{-# LANGUAGE BangPatterns #-} {-# LANGUAGE TypeFamilies #-} -- --------------------------------------------------------------------------- -- | -- Module : Data.Vector.Algorithms.Search -- Copyright : (c) 2009-2015 Dan Doel, 2015 Tim Baumann -- Maintainer : Dan Doel <dan.doel@gmail.com> -- Stability : Experimental -- Portability : Non-portable (bang patterns) -- -- This module implements several methods of searching for indicies to insert -- elements into a sorted vector. module Data.Vector.Algorithms.Search ( binarySearch , binarySearchBy , binarySearchByBounds , binarySearchL , binarySearchLBy , binarySearchLByBounds , binarySearchR , binarySearchRBy , binarySearchRByBounds , binarySearchP , binarySearchPBounds , gallopingSearchLeftP , gallopingSearchLeftPBounds , gallopingSearchRightP , gallopingSearchRightPBounds , Comparison ) where import Prelude hiding (read, length) import Control.Monad.Primitive import Data.Bits import Data.Vector.Generic.Mutable import Data.Vector.Algorithms.Common (Comparison) -- | Finds an index in a given sorted vector at which the given element could -- be inserted while maintaining the sortedness of the vector. binarySearch :: (PrimMonad m, MVector v e, Ord e) => v (PrimState m) e -> e -> m Int binarySearch = binarySearchBy compare {-# INLINE binarySearch #-} -- | Finds an index in a given vector, which must be sorted with respect to the -- given comparison function, at which the given element could be inserted while -- preserving the vector's sortedness. binarySearchBy :: (PrimMonad m, MVector v e) => Comparison e -> v (PrimState m) e -> e -> m Int binarySearchBy cmp vec e = binarySearchByBounds cmp vec e 0 (length vec) {-# INLINE binarySearchBy #-} -- | Given a vector sorted with respect to a given comparison function in indices -- in [l,u), finds an index in [l,u] at which the given element could be inserted -- while preserving sortedness. binarySearchByBounds :: (PrimMonad m, MVector v e) => Comparison e -> v (PrimState m) e -> e -> Int -> Int -> m Int binarySearchByBounds cmp vec e = loop where loop !l !u | u <= l = return l | otherwise = do e' <- unsafeRead vec k case cmp e' e of LT -> loop (k+1) u EQ -> return k GT -> loop l k where k = (u + l) `shiftR` 1 {-# INLINE binarySearchByBounds #-} -- | Finds the lowest index in a given sorted vector at which the given element -- could be inserted while maintaining the sortedness. binarySearchL :: (PrimMonad m, MVector v e, Ord e) => v (PrimState m) e -> e -> m Int binarySearchL = binarySearchLBy compare {-# INLINE binarySearchL #-} -- | Finds the lowest index in a given vector, which must be sorted with respect to -- the given comparison function, at which the given element could be inserted -- while preserving the sortedness. binarySearchLBy :: (PrimMonad m, MVector v e) => Comparison e -> v (PrimState m) e -> e -> m Int binarySearchLBy cmp vec e = binarySearchLByBounds cmp vec e 0 (length vec) {-# INLINE binarySearchLBy #-} -- | Given a vector sorted with respect to a given comparison function on indices -- in [l,u), finds the lowest index in [l,u] at which the given element could be -- inserted while preserving sortedness. binarySearchLByBounds :: (PrimMonad m, MVector v e) => Comparison e -> v (PrimState m) e -> e -> Int -> Int -> m Int binarySearchLByBounds cmp vec e = binarySearchPBounds p vec where p e' = case cmp e' e of LT -> False ; _ -> True {-# INLINE binarySearchLByBounds #-} -- | Finds the greatest index in a given sorted vector at which the given element -- could be inserted while maintaining sortedness. binarySearchR :: (PrimMonad m, MVector v e, Ord e) => v (PrimState m) e -> e -> m Int binarySearchR = binarySearchRBy compare {-# INLINE binarySearchR #-} -- | Finds the greatest index in a given vector, which must be sorted with respect to -- the given comparison function, at which the given element could be inserted -- while preserving the sortedness. binarySearchRBy :: (PrimMonad m, MVector v e) => Comparison e -> v (PrimState m) e -> e -> m Int binarySearchRBy cmp vec e = binarySearchRByBounds cmp vec e 0 (length vec) {-# INLINE binarySearchRBy #-} -- | Given a vector sorted with respect to the given comparison function on indices -- in [l,u), finds the greatest index in [l,u] at which the given element could be -- inserted while preserving sortedness. binarySearchRByBounds :: (PrimMonad m, MVector v e) => Comparison e -> v (PrimState m) e -> e -> Int -> Int -> m Int binarySearchRByBounds cmp vec e = binarySearchPBounds p vec where p e' = case cmp e' e of GT -> True ; _ -> False {-# INLINE binarySearchRByBounds #-} -- | Given a predicate that is guaraneteed to be monotone on the given vector, -- finds the first index at which the predicate returns True, or the length of -- the array if the predicate is false for the entire array. binarySearchP :: (PrimMonad m, MVector v e) => (e -> Bool) -> v (PrimState m) e -> m Int binarySearchP p vec = binarySearchPBounds p vec 0 (length vec) {-# INLINE binarySearchP #-} -- | Given a predicate that is guaranteed to be monotone on the indices [l,u) in -- a given vector, finds the index in [l,u] at which the predicate turns from -- False to True (yielding u if the entire interval is False). binarySearchPBounds :: (PrimMonad m, MVector v e) => (e -> Bool) -> v (PrimState m) e -> Int -> Int -> m Int binarySearchPBounds p vec = loop where loop !l !u | u <= l = return l | otherwise = unsafeRead vec k >>= \e -> if p e then loop l k else loop (k+1) u where k = (u + l) `shiftR` 1 {-# INLINE binarySearchPBounds #-} -- | Given a predicate that is guaranteed to be monotone on the vector elements -- in order, finds the index at which the predicate turns from False to True. -- The length of the vector is returned if the predicate is False for the entire -- vector. -- -- Begins searching at the start of the vector, in increasing steps of size 2^n. gallopingSearchLeftP :: (PrimMonad m, MVector v e) => (e -> Bool) -> v (PrimState m) e -> m Int gallopingSearchLeftP p vec = gallopingSearchLeftPBounds p vec 0 (length vec) {-# INLINE gallopingSearchLeftP #-} -- | Given a predicate that is guaranteed to be monotone on the vector elements -- in order, finds the index at which the predicate turns from False to True. -- The length of the vector is returned if the predicate is False for the entire -- vector. -- -- Begins searching at the end of the vector, in increasing steps of size 2^n. gallopingSearchRightP :: (PrimMonad m, MVector v e) => (e -> Bool) -> v (PrimState m) e -> m Int gallopingSearchRightP p vec = gallopingSearchRightPBounds p vec 0 (length vec) {-# INLINE gallopingSearchRightP #-} -- | Given a predicate that is guaranteed to be monotone on the indices [l,u) in -- a given vector, finds the index in [l,u] at which the predicate turns from -- False to True (yielding u if the entire interval is False). -- Begins searching at l, going right in increasing (2^n)-steps. gallopingSearchLeftPBounds :: (PrimMonad m, MVector v e) => (e -> Bool) -> v (PrimState m) e -> Int -- ^ l -> Int -- ^ u -> m Int gallopingSearchLeftPBounds p vec l u | u <= l = return l | otherwise = do x <- unsafeRead vec l if p x then return l else iter (l+1) l 2 where binSearch = binarySearchPBounds p vec iter !i !j !_stepSize | i >= u - 1 = do x <- unsafeRead vec (u-1) if p x then binSearch (j+1) (u-1) else return u iter !i !j !stepSize = do x <- unsafeRead vec i if p x then binSearch (j+1) i else iter (i+stepSize) i (2*stepSize) {-# INLINE gallopingSearchLeftPBounds #-} -- | Given a predicate that is guaranteed to be monotone on the indices [l,u) in -- a given vector, finds the index in [l,u] at which the predicate turns from -- False to True (yielding u if the entire interval is False). -- Begins searching at u, going left in increasing (2^n)-steps. gallopingSearchRightPBounds :: (PrimMonad m, MVector v e) => (e -> Bool) -> v (PrimState m) e -> Int -- ^ l -> Int -- ^ u -> m Int gallopingSearchRightPBounds p vec l u | u <= l = return l | otherwise = iter (u-1) (u-1) (-1) where binSearch = binarySearchPBounds p vec iter !i !j !_stepSize | i <= l = do x <- unsafeRead vec l if p x then return l else binSearch (l+1) j iter !i !j !stepSize = do x <- unsafeRead vec i if p x then iter (i+stepSize) i (2*stepSize) else binSearch (i+1) j {-# INLINE gallopingSearchRightPBounds #-}