{-# LANGUAGE DataKinds #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE CPP #-} {-| This module re-exports the functionality in 'Data.Vector.Generic.Sized' specialized to 'Data.Vector'. Functions returning a vector determine the size from the type context unless they have a @'@ suffix in which case they take an explicit 'Proxy' argument. Functions where the resultant vector size is not know until compile time are not exported. -} module Data.Vector.Sized ( Vector , VM.MVector -- * Accessors -- ** Length information , length , length' , knownLength , knownLength' -- ** Indexing , index , index' , unsafeIndex , head , last -- ** Monadic indexing , indexM , indexM' , unsafeIndexM , headM , lastM -- ** Extracting subvectors (slicing) , slice , slice' , init , tail , take , take' , drop , drop' , splitAt , splitAt' -- * Construction -- ** Initialization , empty , singleton #if !MIN_VERSION_GLASGOW_HASKELL(8,3,0,0) , fromTuple #endif , replicate , replicate' , generate , generate' , iterateN , iterateN' -- ** Monadic initialization , replicateM , replicateM' , generateM , generateM' -- ** Unfolding , unfoldrN , unfoldrN' -- ** Enumeration , enumFromN , enumFromN' , enumFromStepN , enumFromStepN' -- ** Concatenation , cons , snoc , (++) -- ** Restricting memory usage , force -- * Modifying vectors -- ** Bulk updates , (//) , update , update_ , unsafeUpd , unsafeUpdate , unsafeUpdate_ -- ** Accumulations , accum , accumulate , accumulate_ , unsafeAccum , unsafeAccumulate , unsafeAccumulate_ -- ** Permutations , reverse , backpermute , unsafeBackpermute -- * Lenses , ix , _head , _last -- * Elementwise operations -- ** Indexing , indexed -- ** Mapping , map , imap , concatMap -- ** Monadic mapping , mapM , imapM , mapM_ , imapM_ , forM , forM_ -- ** Zipping , zipWith , zipWith3 , zipWith4 , zipWith5 , zipWith6 , izipWith , izipWith3 , izipWith4 , izipWith5 , izipWith6 , zip , zip3 , zip4 , zip5 , zip6 -- ** Monadic zipping , zipWithM , izipWithM , zipWithM_ , izipWithM_ -- ** Unzipping , unzip , unzip3 , unzip4 , unzip5 , unzip6 -- * Working with predicates -- ** Searching , elem , notElem , find , findIndex , elemIndex -- * Folding , foldl , foldl1 , foldl' , foldl1' , foldr , foldr1 , foldr' , foldr1' , ifoldl , ifoldl' , ifoldr , ifoldr' -- ** Specialised folds , all , any , and , or , sum , product , maximum , maximumBy , minimum , minimumBy , maxIndex , maxIndexBy , minIndex , minIndexBy -- ** Monadic folds , foldM , ifoldM , fold1M , foldM' , ifoldM' , fold1M' , foldM_ , ifoldM_ , fold1M_ , foldM'_ , ifoldM'_ , fold1M'_ -- ** Monadic sequencing , sequence , sequence_ -- * Prefix sums (scans) , prescanl , prescanl' , postscanl , postscanl' , scanl , scanl' , scanl1 , scanl1' , prescanr , prescanr' , postscanr , postscanr' , scanr , scanr' , scanr1 , scanr1' -- * Conversions -- ** Lists , toList , fromList , fromListN , fromListN' , withSizedList -- ** Mutable vectors , freeze , thaw , copy , unsafeFreeze , unsafeThaw -- ** Unsized Vectors , toSized , withSized , fromSized , withVectorUnsafe ) where import qualified Data.Vector.Generic.Sized as V import qualified Data.Vector as VU import qualified Data.Vector.Mutable.Sized as VM import GHC.TypeLits import Data.Finite import Data.Proxy #if !MIN_VERSION_GLASGOW_HASKELL(8,3,0,0) import Data.IndexedListLiterals hiding (toList) #endif import Control.Monad.Primitive import Prelude hiding ( length, null, replicate, (++), concat, head, last, init, tail, take, drop, splitAt, reverse, map, concat, concatMap, zipWith, zipWith3, zip, zip3, unzip, unzip3, filter, takeWhile, dropWhile, span, break, elem, notElem, foldl, foldl1, foldr, foldr1, all, any, and, or, sum, product, maximum, minimum, scanl, scanl1, scanr, scanr1, enumFromTo, enumFromThenTo, mapM, mapM_, sequence, sequence_, showsPrec ) -- | 'Data.Vector.Generic.Sized.Vector' specialized to use -- 'Data.Vector' type Vector = V.Vector VU.Vector -- | /O(1)/ Yield the length of the vector as an 'Int'. This is more like -- 'natVal' than 'Data.Vector.length', extracting the value from the 'KnownNat' -- instance and not looking at the vector itself. length :: forall n a. KnownNat n => Vector n a -> Int length = V.length {-# inline length #-} -- | /O(1)/ Yield the length of the vector as a 'Proxy'. This function -- doesn't /do/ anything; it merely allows the size parameter of the vector -- to be passed around as a 'Proxy'. length' :: forall n a. Vector n a -> Proxy n length' = V.length' {-# inline length' #-} -- | /O(1)/ Reveal a 'KnownNat' instance for a vector's length, determined -- at runtime. knownLength :: forall n a r. Vector n a -- ^ a vector of some (potentially unknown) length -> (KnownNat n => r) -- ^ a value that depends on knowing the vector's length -> r -- ^ the value computed with the length knownLength = V.knownLength -- | /O(1)/ Reveal a 'KnownNat' instance and 'Proxy' for a vector's length, -- determined at runtime. knownLength' :: forall n a r. Vector n a -- ^ a vector of some (potentially unknown) length -> (KnownNat n => Proxy n -> r) -- ^ a value that depends on knowing the vector's length, which is given as a 'Proxy' -> r -- ^ the value computed with the length knownLength' = V.knownLength' -- | /O(1)/ Safe indexing using a 'Finite'. index :: forall n a. KnownNat n => Vector n a -> Finite n -> a index = V.index {-# inline index #-} -- | /O(1)/ Safe indexing using a 'Proxy'. index' :: forall n m a p. (KnownNat n, KnownNat m) => Vector (n+m+1) a -> p n -> a index' = V.index' {-# inline index' #-} -- | /O(1)/ Indexing using an Int without bounds checking. unsafeIndex :: forall n a. KnownNat n => Vector n a -> Int -> a unsafeIndex = V.unsafeIndex {-# inline unsafeIndex #-} -- | /O(1)/ Yield the first element of a non-empty vector. head :: forall n a. Vector (1+n) a -> a head = V.head {-# inline head #-} -- | /O(1)/ Yield the last element of a non-empty vector. last :: forall n a. Vector (n+1) a -> a last = V.last {-# inline last #-} -- | Lens to access (/O(1)/) and update (/O(n)/) an arbitrary element by its index. ix :: forall n a f. (KnownNat n, Functor f) => Finite n -> (a -> f a) -> Vector n a -> f (Vector n a) ix = V.ix {-# inline ix #-} -- | Lens to access (/O(1)/) and update (/O(n)/) the first element of a non-empty vector. _head :: forall n a f. (KnownNat n, Functor f) => (a -> f a) -> Vector (1+n) a -> f (Vector (1+n) a) _head = V._head {-# inline _head #-} -- | Lens to access (/O(1)/) and update (/O(n)/) the last element of a non-empty vector. _last :: forall n a f. (KnownNat n, Functor f) => (a -> f a) -> Vector (n+1) a -> f (Vector (n+1) a) _last = V._last {-# inline _last #-} -- | /O(1)/ Safe indexing in a monad. See the documentation for 'VG.indexM' for -- an explanation of why this is useful. indexM :: forall n a m. (KnownNat n, Monad m) => Vector n a -> Finite n -> m a indexM = V.indexM {-# inline indexM #-} -- | /O(1)/ Safe indexing in a monad using a 'Proxy'. See the documentation for -- 'VG.indexM' for an explanation of why this is useful. indexM' :: forall n k a m p. (KnownNat n, KnownNat k, Monad m) => Vector (n+k) a -> p n -> m a indexM' = V.indexM' {-# inline indexM' #-} -- | /O(1)/ Indexing using an Int without bounds checking. See the -- documentation for 'VG.indexM' for an explanation of why this is useful. unsafeIndexM :: forall n a m. (KnownNat n, Monad m) => Vector n a -> Int -> m a unsafeIndexM = V.unsafeIndexM {-# inline unsafeIndexM #-} -- | /O(1)/ Yield the first element of a non-empty vector in a monad. See the -- documentation for 'VG.indexM' for an explanation of why this is useful. headM :: forall n a m. (KnownNat n, Monad m) => Vector (1+n) a -> m a headM = V.headM {-# inline headM #-} -- | /O(1)/ Yield the last element of a non-empty vector in a monad. See the -- documentation for 'VG.indexM' for an explanation of why this is useful. lastM :: forall n a m. (KnownNat n, Monad m) => Vector (n+1) a -> m a lastM = V.lastM {-# inline lastM #-} -- | /O(1)/ Yield a slice of the vector without copying it with an inferred -- length argument. slice :: forall i n m a p. (KnownNat i, KnownNat n, KnownNat m) => p i -- ^ starting index -> Vector (i+n+m) a -> Vector n a slice = V.slice {-# inline slice #-} -- | /O(1)/ Yield a slice of the vector without copying it with an explicit -- length argument. slice' :: forall i n m a p. (KnownNat i, KnownNat n, KnownNat m) => p i -- ^ starting index -> p n -- ^ length -> Vector (i+n+m) a -> Vector n a slice' = V.slice' {-# inline slice' #-} -- | /O(1)/ Yield all but the last element of a non-empty vector without -- copying. init :: forall n a. Vector (n+1) a -> Vector n a init = V.init {-# inline init #-} -- | /O(1)/ Yield all but the first element of a non-empty vector without -- copying. tail :: forall n a. Vector (1+n) a -> Vector n a tail = V.tail {-# inline tail #-} -- | /O(1)/ Yield the first n elements. The resultant vector always contains -- this many elements. The length of the resultant vector is inferred from the -- type. take :: forall n m a. (KnownNat n, KnownNat m) => Vector (n+m) a -> Vector n a take = V.take {-# inline take #-} -- | /O(1)/ Yield the first n elements. The resultant vector always contains -- this many elements. The length of the resultant vector is given explicitly -- as a 'Proxy' argument. take' :: forall n m a p. (KnownNat n, KnownNat m) => p n -> Vector (n+m) a -> Vector n a take' = V.take' {-# inline take' #-} -- | /O(1)/ Yield all but the the first n elements. The given vector must -- contain at least this many elements The length of the resultant vector is -- inferred from the type. drop :: forall n m a. (KnownNat n, KnownNat m) => Vector (n+m) a -> Vector m a drop = V.drop {-# inline drop #-} -- | /O(1)/ Yield all but the the first n elements. The given vector must -- contain at least this many elements The length of the resultant vector is -- givel explicitly as a 'Proxy' argument. drop' :: forall n m a p. (KnownNat n, KnownNat m) => p n -> Vector (n+m) a -> Vector m a drop' = V.drop' {-# inline drop' #-} -- | /O(1)/ Yield the first n elements paired with the remainder without copying. -- The lengths of the resultant vector are inferred from the type. splitAt :: forall n m a. (KnownNat n, KnownNat m) => Vector (n+m) a -> (Vector n a, Vector m a) splitAt = V.splitAt {-# inline splitAt #-} -- | /O(1)/ Yield the first n elements paired with the remainder without -- copying. The length of the first resultant vector is passed explicitly as a -- 'Proxy' argument. splitAt' :: forall n m a p. (KnownNat n, KnownNat m) => p n -> Vector (n+m) a -> (Vector n a, Vector m a) splitAt' = V.splitAt' {-# inline splitAt' #-} -------------------------------------------------------------------------------- -- * Construction -------------------------------------------------------------------------------- -- -- ** Initialization -- -- | /O(1)/ Empty vector. empty :: forall a. Vector 0 a empty = V.empty {-# inline empty #-} -- | /O(1)/ Vector with exactly one element. singleton :: forall a. a -> Vector 1 a singleton = V.singleton {-# inline singleton #-} #if !MIN_VERSION_GLASGOW_HASKELL(8,3,0,0) -- | /O(n)/ Construct a vector in a type safe manner -- fromTuple (1,2) :: Vector 2 Int -- fromTuple ("hey", "what's", "going", "on") :: Vector 4 String fromTuple :: forall input length ty. (IndexedListLiterals input length ty, KnownNat length) => input -> Vector length ty fromTuple = V.fromTuple #endif -- | /O(n)/ Construct a vector with the same element in each position where the -- length is inferred from the type. replicate :: forall n a. KnownNat n => a -> Vector n a replicate = V.replicate {-# inline replicate #-} -- | /O(n)/ Construct a vector with the same element in each position where the -- length is given explicitly as a 'Proxy' argument. replicate' :: forall n a p. KnownNat n => p n -> a -> Vector n a replicate' = V.replicate' {-# inline replicate' #-} -- | /O(n)/ construct a vector of the given length by applying the function to -- each index where the length is inferred from the type. generate :: forall n a. KnownNat n => (Finite n -> a) -> Vector n a generate = V.generate {-# inline generate #-} -- | /O(n)/ construct a vector of the given length by applying the function to -- each index where the length is given explicitly as a 'Proxy' argument. generate' :: forall n a p. KnownNat n => p n -> (Finite n -> a) -> Vector n a generate' = V.generate' {-# inline generate' #-} -- | /O(n)/ Apply function n times to value. Zeroth element is original value. -- The length is inferred from the type. iterateN :: forall n a. KnownNat n => (a -> a) -> a -> Vector n a iterateN = V.iterateN {-# inline iterateN #-} -- | /O(n)/ Apply function n times to value. Zeroth element is original value. -- The length is given explicitly as a 'Proxy' argument. iterateN' :: forall n a p. KnownNat n => p n -> (a -> a) -> a -> Vector n a iterateN' = V.iterateN' {-# inline iterateN' #-} -- -- ** Monadic initialisation -- -- | /O(n)/ Execute the monadic action @n@ times and store the results in a -- vector where @n@ is inferred from the type. replicateM :: forall n m a. (KnownNat n, Monad m) => m a -> m (Vector n a) replicateM = V.replicateM {-# inline replicateM #-} -- | /O(n)/ Execute the monadic action @n@ times and store the results in a -- vector where @n@ is given explicitly as a 'Proxy' argument. replicateM' :: forall n m a p. (KnownNat n, Monad m) => p n -> m a -> m (Vector n a) replicateM' = V.replicateM' {-# inline replicateM' #-} -- | /O(n)/ Construct a vector of length @n@ by applying the monadic action to -- each index where n is inferred from the type. generateM :: forall n m a. (KnownNat n, Monad m) => (Finite n -> m a) -> m (Vector n a) generateM = V.generateM {-# inline generateM #-} -- | /O(n)/ Construct a vector of length @n@ by applying the monadic action to -- each index where n is given explicitly as a 'Proxy' argument. generateM' :: forall n m a p. (KnownNat n, Monad m) => p n -> (Finite n -> m a) -> m (Vector n a) generateM' = V.generateM' {-# inline generateM' #-} -- -- ** Unfolding -- -- | /O(n)/ Construct a vector with exactly @n@ elements by repeatedly applying -- the generator function to the a seed. The length, @n@, is inferred from the -- type. unfoldrN :: forall n a b. KnownNat n => (b -> (a, b)) -> b -> Vector n a unfoldrN = V.unfoldrN {-# inline unfoldrN #-} -- | /O(n)/ Construct a vector with exactly @n@ elements by repeatedly applying -- the generator function to the a seed. The length, @n@, is given explicitly -- as a 'Proxy' argument. unfoldrN' :: forall n a b p. KnownNat n => p n -> (b -> (a, b)) -> b -> Vector n a unfoldrN' = V.unfoldrN' {-# inline unfoldrN' #-} -- -- ** Enumeration -- -- | /O(n)/ Yield a vector of length @n@ containing the values @x@, @x+1@ -- etc. The length, @n@, is inferred from the type. enumFromN :: forall n a. (KnownNat n, Num a) => a -> Vector n a enumFromN = V.enumFromN {-# inline enumFromN #-} -- | /O(n)/ Yield a vector of length @n@ containing the values @x@, @x+1@ -- etc. The length, @n@, is given explicitly as a 'Proxy' argument. enumFromN' :: forall n a p. (KnownNat n, Num a) => a -> p n -> Vector n a enumFromN' = V.enumFromN' {-# inline enumFromN' #-} -- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+y@, -- @x+y+y@ etc. The length, @n@, is inferred from the type. enumFromStepN :: forall n a. (KnownNat n, Num a) => a -> a -> Vector n a enumFromStepN = V.enumFromStepN {-# inline enumFromStepN #-} -- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+y@, -- @x+y+y@ etc. The length, @n@, is given explicitly as a 'Proxy' argument. enumFromStepN' :: forall n a p. (KnownNat n, Num a) => a -> a -> p n -> Vector n a enumFromStepN' = V.enumFromStepN' {-# inline enumFromStepN' #-} -- -- ** Concatenation -- -- | /O(n)/ Prepend an element. cons :: forall n a. a -> Vector n a -> Vector (1+n) a cons = V.cons {-# inline cons #-} -- | /O(n)/ Append an element. snoc :: forall n a. Vector n a -> a -> Vector (n+1) a snoc = V.snoc {-# inline snoc #-} -- | /O(m+n)/ Concatenate two vectors. (++) :: forall n m a. Vector n a -> Vector m a -> Vector (n+m) a (++) = (V.++) {-# inline (++) #-} -- -- ** Restricting memory usage -- -- | /O(n)/ Yield the argument but force it not to retain any extra memory, -- possibly by copying it. -- -- This is especially useful when dealing with slices. For example: -- -- > force (slice 0 2 <huge vector>) -- -- Here, the slice retains a reference to the huge vector. Forcing it creates -- a copy of just the elements that belong to the slice and allows the huge -- vector to be garbage collected. force :: Vector n a -> Vector n a force = V.force {-# inline force #-} -------------------------------------------------------------------------------- -- * Modifying vectors -------------------------------------------------------------------------------- -- -- ** Bulk updates -- -- | /O(m+n)/ For each pair @(i,a)@ from the list, replace the vector -- element at position @i@ by @a@. -- -- > <5,9,2,7> // [(2,1),(0,3),(2,8)] = <3,9,8,7> -- (//) :: Vector m a -- ^ initial vector (of length @m@) -> [(Finite m, a)] -- ^ list of index/value pairs (of length @n@) -> Vector m a (//) = (V.//) {-# inline (//) #-} -- | /O(m+n)/ For each pair @(i,a)@ from the vector of index/value pairs, -- replace the vector element at position @i@ by @a@. -- -- > update <5,9,2,7> <(2,1),(0,3),(2,8)> = <3,9,8,7> -- update :: Vector m a -- ^ initial vector (of length @m@) -> Vector n (Int, a) -- ^ vector of index/value pairs (of length @n@) -> Vector m a update = V.update {-# inline update #-} -- | /O(m+n)/ For each index @i@ from the index vector and the -- corresponding value @a@ from the value vector, replace the element of the -- initial vector at position @i@ by @a@. -- -- > update_ <5,9,2,7> <2,0,2> <1,3,8> = <3,9,8,7> -- -- This function is useful for instances of 'Vector' that cannot store pairs. -- Otherwise, 'update' is probably more convenient. -- -- @ -- update_ xs is ys = 'update' xs ('zip' is ys) -- @ update_ :: Vector m a -- ^ initial vector (of length @m@) -> Vector n Int -- ^ index vector (of length @n@) -> Vector n a -- ^ value vector (of length @n@) -> Vector m a update_ = V.update_ {-# inline update_ #-} -- | Same as ('//') but without bounds checking. unsafeUpd :: Vector m a -- ^ initial vector (of length @m@) -> [(Int, a)] -- ^ list of index/value pairs (of length @n@) -> Vector m a unsafeUpd = V.unsafeUpd {-# inline unsafeUpd #-} -- | Same as 'update' but without bounds checking. unsafeUpdate :: Vector m a -- ^ initial vector (of length @m@) -> Vector n (Int, a) -- ^ vector of index/value pairs (of length @n@) -> Vector m a unsafeUpdate = V.unsafeUpdate {-# inline unsafeUpdate #-} -- | Same as 'update_' but without bounds checking. unsafeUpdate_ :: Vector m a -- ^ initial vector (of length @m@) -> Vector n Int -- ^ index vector (of length @n@) -> Vector n a -- ^ value vector (of length @n@) -> Vector m a unsafeUpdate_ = V.unsafeUpdate_ {-# inline unsafeUpdate_ #-} -- -- ** Accumulations -- -- | /O(m+n)/ For each pair @(i,b)@ from the list, replace the vector element -- @a@ at position @i@ by @f a b@. -- -- > accum (+) <5,9,2> [(2,4),(1,6),(0,3),(1,7)] = <5+3, 9+6+7, 2+4> accum :: (a -> b -> a) -- ^ accumulating function @f@ -> Vector m a -- ^ initial vector (of length @m@) -> [(Int,b)] -- ^ list of index/value pairs (of length @n@) -> Vector m a accum = V.accum {-# inline accum #-} -- | /O(m+n)/ For each pair @(i,b)@ from the vector of pairs, replace the vector -- element @a@ at position @i@ by @f a b@. -- -- > accumulate (+) <5,9,2> <(2,4),(1,6),(0,3),(1,7)> = <5+3, 9+6+7, 2+4> accumulate :: (a -> b -> a) -- ^ accumulating function @f@ -> Vector m a -- ^ initial vector (of length @m@) -> Vector n (Int,b) -- ^ vector of index/value pairs (of length @n@) -> Vector m a accumulate = V.accumulate {-# inline accumulate #-} -- | /O(m+n)/ For each index @i@ from the index vector and the -- corresponding value @b@ from the the value vector, -- replace the element of the initial vector at -- position @i@ by @f a b@. -- -- > accumulate_ (+) <5,9,2> <2,1,0,1> <4,6,3,7> = <5+3, 9+6+7, 2+4> -- -- This function is useful for instances of 'Vector' that cannot store pairs. -- Otherwise, 'accumulate' is probably more convenient: -- -- @ -- accumulate_ f as is bs = 'accumulate' f as ('zip' is bs) -- @ accumulate_ :: (a -> b -> a) -- ^ accumulating function @f@ -> Vector m a -- ^ initial vector (of length @m@) -> Vector n Int -- ^ index vector (of length @n@) -> Vector n b -- ^ value vector (of length @n@) -> Vector m a accumulate_ = V.accumulate_ {-# inline accumulate_ #-} -- | Same as 'accum' but without bounds checking. unsafeAccum :: (a -> b -> a) -- ^ accumulating function @f@ -> Vector m a -- ^ initial vector (of length @m@) -> [(Int,b)] -- ^ list of index/value pairs (of length @n@) -> Vector m a unsafeAccum = V.unsafeAccum {-# inline unsafeAccum #-} -- | Same as 'accumulate' but without bounds checking. unsafeAccumulate :: (a -> b -> a) -- ^ accumulating function @f@ -> Vector m a -- ^ initial vector (of length @m@) -> Vector n (Int,b) -- ^ vector of index/value pairs (of length @n@) -> Vector m a unsafeAccumulate = V.unsafeAccumulate {-# inline unsafeAccumulate #-} -- | Same as 'accumulate_' but without bounds checking. unsafeAccumulate_ :: (a -> b -> a) -- ^ accumulating function @f@ -> Vector m a -- ^ initial vector (of length @m@) -> Vector n Int -- ^ index vector (of length @n@) -> Vector n b -- ^ value vector (of length @n@) -> Vector m a unsafeAccumulate_ = V.unsafeAccumulate_ {-# inline unsafeAccumulate_ #-} -- -- ** Permutations -- -- | /O(n)/ Reverse a vector reverse :: Vector n a -> Vector n a reverse = V.reverse {-# inline reverse #-} -- | /O(n)/ Yield the vector obtained by replacing each element @i@ of the -- index vector by @xs'!'i@. This is equivalent to @'map' (xs'!') is@ but is -- often much more efficient. -- -- > backpermute <a,b,c,d> <0,3,2,3,1,0> = <a,d,c,d,b,a> backpermute :: Vector m a -- ^ @xs@ value vector -> Vector n Int -- ^ @is@ index vector (of length @n@) -> Vector n a backpermute = V.backpermute {-# inline backpermute #-} -- | Same as 'backpermute' but without bounds checking. unsafeBackpermute :: Vector m a -- ^ @xs@ value vector -> Vector n Int -- ^ @is@ index vector (of length @n@) -> Vector n a unsafeBackpermute = V.unsafeBackpermute {-# inline unsafeBackpermute #-} -------------------------------------------------------------------------------- -- * Elementwise Operations -------------------------------------------------------------------------------- -- -- ** Indexing -- -- | /O(n)/ Pair each element in a vector with its index indexed :: Vector n a -> Vector n (Finite n,a) indexed = V.indexed {-# inline indexed #-} -- -- ** Mapping -- -- | /O(n)/ Map a function over a vector map :: (a -> b) -> Vector n a -> Vector n b map = V.map {-# inline map #-} -- | /O(n)/ Apply a function to every element of a vector and its index imap :: (Finite n -> a -> b) -> Vector n a -> Vector n b imap = V.imap {-# inline imap #-} -- | /O(n*m)/ Map a function over a vector and concatenate the results. The -- function is required to always return the same length vector. concatMap :: (a -> Vector m b) -> Vector n a -> Vector (n*m) b concatMap = V.concatMap {-# inline concatMap #-} -- -- ** Monadic mapping -- -- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a -- vector of results mapM :: Monad m => (a -> m b) -> Vector n a -> m (Vector n b) mapM = V.mapM {-# inline mapM #-} -- | /O(n)/ Apply the monadic action to every element of a vector and its -- index, yielding a vector of results imapM :: Monad m => (Finite n -> a -> m b) -> Vector n a -> m (Vector n b) imapM = V.imapM {-# inline imapM #-} -- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the -- results mapM_ :: Monad m => (a -> m b) -> Vector n a -> m () mapM_ = V.mapM_ {-# inline mapM_ #-} -- | /O(n)/ Apply the monadic action to every element of a vector and its -- index, ignoring the results imapM_ :: Monad m => (Finite n -> a -> m b) -> Vector n a -> m () imapM_ = V.imapM_ {-# inline imapM_ #-} -- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a -- vector of results. Equvalent to @flip 'mapM'@. forM :: Monad m => Vector n a -> (a -> m b) -> m (Vector n b) forM = V.forM {-# inline forM #-} -- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the -- results. Equivalent to @flip 'mapM_'@. forM_ :: Monad m => Vector n a -> (a -> m b) -> m () forM_ = V.forM_ {-# inline forM_ #-} -- -- ** Zipping -- -- | /O(n)/ Zip two vectors of the same length with the given function. zipWith :: (a -> b -> c) -> Vector n a -> Vector n b -> Vector n c zipWith = V.zipWith {-# inline zipWith #-} -- | Zip three vectors with the given function. zipWith3 :: (a -> b -> c -> d) -> Vector n a -> Vector n b -> Vector n c -> Vector n d zipWith3 = V.zipWith3 {-# inline zipWith3 #-} zipWith4 :: (a -> b -> c -> d -> e) -> Vector n a -> Vector n b -> Vector n c -> Vector n d -> Vector n e zipWith4 = V.zipWith4 {-# inline zipWith4 #-} zipWith5 :: (a -> b -> c -> d -> e -> f) -> Vector n a -> Vector n b -> Vector n c -> Vector n d -> Vector n e -> Vector n f zipWith5 = V.zipWith5 {-# inline zipWith5 #-} zipWith6 :: (a -> b -> c -> d -> e -> f -> g) -> Vector n a -> Vector n b -> Vector n c -> Vector n d -> Vector n e -> Vector n f -> Vector n g zipWith6 = V.zipWith6 {-# inline zipWith6 #-} -- | /O(n)/ Zip two vectors of the same length with a function that also takes -- the elements' indices). izipWith :: (Finite n -> a -> b -> c) -> Vector n a -> Vector n b -> Vector n c izipWith = V.izipWith {-# inline izipWith #-} izipWith3 :: (Finite n -> a -> b -> c -> d) -> Vector n a -> Vector n b -> Vector n c -> Vector n d izipWith3 = V.izipWith3 {-# inline izipWith3 #-} izipWith4 :: (Finite n -> a -> b -> c -> d -> e) -> Vector n a -> Vector n b -> Vector n c -> Vector n d -> Vector n e izipWith4 = V.izipWith4 {-# inline izipWith4 #-} izipWith5 :: (Finite n -> a -> b -> c -> d -> e -> f) -> Vector n a -> Vector n b -> Vector n c -> Vector n d -> Vector n e -> Vector n f izipWith5 = V.izipWith5 {-# inline izipWith5 #-} izipWith6 :: (Finite n -> a -> b -> c -> d -> e -> f -> g) -> Vector n a -> Vector n b -> Vector n c -> Vector n d -> Vector n e -> Vector n f -> Vector n g izipWith6 = V.izipWith6 {-# inline izipWith6 #-} -- | /O(n)/ Zip two vectors of the same length zip :: Vector n a -> Vector n b -> Vector n (a, b) zip = V.zip {-# inline zip #-} zip3 :: Vector n a -> Vector n b -> Vector n c -> Vector n (a, b, c) zip3 = V.zip3 {-# inline zip3 #-} zip4 :: Vector n a -> Vector n b -> Vector n c -> Vector n d -> Vector n (a,b,c,d) zip4 = V.zip4 {-# inline zip4 #-} zip5 :: Vector n a -> Vector n b -> Vector n c -> Vector n d -> Vector n e -> Vector n (a,b,c,d,e) zip5 = V.zip5 {-# inline zip5 #-} zip6 :: Vector n a -> Vector n b -> Vector n c -> Vector n d -> Vector n e -> Vector n f -> Vector n (a,b,c,d,e,f) zip6 = V.zip6 {-# inline zip6 #-} -- -- ** Monadic zipping -- -- | /O(n)/ Zip the two vectors of the same length with the monadic action and -- yield a vector of results zipWithM :: Monad m => (a -> b -> m c) -> Vector n a -> Vector n b -> m (Vector n c) zipWithM = V.zipWithM {-# inline zipWithM #-} -- | /O(n)/ Zip the two vectors with a monadic action that also takes the -- element index and yield a vector of results izipWithM :: Monad m => (Finite n -> a -> b -> m c) -> Vector n a -> Vector n b -> m (Vector n c) izipWithM = V.izipWithM {-# inline izipWithM #-} -- | /O(n)/ Zip the two vectors with the monadic action and ignore the results zipWithM_ :: Monad m => (a -> b -> m c) -> Vector n a -> Vector n b -> m () zipWithM_ = V.zipWithM_ {-# inline zipWithM_ #-} -- | /O(n)/ Zip the two vectors with a monadic action that also takes -- the element index and ignore the results izipWithM_ :: Monad m => (Finite n -> a -> b -> m c) -> Vector n a -> Vector n b -> m () izipWithM_ = V.izipWithM_ {-# inline izipWithM_ #-} -- Unzipping -- --------- -- | /O(min(m,n))/ Unzip a vector of pairs. unzip :: Vector n (a, b) -> (Vector n a, Vector n b) unzip = V.unzip {-# inline unzip #-} unzip3 :: Vector n (a, b, c) -> (Vector n a, Vector n b, Vector n c) unzip3 = V.unzip3 {-# inline unzip3 #-} unzip4 :: Vector n (a, b, c, d) -> (Vector n a, Vector n b, Vector n c, Vector n d) unzip4 = V.unzip4 {-# inline unzip4 #-} unzip5 :: Vector n (a, b, c, d, e) -> (Vector n a, Vector n b, Vector n c, Vector n d, Vector n e) unzip5 = V.unzip5 {-# inline unzip5 #-} unzip6 :: Vector n (a, b, c, d, e, f) -> (Vector n a, Vector n b, Vector n c, Vector n d, Vector n e, Vector n f) unzip6 = V.unzip6 {-# inline unzip6 #-} -------------------------------------------------------------------------------- -- * Working with predicates -------------------------------------------------------------------------------- -- -- ** Searching -- infix 4 `elem` -- | /O(n)/ Check if the vector contains an element elem :: Eq a => a -> Vector n a -> Bool elem = V.elem {-# inline elem #-} infix 4 `notElem` -- | /O(n)/ Check if the vector does not contain an element (inverse of 'elem') notElem :: Eq a => a -> Vector n a -> Bool notElem = V.notElem {-# inline notElem #-} -- | /O(n)/ Yield 'Just' the first element matching the predicate or 'Nothing' -- if no such element exists. find :: (a -> Bool) -> Vector n a -> Maybe a find = V.find {-# inline find #-} -- | /O(n)/ Yield 'Just' the index of the first element matching the predicate -- or 'Nothing' if no such element exists. findIndex :: (a -> Bool) -> Vector n a -> Maybe (Finite n) findIndex = V.findIndex {-# inline findIndex #-} -- | /O(n)/ Yield 'Just' the index of the first occurence of the given element or -- 'Nothing' if the vector does not contain the element. This is a specialised -- version of 'findIndex'. elemIndex :: (Eq a) => a -> Vector n a -> Maybe (Finite n) elemIndex = V.elemIndex {-# inline elemIndex #-} -------------------------------------------------------------------------------- -- * Folding -------------------------------------------------------------------------------- -- | /O(n)/ Left fold foldl :: (a -> b -> a) -> a -> Vector n b -> a foldl = V.foldl {-# inline foldl #-} -- | /O(n)/ Left fold on non-empty vectors foldl1 :: KnownNat n => (a -> a -> a) -> Vector (1+n) a -> a foldl1 = V.foldl1 {-# inline foldl1 #-} -- | /O(n)/ Left fold with strict accumulator foldl' :: (a -> b -> a) -> a -> Vector n b -> a foldl' = V.foldl' {-# inline foldl' #-} -- | /O(n)/ Left fold on non-empty vectors with strict accumulator foldl1' :: KnownNat n => (a -> a -> a) -> Vector (1+n) a -> a foldl1' = V.foldl1' {-# inline foldl1' #-} -- | /O(n)/ Right fold foldr :: (a -> b -> b) -> b -> Vector n a -> b foldr = V.foldr {-# inline foldr #-} -- | /O(n)/ Right fold on non-empty vectors foldr1 :: KnownNat n => (a -> a -> a) -> Vector (n+1) a -> a foldr1 = V.foldr1 {-# inline foldr1 #-} -- | /O(n)/ Right fold with a strict accumulator foldr' :: (a -> b -> b) -> b -> Vector n a -> b foldr' = V.foldr' {-# inline foldr' #-} -- | /O(n)/ Right fold on non-empty vectors with strict accumulator foldr1' :: KnownNat n => (a -> a -> a) -> Vector (n+1) a -> a foldr1' = V.foldr1' {-# inline foldr1' #-} -- | /O(n)/ Left fold (function applied to each element and its index) ifoldl :: (a -> Finite n -> b -> a) -> a -> Vector n b -> a ifoldl = V.ifoldl {-# inline ifoldl #-} -- | /O(n)/ Left fold with strict accumulator (function applied to each element -- and its index) ifoldl' :: (a -> Finite n -> b -> a) -> a -> Vector n b -> a ifoldl' = V.ifoldl' {-# inline ifoldl' #-} -- | /O(n)/ Right fold (function applied to each element and its index) ifoldr :: (Finite n -> a -> b -> b) -> b -> Vector n a -> b ifoldr = V.ifoldr {-# inline ifoldr #-} -- | /O(n)/ Right fold with strict accumulator (function applied to each -- element and its index) ifoldr' :: (Finite n -> a -> b -> b) -> b -> Vector n a -> b ifoldr' = V.ifoldr' {-# inline ifoldr' #-} -- ** Specialised folds -- | /O(n)/ Check if all elements satisfy the predicate. all :: (a -> Bool) -> Vector n a -> Bool all = V.all {-# inline all #-} -- | /O(n)/ Check if any element satisfies the predicate. any :: (a -> Bool) -> Vector n a -> Bool any = V.any {-# inline any #-} -- | /O(n)/ Check if all elements are 'True' and :: Vector n Bool -> Bool and = V.and {-# inline and #-} -- | /O(n)/ Check if any element is 'True' or :: Vector n Bool -> Bool or = V.or {-# inline or #-} -- | /O(n)/ Compute the sum of the elements sum :: (Num a) => Vector n a -> a sum = V.sum {-# inline sum #-} -- | /O(n)/ Compute the produce of the elements product :: (Num a) => Vector n a -> a product = V.product {-# inline product #-} -- | /O(n)/ Yield the maximum element of the non-empty vector. maximum :: (Ord a, KnownNat n) => Vector (n+1) a -> a maximum = V.maximum {-# inline maximum #-} -- | /O(n)/ Yield the maximum element of the non-empty vector according to the -- given comparison function. maximumBy :: KnownNat n => (a -> a -> Ordering) -> Vector (n+1) a -> a maximumBy = V.maximumBy {-# inline maximumBy #-} -- | /O(n)/ Yield the minimum element of the non-empty vector. minimum :: (Ord a, KnownNat n) => Vector (n+1) a -> a minimum = V.minimum {-# inline minimum #-} -- | /O(n)/ Yield the minimum element of the non-empty vector according to the -- given comparison function. minimumBy :: KnownNat n => (a -> a -> Ordering) -> Vector (n+1) a -> a minimumBy = V.minimumBy {-# inline minimumBy #-} -- | /O(n)/ Yield the index of the maximum element of the non-empty vector. maxIndex :: (Ord a, KnownNat n) => Vector (n+1) a -> Finite (n + 1) maxIndex = V.maxIndex {-# inline maxIndex #-} -- | /O(n)/ Yield the index of the maximum element of the non-empty vector -- according to the given comparison function. maxIndexBy :: KnownNat n => (a -> a -> Ordering) -> Vector (n+1) a -> Finite (n + 1) maxIndexBy = V.maxIndexBy {-# inline maxIndexBy #-} -- | /O(n)/ Yield the index of the minimum element of the non-empty vector. minIndex :: (Ord a, KnownNat n) => Vector (n+1) a -> Finite (n + 1) minIndex = V.minIndex {-# inline minIndex #-} -- | /O(n)/ Yield the index of the minimum element of the non-empty vector -- according to the given comparison function. minIndexBy :: KnownNat n => (a -> a -> Ordering) -> Vector (n+1) a -> Finite (n + 1) minIndexBy = V.minIndexBy {-# inline minIndexBy #-} -- ** Monadic folds -- | /O(n)/ Monadic fold foldM :: Monad m => (a -> b -> m a) -> a -> Vector n b -> m a foldM = V.foldM {-# inline foldM #-} -- | /O(n)/ Monadic fold (action applied to each element and its index) ifoldM :: Monad m => (a -> Finite n -> b -> m a) -> a -> Vector n b -> m a ifoldM = V.ifoldM {-# inline ifoldM #-} -- | /O(n)/ Monadic fold over non-empty vectors fold1M :: (Monad m, KnownNat n) => (a -> a -> m a) -> Vector (1+n) a -> m a fold1M = V.fold1M {-# inline fold1M #-} -- | /O(n)/ Monadic fold with strict accumulator foldM' :: Monad m => (a -> b -> m a) -> a -> Vector n b -> m a foldM' = V.foldM' {-# inline foldM' #-} -- | /O(n)/ Monadic fold with strict accumulator (action applied to each -- element and its index) ifoldM' :: Monad m => (a -> Finite n -> b -> m a) -> a -> Vector n b -> m a ifoldM' = V.ifoldM' {-# inline ifoldM' #-} -- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator fold1M' :: (Monad m, KnownNat n) => (a -> a -> m a) -> Vector (n+1) a -> m a fold1M' = V.fold1M' {-# inline fold1M' #-} -- | /O(n)/ Monadic fold that discards the result foldM_ :: Monad m => (a -> b -> m a) -> a -> Vector n b -> m () foldM_ = V.foldM_ {-# inline foldM_ #-} -- | /O(n)/ Monadic fold that discards the result (action applied to -- each element and its index) ifoldM_ :: Monad m => (a -> Finite n -> b -> m a) -> a -> Vector n b -> m () ifoldM_ = V.ifoldM_ {-# inline ifoldM_ #-} -- | /O(n)/ Monadic fold over non-empty vectors that discards the result fold1M_ :: (Monad m, KnownNat n) => (a -> a -> m a) -> Vector (n+1) a -> m () fold1M_ = V.fold1M_ {-# inline fold1M_ #-} -- | /O(n)/ Monadic fold with strict accumulator that discards the result foldM'_ :: Monad m => (a -> b -> m a) -> a -> Vector n b -> m () foldM'_ = V.foldM'_ {-# inline foldM'_ #-} -- | /O(n)/ Monadic fold with strict accumulator that discards the result -- (action applied to each element and its index) ifoldM'_ :: Monad m => (a -> Finite n -> b -> m a) -> a -> Vector n b -> m () ifoldM'_ = V.ifoldM'_ {-# inline ifoldM'_ #-} -- | /O(n)/ Monad fold over non-empty vectors with strict accumulator -- that discards the result fold1M'_ :: (Monad m, KnownNat n) => (a -> a -> m a) -> Vector (n+1) a -> m () fold1M'_ = V.fold1M'_ {-# inline fold1M'_ #-} -- ** Monadic sequencing -- | Evaluate each action and collect the results sequence :: Monad m => Vector n (m a) -> m (Vector n a) sequence = V.sequence {-# inline sequence #-} -- | Evaluate each action and discard the results sequence_ :: Monad m => Vector n (m a) -> m () sequence_ = V.sequence_ {-# inline sequence_ #-} -------------------------------------------------------------------------------- -- * Prefix sums (scans) -------------------------------------------------------------------------------- -- | /O(n)/ Prescan -- -- @ -- prescanl f z = 'init' . 'scanl' f z -- @ -- -- Example: @prescanl (+) 0 \<1,2,3,4\> = \<0,1,3,6\>@ -- prescanl :: (a -> b -> a) -> a -> Vector n b -> Vector n a prescanl = V.prescanl {-# inline prescanl #-} -- | /O(n)/ Prescan with strict accumulator prescanl' :: (a -> b -> a) -> a -> Vector n b -> Vector n a prescanl' = V.prescanl' {-# inline prescanl' #-} -- | /O(n)/ Scan postscanl :: (a -> b -> a) -> a -> Vector n b -> Vector n a postscanl = V.postscanl {-# inline postscanl #-} -- | /O(n)/ Scan with strict accumulator postscanl' :: (a -> b -> a) -> a -> Vector n b -> Vector n a postscanl' = V.postscanl' {-# inline postscanl' #-} -- | /O(n)/ Haskell-style scan scanl :: (a -> b -> a) -> a -> Vector n b -> Vector n a scanl = V.scanl {-# inline scanl #-} -- | /O(n)/ Haskell-style scan with strict accumulator scanl' :: (a -> b -> a) -> a -> Vector n b -> Vector n a scanl' = V.scanl' {-# inline scanl' #-} -- | /O(n)/ Scan over a non-empty vector scanl1 :: KnownNat n => (a -> a -> a) -> Vector (n+1) a -> Vector (n+1) a scanl1 = V.scanl1 {-# inline scanl1 #-} -- | /O(n)/ Scan over a non-empty vector with a strict accumulator scanl1' :: KnownNat n => (a -> a -> a) -> Vector (n+1) a -> Vector (n+1) a scanl1' = V.scanl1' {-# inline scanl1' #-} -- | /O(n)/ Right-to-left prescan prescanr :: (a -> b -> b) -> b -> Vector n a -> Vector n b prescanr = V.prescanr {-# inline prescanr #-} -- | /O(n)/ Right-to-left prescan with strict accumulator prescanr' :: (a -> b -> b) -> b -> Vector n a -> Vector n b prescanr' = V.prescanr' {-# inline prescanr' #-} -- | /O(n)/ Right-to-left scan postscanr :: (a -> b -> b) -> b -> Vector n a -> Vector n b postscanr = V.postscanr {-# inline postscanr #-} -- | /O(n)/ Right-to-left scan with strict accumulator postscanr' :: (a -> b -> b) -> b -> Vector n a -> Vector n b postscanr' = V.postscanr' {-# inline postscanr' #-} -- | /O(n)/ Right-to-left Haskell-style scan scanr :: (a -> b -> b) -> b -> Vector n a -> Vector n b scanr = V.scanr {-# inline scanr #-} -- | /O(n)/ Right-to-left Haskell-style scan with strict accumulator scanr' :: (a -> b -> b) -> b -> Vector n a -> Vector n b scanr' = V.scanr' {-# inline scanr' #-} -- | /O(n)/ Right-to-left scan over a non-empty vector scanr1 :: KnownNat n => (a -> a -> a) -> Vector (n+1) a -> Vector (n+1) a scanr1 = V.scanr1 {-# inline scanr1 #-} -- | /O(n)/ Right-to-left scan over a non-empty vector with a strict -- accumulator scanr1' :: KnownNat n => (a -> a -> a) -> Vector (n+1) a -> Vector (n+1) a scanr1' = V.scanr1' {-# inline scanr1' #-} -- * Conversions -- ** Lists -- | /O(n)/ Convert a vector to a list toList :: Vector n a -> [a] toList = V.toList {-# inline toList #-} -- | /O(n)/ Convert a list to a vector fromList :: KnownNat n => [a] -> Maybe (Vector n a) fromList = V.fromList {-# inline fromList #-} -- | /O(n)/ Convert the first @n@ elements of a list to a vector. The length of -- the resultant vector is inferred from the type. fromListN :: forall n a. KnownNat n => [a] -> Maybe (Vector n a) fromListN = V.fromListN {-# inline fromListN #-} -- | /O(n)/ Convert the first @n@ elements of a list to a vector. The length of -- the resultant vector is given explicitly as a 'Proxy' argument. fromListN' :: forall n a p. KnownNat n => p n -> [a] -> Maybe (Vector n a) fromListN' = V.fromListN' {-# inline fromListN' #-} -- | /O(n)/ Takes a list and returns a continuation providing a vector with -- a size parameter corresponding to the length of the list. -- -- Essentially converts a list into a vector with the proper size -- parameter, determined at runtime. -- -- See 'withSized' withSizedList :: forall a r. [a] -> (forall n. KnownNat n => Vector n a -> r) -> r withSizedList xs = withSized (VU.fromList xs) {-# inline withSizedList #-} -- ** Mutable vectors -- | /O(n)/ Yield an immutable copy of the mutable vector. freeze :: PrimMonad m => VM.MVector n (PrimState m) a -> m (Vector n a) freeze = V.freeze -- | /O(1)/ Unsafely convert a mutable vector to an immutable one withouy -- copying. The mutable vector may not be used after this operation. unsafeFreeze :: PrimMonad m => VM.MVector n (PrimState m) a -> m (Vector n a) unsafeFreeze = V.unsafeFreeze -- | /O(n)/ Yield a mutable copy of the immutable vector. thaw :: PrimMonad m => Vector n a -> m (VM.MVector n (PrimState m) a) thaw = V.thaw -- | /O(n)/ Unsafely convert an immutable vector to a mutable one without -- copying. The immutable vector may not be used after this operation. unsafeThaw :: PrimMonad m => Vector n a -> m (VM.MVector n (PrimState m) a) unsafeThaw = V.unsafeThaw -- | /O(n)/ Copy an immutable vector into a mutable one. copy :: PrimMonad m => VM.MVector n (PrimState m) a -> Vector n a -> m () copy = V.copy -- ** Unsized vectors -- | Convert a 'Data.Vector.Generic.Vector' into a -- 'Data.Vector.Generic.Sized.Vector' if it has the correct size, otherwise -- return Nothing. toSized :: forall n a. KnownNat n => VU.Vector a -> Maybe (Vector n a) toSized = V.toSized {-# inline toSized #-} -- | Takes a 'Data.Vector.Vector' and returns a continuation providing -- a 'Data.Vector.Sized.Vector' with a size parameter @n@ that is -- determined at runtime based on the length of the input vector. -- -- Essentially converts a 'Data.Vector.Vector' into -- a 'Data.Vector.Sized.Vector' with the correct size parameter -- @n@. withSized :: forall a r. VU.Vector a -> (forall n. KnownNat n => Vector n a -> r) -> r withSized = V.withSized {-# inline withSized #-} fromSized :: Vector n a -> VU.Vector a fromSized = V.fromSized {-# inline fromSized #-} -- | Apply a function on unsized vectors to a sized vector. The function must -- preserve the size of the vector, this is not checked. withVectorUnsafe :: (VU.Vector a -> VU.Vector b) -> Vector n a -> Vector n b withVectorUnsafe = V.withVectorUnsafe {-# inline withVectorUnsafe #-}