{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE TypeOperators #-} module Properties where import Prelude import Optimal import Control.Monad import Control.Monad.ST import Data.List import Data.Ord import Data.Vector (Vector) import qualified Data.Vector as V import Data.Vector.Mutable (MVector) import qualified Data.Vector.Mutable as MV import Data.Vector.Generic (modify) import qualified Data.Vector.Generic.Mutable as G import qualified Data.Vector.Generic as GV import Data.Vector.Algorithms.Optimal (Comparison) import Data.Vector.Algorithms.Radix (radix, passes, size) import qualified Data.Vector.Algorithms as Alg import qualified Data.Map as M import Test.QuickCheck hiding (Sorted) import Util prop_sorted :: (Ord e) => Vector e -> Property prop_sorted arr | V.length arr < 2 = property True | otherwise = check (V.head arr) (V.tail arr) where check e arr | V.null arr = property True | otherwise = e <= V.head arr .&. check (V.head arr) (V.tail arr) prop_sorted_uniq :: (Ord e) => Vector e -> Property prop_sorted_uniq arr | V.length arr < 2 = property True | otherwise = check (V.head arr) (V.tail arr) where check e arr | V.null arr = property True | otherwise = e < V.head arr .&. check (V.head arr) (V.tail arr) prop_empty :: (Ord e) => (forall s. MV.MVector s e -> ST s ()) -> Property prop_empty algo = prop_sorted (modify algo $ V.fromList []) prop_fullsort :: (Ord e) => (forall s mv. G.MVector mv e => mv s e -> ST s ()) -> Vector e -> Property prop_fullsort algo arr = prop_sorted $ modify algo arr runFreeze :: forall e . (Ord e) => (forall s mv . G.MVector mv e => mv s e -> ST s (mv s e)) -> (forall s v mv. (GV.Vector v e, mv ~ GV.Mutable v) => mv s e -> ST s (v e)) runFreeze alg mv = do mv <- alg mv GV.unsafeFreeze mv prop_full_sortUniq :: (Ord e, Show e) => (forall s . MV.MVector s e -> ST s (Vector e)) -> Vector e -> Property prop_full_sortUniq algo arr = runST $ do mv <- V.unsafeThaw arr arr' <- algo mv pure (prop_sorted_uniq arr') {- prop_schwartzian :: (UA e, UA k, Ord k) => (e -> k) -> (forall e s. (UA e) => (e -> e -> Ordering) -> MUArr e s -> ST s ()) -> UArr e -> Property prop_schwartzian f algo arr | lengthU arr < 2 = property True | otherwise = let srt = modify (algo `usingKeys` f) arr in check (headU srt) (tailU srt) where check e arr | nullU arr = property True | otherwise = f e <= f (headU arr) .&. check (headU arr) (tailU arr) -} longGen :: (Arbitrary e) => Int -> Gen (Vector e) longGen k = liftM2 (\l r -> V.fromList (l ++ r)) (vectorOf k arbitrary) arbitrary sanity :: Int sanity = 100 prop_partialsort :: (Ord e, Arbitrary e, Show e) => (forall s mv. G.MVector mv e => mv s e -> Int -> ST s ()) -> Positive Int -> Property prop_partialsort = prop_sized $ \algo k v -> do let newVec = modify algo v vhead = V.take k newVec vtail = V.drop k newVec prop_sorted vhead .&&. -- Every element in the head should be < every element in the tail. if V.null vtail then 1 == 1 else V.maximum vhead <= V.minimum vtail prop_sized_empty :: (Ord e) => (forall s. MV.MVector s e -> Int -> ST s ()) -> Property prop_sized_empty algo = prop_empty (flip algo 0) .&&. prop_empty (flip algo 10) prop_select :: (Ord e, Arbitrary e, Show e) => (forall s mv. G.MVector mv e => mv s e -> Int -> ST s ()) -> Positive Int -> Property prop_select = prop_sized $ \algo k arr -> let vec' = modify algo arr l = V.slice 0 k vec' r = V.slice k (V.length vec' - k) vec' in V.all (\e -> V.all (e <=) r) l prop_sized :: (Arbitrary e, Show e, Testable prop) => ((forall s mv. G.MVector mv e => mv s e -> ST s ()) -> Int -> Vector e -> prop) -> (forall s mv. G.MVector mv e => mv s e -> Int -> ST s ()) -> Positive Int -> Property prop_sized prop algo (Positive k) = let k' = k `mod` sanity in forAll (longGen k') $ prop (\marr -> algo marr k') k' prop_stable :: (forall e s mv. G.MVector mv e => Comparison e -> mv s e -> ST s ()) -> Vector Int -> Property -- prop_stable algo arr = property $ modify algo arr == arr prop_stable algo arr = stable $ modify (algo (comparing fst)) $ V.zip arr ix where ix = V.fromList [1 .. V.length arr] stable arr | V.null arr = property True | otherwise = let (e, i) = V.head arr in V.all (\(e', i') -> e < e' || i < i') (V.tail arr) .&. stable (V.tail arr) prop_stable_radix :: (forall e s mv. G.MVector mv e => Int -> Int -> (Int -> e -> Int) -> mv s e -> ST s ()) -> Vector Int -> Property prop_stable_radix algo arr = stable . modify (algo (passes e) (size e) (\k (e, _) -> radix k e)) $ V.zip arr ix where ix = V.fromList [1 .. V.length arr] e = V.head arr prop_optimal :: Int -> (forall e s mv. G.MVector mv e => Comparison e -> mv s e -> Int -> ST s ()) -> Property prop_optimal n algo = label "sorting" sortn .&. label "stability" stabn where arrn = V.fromList [0..n-1] sortn = all ( (== arrn) . modify (\a -> algo compare a 0) . V.fromList) $ permutations [0..n-1] stabn = all ( (== arrn) . snd . V.unzip . modify (\a -> algo (comparing fst) a 0)) $ stability n type Bag e = M.Map e Int toBag :: (Ord e) => Vector e -> Bag e toBag = M.fromListWith (+) . flip zip (repeat 1) . V.toList prop_permutation :: (Ord e) => (forall s mv. G.MVector mv e => mv s e -> ST s ()) -> Vector e -> Property prop_permutation algo arr = property $ toBag arr == toBag (modify algo arr) newtype SortedVec e = Sorted (Vector e) instance (Show e) => Show (SortedVec e) where show (Sorted a) = show a instance (Arbitrary e, Ord e) => Arbitrary (SortedVec e) where arbitrary = fmap (Sorted . V.fromList . sort) $ liftM2 (++) (vectorOf 20 arbitrary) arbitrary ixRanges :: Vector e -> Gen (Int, Int) ixRanges vec = do i <- fmap (`mod` len) arbitrary j <- fmap (`mod` len) arbitrary return $ if i < j then (i, j) else (j, i) where len = V.length vec prop_search_inrange :: (Ord e) => (forall s. MVector s e -> e -> Int -> Int -> ST s Int) -> SortedVec e -> e -> Property prop_search_inrange algo (Sorted arr) e = forAll (ixRanges arr) $ \(i, j) -> let k = runST (mfromList (V.toList arr) >>= \marr -> algo marr e i j) in property $ i <= k && k <= j where len = V.length arr prop_search_insert :: (e -> e -> Bool) -> (e -> e -> Bool) -> (forall s. MVector s e -> e -> ST s Int) -> SortedVec e -> e -> Property prop_search_insert lo hi algo (Sorted arr) e = property $ (k == 0 || (arr V.! (k-1)) `lo` e) && (k == len || (arr V.! k) `hi` e) where len = V.length arr k = runST (mfromList (V.toList arr) >>= \marr -> algo marr e) prop_search_lowbound :: (Ord e) => (forall s. MVector s e -> e -> ST s Int) -> SortedVec e -> e -> Property prop_search_lowbound = prop_search_insert (<) (>=) prop_search_upbound :: (Ord e) => (forall s. MVector s e -> e -> ST s Int) -> SortedVec e -> e -> Property prop_search_upbound = prop_search_insert (<=) (>) prop_nub :: (Ord e, Show e) => Vector e -> Property prop_nub v = V.fromList (nub (V.toList v)) === Alg.nub v