinates r1 PointRectangle r2_x1 r2_y1 r2_x2 r2_y2 = pixelsToCoordinates r2 -- | Return the smallest set of rectangles resulting from removing all the -- points of the second rectangle from those of the first, i.e. @r1 - r2@, such -- that @0 <= l <= 4@ where @l@ is the length of the resulting list. difference :: Rectangle -> Rectangle -> [Rectangle] difference r1 r2 | r1 `intersects` r2 = map coordinatesToRectangle $ concat [rt,rr,rb,rl] | otherwise = [r1] where PointRectangle r1_x1 r1_y1 r1_x2 r1_y2 = pixelsToCoordinates r1 PointRectangle r2_x1 r2_y1 r2_x2 r2_y2 = pixelsToCoordinates r2 -- top - assuming (0,0) is top-left rt = [PointRectangle (max r2_x1 r1_x1) r1_y1 r1_x2 r2_y1 | r2_y1 > r1_y1 && r2_y1 < r1_y2] -- right rr = [PointRectangle r2_x2 (max r2_y1 r1_y1) r1_x2 r1_y2 | r2_x2 > r1_x1 && r2_x2 < r1_x2] -- bottom rb = [PointRectangle r1_x1 r2_y2 (min r2_x2 r1_x2) r1_y2 | r2_y2 > r1_y1 && r2_y2 < r1_y2] -- left rl = [PointRectangle r1_x1 r1_y1 r2_x1 (min r2_y2 r1_y2) | r2_x1 > r1_x1 && r2_x1 < r1_x2] -- | Fit a 'Rectangle' within the given borders of itself. Given insufficient -- space, borders are minimized while preserving the ratio of opposite borders. -- Origin is top-left, and yes, negative borders are allowed. withBorder :: Integer -- ^ Top border. -> Integer -- ^ Bottom border. -> Integer -- ^ Right border. -> Integer -- ^ Left border. -> Integer -- ^ Smallest allowable rectangle dimensions, i.e. -- width/height, with values @<0@ defaulting to @0@. -> Rectangle -> Rectangle withBorder t b r l i (Rectangle x y w h) = let -- conversions w' = fromIntegral w h' = fromIntegral h -- minimum window dimensions i' = max i 0 iw = min i' w' ih = min i' h' -- maximum border dimensions bh = w' - iw bv = h' - ih -- scaled border ratios rh = if l + r <= 0 then 1 else min 1 $ bh % (l + r) rv = if t + b <= 0 then 1 else min 1 $ bv % (t + b) -- scaled border pixels t' = truncate $ rv * fromIntegral t b' = truncate $ rv * fromIntegral b r' = truncate $ rh * fromIntegral r l' = truncate $ rh * fromIntegral l in Rectangle (x + l') (y + t') (w - r' - fromIntegral l') (h - b' - fromIntegral t') -- | Calculate the center - @(x,y)@ - as if the 'Rectangle' were bounded. center :: Rectangle -> (Ratio Integer,Ratio Integer) center (Rectangle x y w h) = (cx,cy) where cx = fromIntegral x + fromIntegral w % 2 cy = fromIntegral y + fromIntegral h % 2 -- | Invert 'scaleRationalRect'. Since that operation is lossy a roundtrip -- conversion may not result in the original value. The first 'Rectangle' is -- scaled to the second: -- -- >>> (Rectangle 2 2 6 6) `toRatio` (Rectangle 0 0 10 10) -- RationalRect (1 % 5) (1 % 5) (3 % 5) (3 % 5) toRatio :: Rectangle -> Rectangle -> W.RationalRect toRatio (Rectangle x1 y1 w1 h1) (Rectangle x2 y2 w2 h2) = W.RationalRect ((fi x1 - fi x2) / fi w2) ((fi y1 - fi y2) / fi h2) (fi w1 / fi w2) (fi h1 / fi h2)