{-# LINE 1 "Numeric/FFT/Vector/Unnormalized.hsc" #-} {- | {-# LINE 2 "Numeric/FFT/Vector/Unnormalized.hsc" #-} Raw, unnormalized versions of the transforms in @fftw@. Note that the forwards and backwards transforms of this module are not actually inverses. For example, @run idft (run dft v) /= v@ in general. For more information on the individual transforms, see <http://www.fftw.org/fftw3_doc/What-FFTW-Really-Computes.html>. -} module Numeric.FFT.Vector.Unnormalized( -- * Creating and executing 'Plan's run, plan, execute, -- * Complex-to-complex transforms dft, idft, -- * Real-to-complex transforms dftR2C, dftC2R, -- * Real-to-real transforms -- $dct_size -- ** Discrete cosine transforms dct1, dct2, dct3, dct4, -- ** Discrete sine transforms dst1, dst2, dst3, dst4, ) where import Numeric.FFT.Vector.Base import Foreign import Foreign.C import Data.Complex {-# LINE 41 "Numeric/FFT/Vector/Unnormalized.hsc" #-} -- | Whether the complex fft is forwards or backwards. type CDirection = CInt -- | The type of the cosine or sine transform. type CKind = (Word32) {-# LINE 47 "Numeric/FFT/Vector/Unnormalized.hsc" #-} foreign import ccall unsafe fftw_plan_dft_1d :: CInt -> Ptr (Complex Double) -> Ptr (Complex Double) -> CDirection -> CFlags -> IO (Ptr CPlan) foreign import ccall unsafe fftw_plan_dft_r2c_1d :: CInt -> Ptr Double -> Ptr (Complex Double) -> CFlags -> IO (Ptr CPlan) foreign import ccall unsafe fftw_plan_dft_c2r_1d :: CInt -> Ptr (Complex Double) -> Ptr Double -> CFlags -> IO (Ptr CPlan) foreign import ccall unsafe fftw_plan_r2r_1d :: CInt -> Ptr Double -> Ptr Double -> CKind -> CFlags -> IO (Ptr CPlan) dft1D :: CDirection -> Transform (Complex Double) (Complex Double) dft1D d = Transform { inputSize = id, outputSize = id, creationSizeFromInput = id, makePlan = \n a b -> withPlanner . fftw_plan_dft_1d n a b d, normalization = const id } -- | A forward discrete Fourier transform. The output and input sizes are the same (@n@). -- -- @y_k = sum_(j=0)^(n-1) x_j e^(-2pi i j k/n)@ dft :: Transform (Complex Double) (Complex Double) dft = dft1D (-1) {-# LINE 75 "Numeric/FFT/Vector/Unnormalized.hsc" #-} -- | A backward discrete Fourier transform. The output and input sizes are the same (@n@). -- -- @y_k = sum_(j=0)^(n-1) x_j e^(2pi i j k/n)@ idft :: Transform (Complex Double) (Complex Double) idft = dft1D (1) {-# LINE 81 "Numeric/FFT/Vector/Unnormalized.hsc" #-} -- | A forward discrete Fourier transform with real data. If the input size is @n@, -- the output size will be @n \`div\` 2 + 1@. dftR2C :: Transform Double (Complex Double) dftR2C = Transform { inputSize = id, outputSize = \n -> n `div` 2 + 1, creationSizeFromInput = id, makePlan = \n a b -> withPlanner . fftw_plan_dft_r2c_1d n a b, normalization = const id } -- | A backward discrete Fourier transform which produces real data. -- -- This 'Transform' behaves differently than the others: -- -- - Calling @plan dftC2R n@ creates a 'Plan' whose /output/ size is @n@, and whose -- /input/ size is @n \`div\` 2 + 1@. -- -- - If @length v == n@, then @length (run dftC2R v) == 2*(n-1)@. dftC2R :: Transform (Complex Double) Double dftC2R = Transform { inputSize = \n -> n `div` 2 + 1, outputSize = id, creationSizeFromInput = \n -> 2 * (n-1), makePlan = \n a b -> withPlanner . fftw_plan_dft_c2r_1d n a b, normalization = const id } r2rTransform :: CKind -> Transform Double Double r2rTransform kind = Transform { inputSize = id, outputSize = id, creationSizeFromInput = id, makePlan = \n a b -> withPlanner . fftw_plan_r2r_1d n a b kind, normalization = const id } -- $dct_size -- The real-even (DCT) and real-odd (DST) transforms. The input and output sizes -- are the same (@n@). -- | A type-1 discrete cosine transform. -- -- @y_k = x_0 + (-1)^k x_(n-1) + 2 sum_(j=1)^(n-2) x_j cos(pi j k\/(n-1))@ dct1 :: Transform Double Double dct1 = r2rTransform (3) {-# LINE 128 "Numeric/FFT/Vector/Unnormalized.hsc" #-} -- | A type-2 discrete cosine transform. -- -- @y_k = 2 sum_(j=0)^(n-1) x_j cos(pi(j+1\/2)k\/n)@ dct2 :: Transform Double Double dct2 = r2rTransform (5) {-# LINE 134 "Numeric/FFT/Vector/Unnormalized.hsc" #-} -- | A type-3 discrete cosine transform. -- -- @y_k = x_0 + 2 sum_(j=1)^(n-1) x_j cos(pi j(k+1\/2)\/n)@ dct3 :: Transform Double Double dct3 = r2rTransform (4) {-# LINE 140 "Numeric/FFT/Vector/Unnormalized.hsc" #-} -- | A type-4 discrete cosine transform. -- -- @y_k = 2 sum_(j=0)^(n-1) x_j cos(pi(j+1\/2)(k+1\/2)\/n)@ dct4 :: Transform Double Double dct4 = r2rTransform (6) {-# LINE 146 "Numeric/FFT/Vector/Unnormalized.hsc" #-} -- | A type-1 discrete sine transform. -- -- @y_k = 2 sum_(j=0)^(n-1) x_j sin(pi(j+1)(k+1)\/(n+1))@ dst1 :: Transform Double Double dst1 = r2rTransform (7) {-# LINE 152 "Numeric/FFT/Vector/Unnormalized.hsc" #-} -- | A type-2 discrete sine transform. -- -- @y_k = 2 sum_(j=0)^(n-1) x_j sin(pi(j+1\/2)(k+1)\/n)@ dst2 :: Transform Double Double dst2 = r2rTransform (9) {-# LINE 158 "Numeric/FFT/Vector/Unnormalized.hsc" #-} -- | A type-3 discrete sine transform. -- -- @y_k = (-1)^k x_(n-1) + 2 sum_(j=0)^(n-2) x_j sin(pi(j+1)(k+1\/2)/n)@ dst3 :: Transform Double Double dst3 = r2rTransform (8) {-# LINE 164 "Numeric/FFT/Vector/Unnormalized.hsc" #-} -- | A type-4 discrete sine transform. -- -- @y_k = sum_(j=0)^(n-1) x_j sin(pi(j+1\/2)(k+1\/2)\/n)@ dst4 :: Transform Double Double dst4 = r2rTransform (10) {-# LINE 170 "Numeric/FFT/Vector/Unnormalized.hsc" #-}