module Data.AffineSpace
(
AffineSpace(..), (.-^), distanceSq, distance, alerp, affineCombo
) where
import Control.Applicative (liftA2)
import Data.Ratio
import Foreign.C.Types (CSChar, CInt, CShort, CLong, CLLong, CIntMax, CFloat, CDouble)
import Control.Arrow(first)
import Data.VectorSpace
import Data.Basis
import Data.VectorSpace.Generic
import qualified GHC.Generics as Gnrx
import GHC.Generics (Generic, (:*:)(..))
infixl 6 .+^, .-^
infix 6 .-.
class AdditiveGroup (Diff p) => AffineSpace p where
type Diff p
type Diff p = GenericDiff p
(.-.) :: p -> p -> Diff p
default (.-.) :: ( Generic p, Diff p ~ GenericDiff p, AffineSpace (VRep p) )
=> p -> p -> Diff p
p .-. q = GenericDiff
$ (Gnrx.from p .-. (Gnrx.from q :: VRep p))
(.+^) :: p -> Diff p -> p
default (.+^) :: ( Generic p, Diff p ~ GenericDiff p, AffineSpace (VRep p) )
=> p -> Diff p -> p
p .+^ GenericDiff q = Gnrx.to (Gnrx.from p .+^ q :: VRep p)
(.-^) :: AffineSpace p => p -> Diff p -> p
p .-^ v = p .+^ negateV v
distanceSq :: (AffineSpace p, v ~ Diff p, InnerSpace v) =>
p -> p -> Scalar v
distanceSq = (fmap.fmap) magnitudeSq (.-.)
distance :: (AffineSpace p, v ~ Diff p, InnerSpace v
, s ~ Scalar v, Floating (Scalar v))
=> p -> p -> s
distance = (fmap.fmap) sqrt distanceSq
alerp :: (AffineSpace p, VectorSpace (Diff p)) =>
p -> p -> Scalar (Diff p) -> p
alerp p p' s = p .+^ (s *^ (p' .-. p))
affineCombo :: (AffineSpace p, v ~ Diff p, VectorSpace v) => p -> [(p,Scalar v)] -> p
affineCombo z l = z .+^ linearCombo (map (first (.-. z)) l)
#define ScalarTypeCon(con,t) \
instance con => AffineSpace (t) where \
{ type Diff (t) = t \
; (.-.) = () \
; (.+^) = (+) }
#define ScalarType(t) ScalarTypeCon((),t)
ScalarType(Int)
ScalarType(Integer)
ScalarType(Double)
ScalarType(Float)
ScalarType(CSChar)
ScalarType(CInt)
ScalarType(CShort)
ScalarType(CLong)
ScalarType(CLLong)
ScalarType(CIntMax)
ScalarType(CDouble)
ScalarType(CFloat)
ScalarTypeCon(Integral a,Ratio a)
instance (AffineSpace p, AffineSpace q) => AffineSpace (p,q) where
type Diff (p,q) = (Diff p, Diff q)
(p,q) .-. (p',q') = (p .-. p', q .-. q')
(p,q) .+^ (u,v) = (p .+^ u, q .+^ v)
instance (AffineSpace p, AffineSpace q, AffineSpace r) => AffineSpace (p,q,r) where
type Diff (p,q,r) = (Diff p, Diff q, Diff r)
(p,q,r) .-. (p',q',r') = (p .-. p', q .-. q', r .-. r')
(p,q,r) .+^ (u,v,w) = (p .+^ u, q .+^ v, r .+^ w)
instance (AffineSpace p) => AffineSpace (a -> p) where
type Diff (a -> p) = a -> Diff p
(.-.) = liftA2 (.-.)
(.+^) = liftA2 (.+^)
newtype GenericDiff p = GenericDiff (Diff (VRep p))
deriving (Generic)
instance AdditiveGroup (Diff (VRep p)) => AdditiveGroup (GenericDiff p)
instance VectorSpace (Diff (VRep p)) => VectorSpace (GenericDiff p)
instance InnerSpace (Diff (VRep p)) => InnerSpace (GenericDiff p)
instance HasBasis (Diff (VRep p)) => HasBasis (GenericDiff p)
data AffineDiffProductSpace f g p = AffineDiffProductSpace
!(Diff (f p)) !(Diff (g p)) deriving (Generic)
instance (AffineSpace (f p), AffineSpace (g p))
=> AdditiveGroup (AffineDiffProductSpace f g p)
instance ( AffineSpace (f p), AffineSpace (g p)
, VectorSpace (Diff (f p)), VectorSpace (Diff (g p))
, Scalar (Diff (f p)) ~ Scalar (Diff (g p)) )
=> VectorSpace (AffineDiffProductSpace f g p)
instance ( AffineSpace (f p), AffineSpace (g p)
, InnerSpace (Diff (f p)), InnerSpace (Diff (g p))
, Scalar (Diff (f p)) ~ Scalar (Diff (g p))
, Num (Scalar (Diff (f p))) )
=> InnerSpace (AffineDiffProductSpace f g p)
instance (AffineSpace (f p), AffineSpace (g p))
=> AffineSpace (AffineDiffProductSpace f g p) where
type Diff (AffineDiffProductSpace f g p) = AffineDiffProductSpace f g p
(.+^) = (^+^)
(.-.) = (^-^)
instance ( AffineSpace (f p), AffineSpace (g p)
, HasBasis (Diff (f p)), HasBasis (Diff (g p))
, Scalar (Diff (f p)) ~ Scalar (Diff (g p)) )
=> HasBasis (AffineDiffProductSpace f g p) where
type Basis (AffineDiffProductSpace f g p) = Either (Basis (Diff (f p)))
(Basis (Diff (g p)))
basisValue (Left bf) = AffineDiffProductSpace (basisValue bf) zeroV
basisValue (Right bg) = AffineDiffProductSpace zeroV (basisValue bg)
decompose (AffineDiffProductSpace vf vg)
= map (first Left) (decompose vf) ++ map (first Right) (decompose vg)
decompose' (AffineDiffProductSpace vf _) (Left bf) = decompose' vf bf
decompose' (AffineDiffProductSpace _ vg) (Right bg) = decompose' vg bg
instance AffineSpace a => AffineSpace (Gnrx.Rec0 a s) where
type Diff (Gnrx.Rec0 a s) = Diff a
Gnrx.K1 v .+^ w = Gnrx.K1 $ v .+^ w
Gnrx.K1 v .-. Gnrx.K1 w = v .-. w
instance AffineSpace (f p) => AffineSpace (Gnrx.M1 i c f p) where
type Diff (Gnrx.M1 i c f p) = Diff (f p)
Gnrx.M1 v .+^ w = Gnrx.M1 $ v .+^ w
Gnrx.M1 v .-. Gnrx.M1 w = v .-. w
instance (AffineSpace (f p), AffineSpace (g p)) => AffineSpace ((f :*: g) p) where
type Diff ((f:*:g) p) = AffineDiffProductSpace f g p
(x:*:y) .+^ AffineDiffProductSpace ξ υ = (x.+^ξ) :*: (y.+^υ)
(x:*:y) .-. (ξ:*:υ) = AffineDiffProductSpace (x.-.ξ) (y.-.υ)