{-# LANGUAGE FlexibleInstances, MultiParamTypeClasses, TypeFamilies, ScopedTypeVariables, Rank2Types #-} -- | -- Module : Data.Vector.Primitive -- Copyright : (c) Roman Leshchinskiy 2008-2010 -- License : BSD-style -- -- Maintainer : Roman Leshchinskiy <rl@cse.unsw.edu.au> -- Stability : experimental -- Portability : non-portable -- -- Unboxed vectors of primitive types. The use of this module is not -- recommended except in very special cases. Adaptive unboxed vectors defined -- in "Data.Vector.Unboxed" are significantly more flexible at no performance -- cost. -- module Data.Vector.Primitive ( -- * Primitive vectors Vector, MVector(..), Prim, -- * Accessors -- ** Length information length, null, -- ** Indexing (!), (!?), head, last, unsafeIndex, unsafeHead, unsafeLast, -- ** Monadic indexing indexM, headM, lastM, unsafeIndexM, unsafeHeadM, unsafeLastM, -- ** Extracting subvectors (slicing) slice, init, tail, take, drop, splitAt, unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop, -- * Construction -- ** Initialisation empty, singleton, replicate, generate, iterateN, -- ** Monadic initialisation replicateM, generateM, create, -- ** Unfolding unfoldr, unfoldrN, constructN, constructrN, -- ** Enumeration enumFromN, enumFromStepN, enumFromTo, enumFromThenTo, -- ** Concatenation cons, snoc, (++), concat, -- ** Restricting memory usage force, -- * Modifying vectors -- ** Bulk updates (//), update_, unsafeUpd, unsafeUpdate_, -- ** Accumulations accum, accumulate_, unsafeAccum, unsafeAccumulate_, -- ** Permutations reverse, backpermute, unsafeBackpermute, -- ** Safe destructive updates modify, -- * Elementwise operations -- ** Mapping map, imap, concatMap, -- ** Monadic mapping mapM, mapM_, forM, forM_, -- ** Zipping zipWith, zipWith3, zipWith4, zipWith5, zipWith6, izipWith, izipWith3, izipWith4, izipWith5, izipWith6, -- ** Monadic zipping zipWithM, zipWithM_, -- * Working with predicates -- ** Filtering filter, ifilter, filterM, takeWhile, dropWhile, -- ** Partitioning partition, unstablePartition, span, break, -- ** Searching elem, notElem, find, findIndex, findIndices, elemIndex, elemIndices, -- * Folding foldl, foldl1, foldl', foldl1', foldr, foldr1, foldr', foldr1', ifoldl, ifoldl', ifoldr, ifoldr', -- ** Specialised folds all, any, sum, product, maximum, maximumBy, minimum, minimumBy, minIndex, minIndexBy, maxIndex, maxIndexBy, -- ** Monadic folds foldM, foldM', fold1M, fold1M', foldM_, foldM'_, fold1M_, fold1M'_, -- * Prefix sums (scans) prescanl, prescanl', postscanl, postscanl', scanl, scanl', scanl1, scanl1', prescanr, prescanr', postscanr, postscanr', scanr, scanr', scanr1, scanr1', -- * Conversions -- ** Lists toList, fromList, fromListN, -- ** Other vector types G.convert, -- ** Mutable vectors freeze, thaw, copy, unsafeFreeze, unsafeThaw, unsafeCopy ) where import qualified Data.Vector.Generic as G import Data.Vector.Primitive.Mutable ( MVector(..) ) import qualified Data.Vector.Fusion.Stream as Stream import Data.Primitive.ByteArray import Data.Primitive ( Prim, sizeOf ) import Control.DeepSeq ( NFData ) import Control.Monad ( liftM ) import Control.Monad.ST ( ST ) import Control.Monad.Primitive import Prelude hiding ( length, null, replicate, (++), concat, head, last, init, tail, take, drop, splitAt, reverse, map, concatMap, zipWith, zipWith3, zip, zip3, unzip, unzip3, filter, takeWhile, dropWhile, span, break, elem, notElem, foldl, foldl1, foldr, foldr1, all, any, sum, product, minimum, maximum, scanl, scanl1, scanr, scanr1, enumFromTo, enumFromThenTo, mapM, mapM_ ) import qualified Prelude import Data.Typeable ( Typeable ) import Data.Data ( Data(..) ) import Text.Read ( Read(..), readListPrecDefault ) import Data.Monoid ( Monoid(..) ) -- | Unboxed vectors of primitive types data Vector a = Vector {-# UNPACK #-} !Int {-# UNPACK #-} !Int {-# UNPACK #-} !ByteArray deriving ( Typeable ) instance NFData (Vector a) instance (Show a, Prim a) => Show (Vector a) where showsPrec = G.showsPrec instance (Read a, Prim a) => Read (Vector a) where readPrec = G.readPrec readListPrec = readListPrecDefault instance (Data a, Prim a) => Data (Vector a) where gfoldl = G.gfoldl toConstr _ = error "toConstr" gunfold _ _ = error "gunfold" dataTypeOf _ = G.mkType "Data.Vector.Primitive.Vector" dataCast1 = G.dataCast type instance G.Mutable Vector = MVector instance Prim a => G.Vector Vector a where {-# INLINE basicUnsafeFreeze #-} basicUnsafeFreeze (MVector i n marr) = Vector i n `liftM` unsafeFreezeByteArray marr {-# INLINE basicUnsafeThaw #-} basicUnsafeThaw (Vector i n arr) = MVector i n `liftM` unsafeThawByteArray arr {-# INLINE basicLength #-} basicLength (Vector _ n _) = n {-# INLINE basicUnsafeSlice #-} basicUnsafeSlice j n (Vector i _ arr) = Vector (i+j) n arr {-# INLINE basicUnsafeIndexM #-} basicUnsafeIndexM (Vector i _ arr) j = return $! indexByteArray arr (i+j) {-# INLINE basicUnsafeCopy #-} basicUnsafeCopy (MVector i n dst) (Vector j _ src) = copyByteArray dst (i*sz) src (j*sz) (n*sz) where sz = sizeOf (undefined :: a) {-# INLINE elemseq #-} elemseq _ = seq -- See http://trac.haskell.org/vector/ticket/12 instance (Prim a, Eq a) => Eq (Vector a) where {-# INLINE (==) #-} xs == ys = Stream.eq (G.stream xs) (G.stream ys) {-# INLINE (/=) #-} xs /= ys = not (Stream.eq (G.stream xs) (G.stream ys)) -- See http://trac.haskell.org/vector/ticket/12 instance (Prim a, Ord a) => Ord (Vector a) where {-# INLINE compare #-} compare xs ys = Stream.cmp (G.stream xs) (G.stream ys) {-# INLINE (<) #-} xs < ys = Stream.cmp (G.stream xs) (G.stream ys) == LT {-# INLINE (<=) #-} xs <= ys = Stream.cmp (G.stream xs) (G.stream ys) /= GT {-# INLINE (>) #-} xs > ys = Stream.cmp (G.stream xs) (G.stream ys) == GT {-# INLINE (>=) #-} xs >= ys = Stream.cmp (G.stream xs) (G.stream ys) /= LT instance Prim a => Monoid (Vector a) where {-# INLINE mempty #-} mempty = empty {-# INLINE mappend #-} mappend = (++) {-# INLINE mconcat #-} mconcat = concat -- Length -- ------ -- | /O(1)/ Yield the length of the vector. length :: Prim a => Vector a -> Int {-# INLINE length #-} length = G.length -- | /O(1)/ Test whether a vector if empty null :: Prim a => Vector a -> Bool {-# INLINE null #-} null = G.null -- Indexing -- -------- -- | O(1) Indexing (!) :: Prim a => Vector a -> Int -> a {-# INLINE (!) #-} (!) = (G.!) -- | O(1) Safe indexing (!?) :: Prim a => Vector a -> Int -> Maybe a {-# INLINE (!?) #-} (!?) = (G.!?) -- | /O(1)/ First element head :: Prim a => Vector a -> a {-# INLINE head #-} head = G.head -- | /O(1)/ Last element last :: Prim a => Vector a -> a {-# INLINE last #-} last = G.last -- | /O(1)/ Unsafe indexing without bounds checking unsafeIndex :: Prim a => Vector a -> Int -> a {-# INLINE unsafeIndex #-} unsafeIndex = G.unsafeIndex -- | /O(1)/ First element without checking if the vector is empty unsafeHead :: Prim a => Vector a -> a {-# INLINE unsafeHead #-} unsafeHead = G.unsafeHead -- | /O(1)/ Last element without checking if the vector is empty unsafeLast :: Prim a => Vector a -> a {-# INLINE unsafeLast #-} unsafeLast = G.unsafeLast -- Monadic indexing -- ---------------- -- | /O(1)/ Indexing in a monad. -- -- The monad allows operations to be strict in the vector when necessary. -- Suppose vector copying is implemented like this: -- -- > copy mv v = ... write mv i (v ! i) ... -- -- For lazy vectors, @v ! i@ would not be evaluated which means that @mv@ -- would unnecessarily retain a reference to @v@ in each element written. -- -- With 'indexM', copying can be implemented like this instead: -- -- > copy mv v = ... do -- > x <- indexM v i -- > write mv i x -- -- Here, no references to @v@ are retained because indexing (but /not/ the -- elements) is evaluated eagerly. -- indexM :: (Prim a, Monad m) => Vector a -> Int -> m a {-# INLINE indexM #-} indexM = G.indexM -- | /O(1)/ First element of a vector in a monad. See 'indexM' for an -- explanation of why this is useful. headM :: (Prim a, Monad m) => Vector a -> m a {-# INLINE headM #-} headM = G.headM -- | /O(1)/ Last element of a vector in a monad. See 'indexM' for an -- explanation of why this is useful. lastM :: (Prim a, Monad m) => Vector a -> m a {-# INLINE lastM #-} lastM = G.lastM -- | /O(1)/ Indexing in a monad without bounds checks. See 'indexM' for an -- explanation of why this is useful. unsafeIndexM :: (Prim a, Monad m) => Vector a -> Int -> m a {-# INLINE unsafeIndexM #-} unsafeIndexM = G.unsafeIndexM -- | /O(1)/ First element in a monad without checking for empty vectors. -- See 'indexM' for an explanation of why this is useful. unsafeHeadM :: (Prim a, Monad m) => Vector a -> m a {-# INLINE unsafeHeadM #-} unsafeHeadM = G.unsafeHeadM -- | /O(1)/ Last element in a monad without checking for empty vectors. -- See 'indexM' for an explanation of why this is useful. unsafeLastM :: (Prim a, Monad m) => Vector a -> m a {-# INLINE unsafeLastM #-} unsafeLastM = G.unsafeLastM -- Extracting subvectors (slicing) -- ------------------------------- -- | /O(1)/ Yield a slice of the vector without copying it. The vector must -- contain at least @i+n@ elements. slice :: Prim a => Int -- ^ @i@ starting index -> Int -- ^ @n@ length -> Vector a -> Vector a {-# INLINE slice #-} slice = G.slice -- | /O(1)/ Yield all but the last element without copying. The vector may not -- be empty. init :: Prim a => Vector a -> Vector a {-# INLINE init #-} init = G.init -- | /O(1)/ Yield all but the first element without copying. The vector may not -- be empty. tail :: Prim a => Vector a -> Vector a {-# INLINE tail #-} tail = G.tail -- | /O(1)/ Yield at the first @n@ elements without copying. The vector may -- contain less than @n@ elements in which case it is returned unchanged. take :: Prim a => Int -> Vector a -> Vector a {-# INLINE take #-} take = G.take -- | /O(1)/ Yield all but the first @n@ elements without copying. The vector may -- contain less than @n@ elements in which case an empty vector is returned. drop :: Prim a => Int -> Vector a -> Vector a {-# INLINE drop #-} drop = G.drop -- | /O(1)/ Yield the first @n@ elements paired with the remainder without copying. -- -- Note that @'splitAt' n v@ is equivalent to @('take' n v, 'drop' n v)@ -- but slightly more efficient. {-# INLINE splitAt #-} splitAt :: Prim a => Int -> Vector a -> (Vector a, Vector a) splitAt = G.splitAt -- | /O(1)/ Yield a slice of the vector without copying. The vector must -- contain at least @i+n@ elements but this is not checked. unsafeSlice :: Prim a => Int -- ^ @i@ starting index -> Int -- ^ @n@ length -> Vector a -> Vector a {-# INLINE unsafeSlice #-} unsafeSlice = G.unsafeSlice -- | /O(1)/ Yield all but the last element without copying. The vector may not -- be empty but this is not checked. unsafeInit :: Prim a => Vector a -> Vector a {-# INLINE unsafeInit #-} unsafeInit = G.unsafeInit -- | /O(1)/ Yield all but the first element without copying. The vector may not -- be empty but this is not checked. unsafeTail :: Prim a => Vector a -> Vector a {-# INLINE unsafeTail #-} unsafeTail = G.unsafeTail -- | /O(1)/ Yield the first @n@ elements without copying. The vector must -- contain at least @n@ elements but this is not checked. unsafeTake :: Prim a => Int -> Vector a -> Vector a {-# INLINE unsafeTake #-} unsafeTake = G.unsafeTake -- | /O(1)/ Yield all but the first @n@ elements without copying. The vector -- must contain at least @n@ elements but this is not checked. unsafeDrop :: Prim a => Int -> Vector a -> Vector a {-# INLINE unsafeDrop #-} unsafeDrop = G.unsafeDrop -- Initialisation -- -------------- -- | /O(1)/ Empty vector empty :: Prim a => Vector a {-# INLINE empty #-} empty = G.empty -- | /O(1)/ Vector with exactly one element singleton :: Prim a => a -> Vector a {-# INLINE singleton #-} singleton = G.singleton -- | /O(n)/ Vector of the given length with the same value in each position replicate :: Prim a => Int -> a -> Vector a {-# INLINE replicate #-} replicate = G.replicate -- | /O(n)/ Construct a vector of the given length by applying the function to -- each index generate :: Prim a => Int -> (Int -> a) -> Vector a {-# INLINE generate #-} generate = G.generate -- | /O(n)/ Apply function n times to value. Zeroth element is original value. iterateN :: Prim a => Int -> (a -> a) -> a -> Vector a {-# INLINE iterateN #-} iterateN = G.iterateN -- Unfolding -- --------- -- | /O(n)/ Construct a vector by repeatedly applying the generator function -- to a seed. The generator function yields 'Just' the next element and the -- new seed or 'Nothing' if there are no more elements. -- -- > unfoldr (\n -> if n == 0 then Nothing else Just (n,n-1)) 10 -- > = <10,9,8,7,6,5,4,3,2,1> unfoldr :: Prim a => (b -> Maybe (a, b)) -> b -> Vector a {-# INLINE unfoldr #-} unfoldr = G.unfoldr -- | /O(n)/ Construct a vector with at most @n@ by repeatedly applying the -- generator function to the a seed. The generator function yields 'Just' the -- next element and the new seed or 'Nothing' if there are no more elements. -- -- > unfoldrN 3 (\n -> Just (n,n-1)) 10 = <10,9,8> unfoldrN :: Prim a => Int -> (b -> Maybe (a, b)) -> b -> Vector a {-# INLINE unfoldrN #-} unfoldrN = G.unfoldrN -- | /O(n)/ Construct a vector with @n@ elements by repeatedly applying the -- generator function to the already constructed part of the vector. -- -- > constructN 3 f = let a = f <> ; b = f <a> ; c = f <a,b> in f <a,b,c> -- constructN :: Prim a => Int -> (Vector a -> a) -> Vector a {-# INLINE constructN #-} constructN = G.constructN -- | /O(n)/ Construct a vector with @n@ elements from right to left by -- repeatedly applying the generator function to the already constructed part -- of the vector. -- -- > constructrN 3 f = let a = f <> ; b = f<a> ; c = f <b,a> in f <c,b,a> -- constructrN :: Prim a => Int -> (Vector a -> a) -> Vector a {-# INLINE constructrN #-} constructrN = G.constructrN -- Enumeration -- ----------- -- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+1@ -- etc. This operation is usually more efficient than 'enumFromTo'. -- -- > enumFromN 5 3 = <5,6,7> enumFromN :: (Prim a, Num a) => a -> Int -> Vector a {-# INLINE enumFromN #-} enumFromN = G.enumFromN -- | /O(n)/ Yield a vector of the given length containing the values @x@, @x+y@, -- @x+y+y@ etc. This operations is usually more efficient than 'enumFromThenTo'. -- -- > enumFromStepN 1 0.1 5 = <1,1.1,1.2,1.3,1.4> enumFromStepN :: (Prim a, Num a) => a -> a -> Int -> Vector a {-# INLINE enumFromStepN #-} enumFromStepN = G.enumFromStepN -- | /O(n)/ Enumerate values from @x@ to @y@. -- -- /WARNING:/ This operation can be very inefficient. If at all possible, use -- 'enumFromN' instead. enumFromTo :: (Prim a, Enum a) => a -> a -> Vector a {-# INLINE enumFromTo #-} enumFromTo = G.enumFromTo -- | /O(n)/ Enumerate values from @x@ to @y@ with a specific step @z@. -- -- /WARNING:/ This operation can be very inefficient. If at all possible, use -- 'enumFromStepN' instead. enumFromThenTo :: (Prim a, Enum a) => a -> a -> a -> Vector a {-# INLINE enumFromThenTo #-} enumFromThenTo = G.enumFromThenTo -- Concatenation -- ------------- -- | /O(n)/ Prepend an element cons :: Prim a => a -> Vector a -> Vector a {-# INLINE cons #-} cons = G.cons -- | /O(n)/ Append an element snoc :: Prim a => Vector a -> a -> Vector a {-# INLINE snoc #-} snoc = G.snoc infixr 5 ++ -- | /O(m+n)/ Concatenate two vectors (++) :: Prim a => Vector a -> Vector a -> Vector a {-# INLINE (++) #-} (++) = (G.++) -- | /O(n)/ Concatenate all vectors in the list concat :: Prim a => [Vector a] -> Vector a {-# INLINE concat #-} concat = G.concat -- Monadic initialisation -- ---------------------- -- | /O(n)/ Execute the monadic action the given number of times and store the -- results in a vector. replicateM :: (Monad m, Prim a) => Int -> m a -> m (Vector a) {-# INLINE replicateM #-} replicateM = G.replicateM -- | /O(n)/ Construct a vector of the given length by applying the monadic -- action to each index generateM :: (Monad m, Prim a) => Int -> (Int -> m a) -> m (Vector a) {-# INLINE generateM #-} generateM = G.generateM -- | Execute the monadic action and freeze the resulting vector. -- -- @ -- create (do { v \<- new 2; write v 0 \'a\'; write v 1 \'b\'; return v }) = \<'a','b'\> -- @ create :: Prim a => (forall s. ST s (MVector s a)) -> Vector a {-# INLINE create #-} -- NOTE: eta-expanded due to http://hackage.haskell.org/trac/ghc/ticket/4120 create p = G.create p -- Restricting memory usage -- ------------------------ -- | /O(n)/ Yield the argument but force it not to retain any extra memory, -- possibly by copying it. -- -- This is especially useful when dealing with slices. For example: -- -- > force (slice 0 2 <huge vector>) -- -- Here, the slice retains a reference to the huge vector. Forcing it creates -- a copy of just the elements that belong to the slice and allows the huge -- vector to be garbage collected. force :: Prim a => Vector a -> Vector a {-# INLINE force #-} force = G.force -- Bulk updates -- ------------ -- | /O(m+n)/ For each pair @(i,a)@ from the list, replace the vector -- element at position @i@ by @a@. -- -- > <5,9,2,7> // [(2,1),(0,3),(2,8)] = <3,9,8,7> -- (//) :: Prim a => Vector a -- ^ initial vector (of length @m@) -> [(Int, a)] -- ^ list of index/value pairs (of length @n@) -> Vector a {-# INLINE (//) #-} (//) = (G.//) -- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the -- corresponding value @a@ from the value vector, replace the element of the -- initial vector at position @i@ by @a@. -- -- > update_ <5,9,2,7> <2,0,2> <1,3,8> = <3,9,8,7> -- update_ :: Prim a => Vector a -- ^ initial vector (of length @m@) -> Vector Int -- ^ index vector (of length @n1@) -> Vector a -- ^ value vector (of length @n2@) -> Vector a {-# INLINE update_ #-} update_ = G.update_ -- | Same as ('//') but without bounds checking. unsafeUpd :: Prim a => Vector a -> [(Int, a)] -> Vector a {-# INLINE unsafeUpd #-} unsafeUpd = G.unsafeUpd -- | Same as 'update_' but without bounds checking. unsafeUpdate_ :: Prim a => Vector a -> Vector Int -> Vector a -> Vector a {-# INLINE unsafeUpdate_ #-} unsafeUpdate_ = G.unsafeUpdate_ -- Accumulations -- ------------- -- | /O(m+n)/ For each pair @(i,b)@ from the list, replace the vector element -- @a@ at position @i@ by @f a b@. -- -- > accum (+) <5,9,2> [(2,4),(1,6),(0,3),(1,7)] = <5+3, 9+6+7, 2+4> accum :: Prim a => (a -> b -> a) -- ^ accumulating function @f@ -> Vector a -- ^ initial vector (of length @m@) -> [(Int,b)] -- ^ list of index/value pairs (of length @n@) -> Vector a {-# INLINE accum #-} accum = G.accum -- | /O(m+min(n1,n2))/ For each index @i@ from the index vector and the -- corresponding value @b@ from the the value vector, -- replace the element of the initial vector at -- position @i@ by @f a b@. -- -- > accumulate_ (+) <5,9,2> <2,1,0,1> <4,6,3,7> = <5+3, 9+6+7, 2+4> -- accumulate_ :: (Prim a, Prim b) => (a -> b -> a) -- ^ accumulating function @f@ -> Vector a -- ^ initial vector (of length @m@) -> Vector Int -- ^ index vector (of length @n1@) -> Vector b -- ^ value vector (of length @n2@) -> Vector a {-# INLINE accumulate_ #-} accumulate_ = G.accumulate_ -- | Same as 'accum' but without bounds checking. unsafeAccum :: Prim a => (a -> b -> a) -> Vector a -> [(Int,b)] -> Vector a {-# INLINE unsafeAccum #-} unsafeAccum = G.unsafeAccum -- | Same as 'accumulate_' but without bounds checking. unsafeAccumulate_ :: (Prim a, Prim b) => (a -> b -> a) -> Vector a -> Vector Int -> Vector b -> Vector a {-# INLINE unsafeAccumulate_ #-} unsafeAccumulate_ = G.unsafeAccumulate_ -- Permutations -- ------------ -- | /O(n)/ Reverse a vector reverse :: Prim a => Vector a -> Vector a {-# INLINE reverse #-} reverse = G.reverse -- | /O(n)/ Yield the vector obtained by replacing each element @i@ of the -- index vector by @xs'!'i@. This is equivalent to @'map' (xs'!') is@ but is -- often much more efficient. -- -- > backpermute <a,b,c,d> <0,3,2,3,1,0> = <a,d,c,d,b,a> backpermute :: Prim a => Vector a -> Vector Int -> Vector a {-# INLINE backpermute #-} backpermute = G.backpermute -- | Same as 'backpermute' but without bounds checking. unsafeBackpermute :: Prim a => Vector a -> Vector Int -> Vector a {-# INLINE unsafeBackpermute #-} unsafeBackpermute = G.unsafeBackpermute -- Safe destructive updates -- ------------------------ -- | Apply a destructive operation to a vector. The operation will be -- performed in place if it is safe to do so and will modify a copy of the -- vector otherwise. -- -- @ -- modify (\\v -> write v 0 \'x\') ('replicate' 3 \'a\') = \<\'x\',\'a\',\'a\'\> -- @ modify :: Prim a => (forall s. MVector s a -> ST s ()) -> Vector a -> Vector a {-# INLINE modify #-} modify p = G.modify p -- Mapping -- ------- -- | /O(n)/ Map a function over a vector map :: (Prim a, Prim b) => (a -> b) -> Vector a -> Vector b {-# INLINE map #-} map = G.map -- | /O(n)/ Apply a function to every element of a vector and its index imap :: (Prim a, Prim b) => (Int -> a -> b) -> Vector a -> Vector b {-# INLINE imap #-} imap = G.imap -- | Map a function over a vector and concatenate the results. concatMap :: (Prim a, Prim b) => (a -> Vector b) -> Vector a -> Vector b {-# INLINE concatMap #-} concatMap = G.concatMap -- Monadic mapping -- --------------- -- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a -- vector of results mapM :: (Monad m, Prim a, Prim b) => (a -> m b) -> Vector a -> m (Vector b) {-# INLINE mapM #-} mapM = G.mapM -- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the -- results mapM_ :: (Monad m, Prim a) => (a -> m b) -> Vector a -> m () {-# INLINE mapM_ #-} mapM_ = G.mapM_ -- | /O(n)/ Apply the monadic action to all elements of the vector, yielding a -- vector of results. Equvalent to @flip 'mapM'@. forM :: (Monad m, Prim a, Prim b) => Vector a -> (a -> m b) -> m (Vector b) {-# INLINE forM #-} forM = G.forM -- | /O(n)/ Apply the monadic action to all elements of a vector and ignore the -- results. Equivalent to @flip 'mapM_'@. forM_ :: (Monad m, Prim a) => Vector a -> (a -> m b) -> m () {-# INLINE forM_ #-} forM_ = G.forM_ -- Zipping -- ------- -- | /O(min(m,n))/ Zip two vectors with the given function. zipWith :: (Prim a, Prim b, Prim c) => (a -> b -> c) -> Vector a -> Vector b -> Vector c {-# INLINE zipWith #-} zipWith = G.zipWith -- | Zip three vectors with the given function. zipWith3 :: (Prim a, Prim b, Prim c, Prim d) => (a -> b -> c -> d) -> Vector a -> Vector b -> Vector c -> Vector d {-# INLINE zipWith3 #-} zipWith3 = G.zipWith3 zipWith4 :: (Prim a, Prim b, Prim c, Prim d, Prim e) => (a -> b -> c -> d -> e) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e {-# INLINE zipWith4 #-} zipWith4 = G.zipWith4 zipWith5 :: (Prim a, Prim b, Prim c, Prim d, Prim e, Prim f) => (a -> b -> c -> d -> e -> f) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector f {-# INLINE zipWith5 #-} zipWith5 = G.zipWith5 zipWith6 :: (Prim a, Prim b, Prim c, Prim d, Prim e, Prim f, Prim g) => (a -> b -> c -> d -> e -> f -> g) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector f -> Vector g {-# INLINE zipWith6 #-} zipWith6 = G.zipWith6 -- | /O(min(m,n))/ Zip two vectors with a function that also takes the -- elements' indices. izipWith :: (Prim a, Prim b, Prim c) => (Int -> a -> b -> c) -> Vector a -> Vector b -> Vector c {-# INLINE izipWith #-} izipWith = G.izipWith -- | Zip three vectors and their indices with the given function. izipWith3 :: (Prim a, Prim b, Prim c, Prim d) => (Int -> a -> b -> c -> d) -> Vector a -> Vector b -> Vector c -> Vector d {-# INLINE izipWith3 #-} izipWith3 = G.izipWith3 izipWith4 :: (Prim a, Prim b, Prim c, Prim d, Prim e) => (Int -> a -> b -> c -> d -> e) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e {-# INLINE izipWith4 #-} izipWith4 = G.izipWith4 izipWith5 :: (Prim a, Prim b, Prim c, Prim d, Prim e, Prim f) => (Int -> a -> b -> c -> d -> e -> f) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector f {-# INLINE izipWith5 #-} izipWith5 = G.izipWith5 izipWith6 :: (Prim a, Prim b, Prim c, Prim d, Prim e, Prim f, Prim g) => (Int -> a -> b -> c -> d -> e -> f -> g) -> Vector a -> Vector b -> Vector c -> Vector d -> Vector e -> Vector f -> Vector g {-# INLINE izipWith6 #-} izipWith6 = G.izipWith6 -- Monadic zipping -- --------------- -- | /O(min(m,n))/ Zip the two vectors with the monadic action and yield a -- vector of results zipWithM :: (Monad m, Prim a, Prim b, Prim c) => (a -> b -> m c) -> Vector a -> Vector b -> m (Vector c) {-# INLINE zipWithM #-} zipWithM = G.zipWithM -- | /O(min(m,n))/ Zip the two vectors with the monadic action and ignore the -- results zipWithM_ :: (Monad m, Prim a, Prim b) => (a -> b -> m c) -> Vector a -> Vector b -> m () {-# INLINE zipWithM_ #-} zipWithM_ = G.zipWithM_ -- Filtering -- --------- -- | /O(n)/ Drop elements that do not satisfy the predicate filter :: Prim a => (a -> Bool) -> Vector a -> Vector a {-# INLINE filter #-} filter = G.filter -- | /O(n)/ Drop elements that do not satisfy the predicate which is applied to -- values and their indices ifilter :: Prim a => (Int -> a -> Bool) -> Vector a -> Vector a {-# INLINE ifilter #-} ifilter = G.ifilter -- | /O(n)/ Drop elements that do not satisfy the monadic predicate filterM :: (Monad m, Prim a) => (a -> m Bool) -> Vector a -> m (Vector a) {-# INLINE filterM #-} filterM = G.filterM -- | /O(n)/ Yield the longest prefix of elements satisfying the predicate -- without copying. takeWhile :: Prim a => (a -> Bool) -> Vector a -> Vector a {-# INLINE takeWhile #-} takeWhile = G.takeWhile -- | /O(n)/ Drop the longest prefix of elements that satisfy the predicate -- without copying. dropWhile :: Prim a => (a -> Bool) -> Vector a -> Vector a {-# INLINE dropWhile #-} dropWhile = G.dropWhile -- Parititioning -- ------------- -- | /O(n)/ Split the vector in two parts, the first one containing those -- elements that satisfy the predicate and the second one those that don't. The -- relative order of the elements is preserved at the cost of a sometimes -- reduced performance compared to 'unstablePartition'. partition :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a) {-# INLINE partition #-} partition = G.partition -- | /O(n)/ Split the vector in two parts, the first one containing those -- elements that satisfy the predicate and the second one those that don't. -- The order of the elements is not preserved but the operation is often -- faster than 'partition'. unstablePartition :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a) {-# INLINE unstablePartition #-} unstablePartition = G.unstablePartition -- | /O(n)/ Split the vector into the longest prefix of elements that satisfy -- the predicate and the rest without copying. span :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a) {-# INLINE span #-} span = G.span -- | /O(n)/ Split the vector into the longest prefix of elements that do not -- satisfy the predicate and the rest without copying. break :: Prim a => (a -> Bool) -> Vector a -> (Vector a, Vector a) {-# INLINE break #-} break = G.break -- Searching -- --------- infix 4 `elem` -- | /O(n)/ Check if the vector contains an element elem :: (Prim a, Eq a) => a -> Vector a -> Bool {-# INLINE elem #-} elem = G.elem infix 4 `notElem` -- | /O(n)/ Check if the vector does not contain an element (inverse of 'elem') notElem :: (Prim a, Eq a) => a -> Vector a -> Bool {-# INLINE notElem #-} notElem = G.notElem -- | /O(n)/ Yield 'Just' the first element matching the predicate or 'Nothing' -- if no such element exists. find :: Prim a => (a -> Bool) -> Vector a -> Maybe a {-# INLINE find #-} find = G.find -- | /O(n)/ Yield 'Just' the index of the first element matching the predicate -- or 'Nothing' if no such element exists. findIndex :: Prim a => (a -> Bool) -> Vector a -> Maybe Int {-# INLINE findIndex #-} findIndex = G.findIndex -- | /O(n)/ Yield the indices of elements satisfying the predicate in ascending -- order. findIndices :: Prim a => (a -> Bool) -> Vector a -> Vector Int {-# INLINE findIndices #-} findIndices = G.findIndices -- | /O(n)/ Yield 'Just' the index of the first occurence of the given element or -- 'Nothing' if the vector does not contain the element. This is a specialised -- version of 'findIndex'. elemIndex :: (Prim a, Eq a) => a -> Vector a -> Maybe Int {-# INLINE elemIndex #-} elemIndex = G.elemIndex -- | /O(n)/ Yield the indices of all occurences of the given element in -- ascending order. This is a specialised version of 'findIndices'. elemIndices :: (Prim a, Eq a) => a -> Vector a -> Vector Int {-# INLINE elemIndices #-} elemIndices = G.elemIndices -- Folding -- ------- -- | /O(n)/ Left fold foldl :: Prim b => (a -> b -> a) -> a -> Vector b -> a {-# INLINE foldl #-} foldl = G.foldl -- | /O(n)/ Left fold on non-empty vectors foldl1 :: Prim a => (a -> a -> a) -> Vector a -> a {-# INLINE foldl1 #-} foldl1 = G.foldl1 -- | /O(n)/ Left fold with strict accumulator foldl' :: Prim b => (a -> b -> a) -> a -> Vector b -> a {-# INLINE foldl' #-} foldl' = G.foldl' -- | /O(n)/ Left fold on non-empty vectors with strict accumulator foldl1' :: Prim a => (a -> a -> a) -> Vector a -> a {-# INLINE foldl1' #-} foldl1' = G.foldl1' -- | /O(n)/ Right fold foldr :: Prim a => (a -> b -> b) -> b -> Vector a -> b {-# INLINE foldr #-} foldr = G.foldr -- | /O(n)/ Right fold on non-empty vectors foldr1 :: Prim a => (a -> a -> a) -> Vector a -> a {-# INLINE foldr1 #-} foldr1 = G.foldr1 -- | /O(n)/ Right fold with a strict accumulator foldr' :: Prim a => (a -> b -> b) -> b -> Vector a -> b {-# INLINE foldr' #-} foldr' = G.foldr' -- | /O(n)/ Right fold on non-empty vectors with strict accumulator foldr1' :: Prim a => (a -> a -> a) -> Vector a -> a {-# INLINE foldr1' #-} foldr1' = G.foldr1' -- | /O(n)/ Left fold (function applied to each element and its index) ifoldl :: Prim b => (a -> Int -> b -> a) -> a -> Vector b -> a {-# INLINE ifoldl #-} ifoldl = G.ifoldl -- | /O(n)/ Left fold with strict accumulator (function applied to each element -- and its index) ifoldl' :: Prim b => (a -> Int -> b -> a) -> a -> Vector b -> a {-# INLINE ifoldl' #-} ifoldl' = G.ifoldl' -- | /O(n)/ Right fold (function applied to each element and its index) ifoldr :: Prim a => (Int -> a -> b -> b) -> b -> Vector a -> b {-# INLINE ifoldr #-} ifoldr = G.ifoldr -- | /O(n)/ Right fold with strict accumulator (function applied to each -- element and its index) ifoldr' :: Prim a => (Int -> a -> b -> b) -> b -> Vector a -> b {-# INLINE ifoldr' #-} ifoldr' = G.ifoldr' -- Specialised folds -- ----------------- -- | /O(n)/ Check if all elements satisfy the predicate. all :: Prim a => (a -> Bool) -> Vector a -> Bool {-# INLINE all #-} all = G.all -- | /O(n)/ Check if any element satisfies the predicate. any :: Prim a => (a -> Bool) -> Vector a -> Bool {-# INLINE any #-} any = G.any -- | /O(n)/ Compute the sum of the elements sum :: (Prim a, Num a) => Vector a -> a {-# INLINE sum #-} sum = G.sum -- | /O(n)/ Compute the produce of the elements product :: (Prim a, Num a) => Vector a -> a {-# INLINE product #-} product = G.product -- | /O(n)/ Yield the maximum element of the vector. The vector may not be -- empty. maximum :: (Prim a, Ord a) => Vector a -> a {-# INLINE maximum #-} maximum = G.maximum -- | /O(n)/ Yield the maximum element of the vector according to the given -- comparison function. The vector may not be empty. maximumBy :: Prim a => (a -> a -> Ordering) -> Vector a -> a {-# INLINE maximumBy #-} maximumBy = G.maximumBy -- | /O(n)/ Yield the minimum element of the vector. The vector may not be -- empty. minimum :: (Prim a, Ord a) => Vector a -> a {-# INLINE minimum #-} minimum = G.minimum -- | /O(n)/ Yield the minimum element of the vector according to the given -- comparison function. The vector may not be empty. minimumBy :: Prim a => (a -> a -> Ordering) -> Vector a -> a {-# INLINE minimumBy #-} minimumBy = G.minimumBy -- | /O(n)/ Yield the index of the maximum element of the vector. The vector -- may not be empty. maxIndex :: (Prim a, Ord a) => Vector a -> Int {-# INLINE maxIndex #-} maxIndex = G.maxIndex -- | /O(n)/ Yield the index of the maximum element of the vector according to -- the given comparison function. The vector may not be empty. maxIndexBy :: Prim a => (a -> a -> Ordering) -> Vector a -> Int {-# INLINE maxIndexBy #-} maxIndexBy = G.maxIndexBy -- | /O(n)/ Yield the index of the minimum element of the vector. The vector -- may not be empty. minIndex :: (Prim a, Ord a) => Vector a -> Int {-# INLINE minIndex #-} minIndex = G.minIndex -- | /O(n)/ Yield the index of the minimum element of the vector according to -- the given comparison function. The vector may not be empty. minIndexBy :: Prim a => (a -> a -> Ordering) -> Vector a -> Int {-# INLINE minIndexBy #-} minIndexBy = G.minIndexBy -- Monadic folds -- ------------- -- | /O(n)/ Monadic fold foldM :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m a {-# INLINE foldM #-} foldM = G.foldM -- | /O(n)/ Monadic fold over non-empty vectors fold1M :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m a {-# INLINE fold1M #-} fold1M = G.fold1M -- | /O(n)/ Monadic fold with strict accumulator foldM' :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m a {-# INLINE foldM' #-} foldM' = G.foldM' -- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator fold1M' :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m a {-# INLINE fold1M' #-} fold1M' = G.fold1M' -- | /O(n)/ Monadic fold that discards the result foldM_ :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m () {-# INLINE foldM_ #-} foldM_ = G.foldM_ -- | /O(n)/ Monadic fold over non-empty vectors that discards the result fold1M_ :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m () {-# INLINE fold1M_ #-} fold1M_ = G.fold1M_ -- | /O(n)/ Monadic fold with strict accumulator that discards the result foldM'_ :: (Monad m, Prim b) => (a -> b -> m a) -> a -> Vector b -> m () {-# INLINE foldM'_ #-} foldM'_ = G.foldM'_ -- | /O(n)/ Monadic fold over non-empty vectors with strict accumulator -- that discards the result fold1M'_ :: (Monad m, Prim a) => (a -> a -> m a) -> Vector a -> m () {-# INLINE fold1M'_ #-} fold1M'_ = G.fold1M'_ -- Prefix sums (scans) -- ------------------- -- | /O(n)/ Prescan -- -- @ -- prescanl f z = 'init' . 'scanl' f z -- @ -- -- Example: @prescanl (+) 0 \<1,2,3,4\> = \<0,1,3,6\>@ -- prescanl :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a {-# INLINE prescanl #-} prescanl = G.prescanl -- | /O(n)/ Prescan with strict accumulator prescanl' :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a {-# INLINE prescanl' #-} prescanl' = G.prescanl' -- | /O(n)/ Scan -- -- @ -- postscanl f z = 'tail' . 'scanl' f z -- @ -- -- Example: @postscanl (+) 0 \<1,2,3,4\> = \<1,3,6,10\>@ -- postscanl :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a {-# INLINE postscanl #-} postscanl = G.postscanl -- | /O(n)/ Scan with strict accumulator postscanl' :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a {-# INLINE postscanl' #-} postscanl' = G.postscanl' -- | /O(n)/ Haskell-style scan -- -- > scanl f z <x1,...,xn> = <y1,...,y(n+1)> -- > where y1 = z -- > yi = f y(i-1) x(i-1) -- -- Example: @scanl (+) 0 \<1,2,3,4\> = \<0,1,3,6,10\>@ -- scanl :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a {-# INLINE scanl #-} scanl = G.scanl -- | /O(n)/ Haskell-style scan with strict accumulator scanl' :: (Prim a, Prim b) => (a -> b -> a) -> a -> Vector b -> Vector a {-# INLINE scanl' #-} scanl' = G.scanl' -- | /O(n)/ Scan over a non-empty vector -- -- > scanl f <x1,...,xn> = <y1,...,yn> -- > where y1 = x1 -- > yi = f y(i-1) xi -- scanl1 :: Prim a => (a -> a -> a) -> Vector a -> Vector a {-# INLINE scanl1 #-} scanl1 = G.scanl1 -- | /O(n)/ Scan over a non-empty vector with a strict accumulator scanl1' :: Prim a => (a -> a -> a) -> Vector a -> Vector a {-# INLINE scanl1' #-} scanl1' = G.scanl1' -- | /O(n)/ Right-to-left prescan -- -- @ -- prescanr f z = 'reverse' . 'prescanl' (flip f) z . 'reverse' -- @ -- prescanr :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b {-# INLINE prescanr #-} prescanr = G.prescanr -- | /O(n)/ Right-to-left prescan with strict accumulator prescanr' :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b {-# INLINE prescanr' #-} prescanr' = G.prescanr' -- | /O(n)/ Right-to-left scan postscanr :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b {-# INLINE postscanr #-} postscanr = G.postscanr -- | /O(n)/ Right-to-left scan with strict accumulator postscanr' :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b {-# INLINE postscanr' #-} postscanr' = G.postscanr' -- | /O(n)/ Right-to-left Haskell-style scan scanr :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b {-# INLINE scanr #-} scanr = G.scanr -- | /O(n)/ Right-to-left Haskell-style scan with strict accumulator scanr' :: (Prim a, Prim b) => (a -> b -> b) -> b -> Vector a -> Vector b {-# INLINE scanr' #-} scanr' = G.scanr' -- | /O(n)/ Right-to-left scan over a non-empty vector scanr1 :: Prim a => (a -> a -> a) -> Vector a -> Vector a {-# INLINE scanr1 #-} scanr1 = G.scanr1 -- | /O(n)/ Right-to-left scan over a non-empty vector with a strict -- accumulator scanr1' :: Prim a => (a -> a -> a) -> Vector a -> Vector a {-# INLINE scanr1' #-} scanr1' = G.scanr1' -- Conversions - Lists -- ------------------------ -- | /O(n)/ Convert a vector to a list toList :: Prim a => Vector a -> [a] {-# INLINE toList #-} toList = G.toList -- | /O(n)/ Convert a list to a vector fromList :: Prim a => [a] -> Vector a {-# INLINE fromList #-} fromList = G.fromList -- | /O(n)/ Convert the first @n@ elements of a list to a vector -- -- @ -- fromListN n xs = 'fromList' ('take' n xs) -- @ fromListN :: Prim a => Int -> [a] -> Vector a {-# INLINE fromListN #-} fromListN = G.fromListN -- Conversions - Mutable vectors -- ----------------------------- -- | /O(1)/ Unsafe convert a mutable vector to an immutable one without -- copying. The mutable vector may not be used after this operation. unsafeFreeze :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> m (Vector a) {-# INLINE unsafeFreeze #-} unsafeFreeze = G.unsafeFreeze -- | /O(1)/ Unsafely convert an immutable vector to a mutable one without -- copying. The immutable vector may not be used after this operation. unsafeThaw :: (Prim a, PrimMonad m) => Vector a -> m (MVector (PrimState m) a) {-# INLINE unsafeThaw #-} unsafeThaw = G.unsafeThaw -- | /O(n)/ Yield a mutable copy of the immutable vector. thaw :: (Prim a, PrimMonad m) => Vector a -> m (MVector (PrimState m) a) {-# INLINE thaw #-} thaw = G.thaw -- | /O(n)/ Yield an immutable copy of the mutable vector. freeze :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> m (Vector a) {-# INLINE freeze #-} freeze = G.freeze -- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must -- have the same length. This is not checked. unsafeCopy :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> Vector a -> m () {-# INLINE unsafeCopy #-} unsafeCopy = G.unsafeCopy -- | /O(n)/ Copy an immutable vector into a mutable one. The two vectors must -- have the same length. copy :: (Prim a, PrimMonad m) => MVector (PrimState m) a -> Vector a -> m () {-# INLINE copy #-} copy = G.copy