{- | This module provides normalized versions of the transforms in @fftw@. All of the transforms are normalized so that - Each transform is unitary, i.e., preserves the inner product and the sum-of-squares norm of its input. - Each backwards transform is the inverse of the corresponding forwards transform. (Both conditions only hold approximately, due to floating point precision.) For more information on the underlying transforms, see <http://www.fftw.org/fftw3_doc/What-FFTW-Really-Computes.html>. -} module Numeric.FFT.Vector.Unitary( -- * Creating and executing 'Plan's run, plan, execute, -- * Complex-to-complex transforms dft, idft, -- * Real-to-complex transforms dftR2C, dftC2R, -- * Discrete cosine transforms -- $dct_size dct2, idct2, dct4, ) where import Numeric.FFT.Vector.Base import qualified Numeric.FFT.Vector.Unnormalized as U import Data.Complex import qualified Data.Vector.Storable.Mutable as MS import Control.Monad.Primitive(RealWorld) -- | A discrete Fourier transform. The output and input sizes are the same (@n@). -- -- @y_k = (1\/sqrt n) sum_(j=0)^(n-1) x_j e^(-2pi i j k\/n)@ dft :: Transform (Complex Double) (Complex Double) dft = U.dft {normalization = \n -> constMultOutput $ 1 / sqrt (toEnum n)} -- | An inverse discrete Fourier transform. The output and input sizes are the same (@n@). -- -- @y_k = (1\/sqrt n) sum_(j=0)^(n-1) x_j e^(2pi i j k\/n)@ idft :: Transform (Complex Double) (Complex Double) idft = U.idft {normalization = \n -> constMultOutput $ 1 / sqrt (toEnum n)} -- | A forward discrete Fourier transform with real data. If the input size is @n@, -- the output size will be @n \`div\` 2 + 1@. dftR2C :: Transform Double (Complex Double) dftR2C = U.dftR2C {normalization = \n -> modifyOutput $ complexR2CScaling (sqrt 2) n } -- | A normalized backward discrete Fourier transform which is the left inverse of -- 'U.dftR2C'. (Specifically, @run dftC2R . run dftR2C == id@.) -- -- This 'Transform' behaves differently than the others: -- -- - Calling @plan dftC2R n@ creates a 'Plan' whose /output/ size is @n@, and whose -- /input/ size is @n \`div\` 2 + 1@. -- -- - If @length v == n@, then @length (run dftC2R v) == 2*(n-1)@. -- dftC2R :: Transform (Complex Double) Double dftC2R = U.dftC2R {normalization = \n -> modifyInput $ complexR2CScaling (sqrt 0.5) n } complexR2CScaling :: Double -> Int -> MS.MVector RealWorld (Complex Double) -> IO () complexR2CScaling !t !n !a = do let !s1 = sqrt (1/toEnum n) let !s2 = t * s1 let len = MS.length a -- Justification for the use of unsafeModify: -- The output size is 2n+1; so if n>0 then the output size is >=1; -- and if n even then the output size is >=3. unsafeModify a 0 $ scaleByD s1 if odd n then multC s2 (MS.unsafeSlice 1 (len-1) a) else do unsafeModify a (len-1) $ scaleByD s1 multC s2 (MS.unsafeSlice 1 (len-2) a) -- $dct_size -- Some normalized real-even (DCT). The input and output sizes -- are the same (@n@). -- | A type-4 discrete cosine transform. It is its own inverse. -- -- @y_k = (1\/sqrt n) sum_(j=0)^(n-1) x_j cos(pi(j+1\/2)(k+1\/2)\/n)@ dct4 :: Transform Double Double dct4 = U.dct4 {normalization = \n -> constMultOutput $ 1 / sqrt (2 * toEnum n)} -- | A type-2 discrete cosine transform. Its inverse is 'dct3'. -- -- @y_k = w(k) sum_(j=0)^(n-1) x_j cos(pi(j+1\/2)k\/n);@ -- where -- @w(0)=1\/sqrt n@, and @w(k)=sqrt(2\/n)@ for @k>0@. dct2 :: Transform Double Double dct2 = U.dct2 {normalization = \n -> modifyOutput $ \a -> do let n' = toEnum n let !s1 = sqrt $ 1 / (4*n') let !s2 = sqrt $ 1 / (2*n') unsafeModify a 0 (*s1) multC s2 (MS.unsafeSlice 1 (MS.length a-1) a) } -- | A type-3 discrete cosine transform which is the inverse of 'dct2'. -- -- @y_k = (-1)^k w(n-1) x_(n-1) + 2 sum_(j=0)^(n-2) w(j) x_j sin(pi(j+1)(k+1\/2)/n);@ -- where -- @w(0)=1\/sqrt(n)@, and @w(k)=1/sqrt(2n)@ for @k>0@. idct2 :: Transform Double Double idct2 = U.dct3 {normalization = \n -> modifyInput $ \a -> do let n' = toEnum n let !s1 = sqrt $ 1 / n' let !s2 = sqrt $ 1 / (2*n') unsafeModify a 0 (*s1) multC s2 (MS.unsafeSlice 1 (MS.length a-1) a) }